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PROPERTIES OF THE STOCHASTIC ORDERING

FOR DISCRETE DISTRIBUTIONS

AND THEIR APPLICATIONS TO THE RENEWAL

SEQUENCE GENERATED BY A NONHOMOGENEOUS

MARKOV CHAIN
UDC 519.21

V. V. GOLOMOZYĬ

Abstract. The generalized stochastic ordering is studied for which the dominating
sequence is not necessarily a probability distribution so that its total mass may
exceed unity. We study the stochastic ordering for sums as well as random sums
of independent as well as dependent random variables. A stochastic ordering is
constructed for the renewal sequence generated by a nonhomogeneous Markov chain.
The consideration is restricted to the case of discrete random variables.

1. Introduction

In this paper, some properties of the stochastic ordering are considered in a somewhat
generalized sense for discrete distributions. The classical definition of the stochastic
ordering reads as follows.

We say that a random variable ξ stochastically dominates a random variable η if
P{ξ > x} ≥ P{η > x} for all x. In other words, a random variable ξ stochastically
dominates a random variable η if the distribution function of ξ does not exceed the
distribution function of η pointwise.

This definition for nonnegative discrete random variables, that are the main object of
this paper, can be reformulated as follows: let the distribution of ξ be {pi} and that of
η be {gi}. Then ξ stochastically dominates η if∑

k≥n

pk ≥
∑
k≥n

gk

for all n.
The notion of the stochastic ordering is useful in various applications, in particular in

finance mathematics and mathematical economics where it is a way to compare different
types of lotteries.

Some related questions concerning the stochastic ordering are studied in the paper [11]
for some discrete distributions such as the Bernoulli distribution. Some typical methods
used to prove the defining property of the stochastic ordering are also discussed in [11].

The stochastic ordering plays an important role in the analysis of nonhomogeneous
Markov chains as well as of renewal sequences generated by these chains. If θk denotes
the time between two visits of a certain set by a Markov chain, then this sequence is
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not homogeneous for nonhomogeneous chains. Moreover the distribution of θk depends

on the sum
∑k−1

j=0 θj (more detail is given in [4]). The stochastic ordering is used to

treat such sequences. In particular, the stochastic ordering is used in [4] as a condition
for the existence of the expectation for the coupling time. Other applications of the
stochastic ordering are described in [5] (for the generalization of Daley’s inequality in
the nonhomogeneous case) and in [6] (for estimating the expectation of the coupling
time). Further, the stochastic ordering plays the key role for constructing bounds for the
stability of perturbed nonhomogeneous Markov chain if the conditions on the uniform
ergodicity does not hold (see [7]). Note that a bound of such a stability can be obtained
in a simpler way under the condition of the uniform ergodicity (see [8–10]).

When analyzing Markov chains, it is often convenient to weaken the defining property
of the stochastic ordering by abandoning the condition that a dominating sequence is a
probability distribution and by allowing the total mass to exceed 1 (see, for example, [6]).
By the way, such a weaker property is used in the papers [4–7] mentioned above.

Clearly, if the total mass of a dominating sequence exceeds 1, then one cannot speak
about a random variable that stochastically dominates another one. Instead, one can
speak about a sequence that dominates the distribution of a random variable.

It turns out that the well-known properties of the stochastic ordering require a separate
proof if the total mass of a dominating sequence exceeds 1 (recall that a dominating
sequence is a probability distribution in the classical case).

In addition, a stochastic dominating sequence for sums of a random number of depen-
dent random variables appeared naturally in [7] in the studies of the stability of perturbed
Markov chains (the random variables constitute the renewal sequence for some nonhomo-
geneous Markov chain).

The aim of the current paper is to study the questions described above. The paper is
organized as follows. Section 2 contains the main definitions and introduces the notation
of the stochastic ordering in the discrete case used throughout the paper. Some properties
of the stochastic ordering are proved in Section 3, namely we find a dominating sequence
for a sum of two independent random variables and for the sum of the random number
of independent random variables.

Some questions concerning the stochastic order for the renewal sequence constructed
from a nonhomogeneous Markov chain are considered in Section 4.

2. Main notation

We say that a sequence {sn, n ≥ 0} stochastically dominates a probability distribution
{gn, n ≥ 0} if

∑
k>n sk ≥

∑
k>n gk.

Throughout the paper, the tails of sequences are denoted by capital letters, for exam-
ple,

Sn =
∑
k>n

sk, Gn =
∑
k>n

gk

for n ≥ −1, where S−1 or G−1 denotes the total sum of elements of the corresponding
sequence.

The dominating sequence {sn, n ≥ 0} is assumed to be such that

1 ≤
∞∑

n=0

sn < ∞.
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Given two summable sequences {gn, n ≥ 0} and {pn, n ≥ 0} we define their convolution
by the following equality:

(g � p)n =

n∑
k=0

gkpn−k.

Then the convolution of a sequence with itself is given by

g�2n =
n∑

k=0

gkgn−k.

The convolution of order m of a sequence with itself is defined recursively,

g�mn = (g�m−1 � g)n.

The symbol G�2
n stands for the tail of the convolution,

G�2
n =

∑
k>n

g�2k .

Note that the nth element of the convolution of a sequence {gk} with identity is equal
to the sum of elements of this sequence whose indices run from 0 to n,

(g � 1)n =

n∑
k=0

gk.

3. Stochastic dominating sequence for sums of random variables

Below we prove that the convolution of two dominating sequences for two random
variables is a dominating sequence of the sum of the random variables. The result below
is stated for sequences whose total sum may exceed 1.

The cases of nonnegative and sign alternating random variables are considered separa-
tely, since the proofs are different. However, we are mainly interested in the case of
nonnegative random variables in the rest of the paper. Several formulas obtained in the
course of the proof will be useful for further reference.

Theorem 3.1. Consider the following four nonnnegative sequences:

{sn, n ≥ 0}, {rn, n ≥ 0}, {gn, n ≥ 0}, {pn, n ≥ 0},
such that

1 ≤
∞∑
k=0

sn = S, 1 ≤
∞∑
k=0

rn = R < ∞,

1 ≤
∞∑
k=0

gn = G < ∞, 1 ≤
∞∑
k=0

pn = P < ∞.

We assume that, for every n ≥ −1,

Sn =
∑
k>n

sn ≥ Gn =
∑
k>n

gn,

Rn =
∑
k>n

rn ≥ Pn =
∑
k>n

pn.

Then the convolution {(s � r)n, n ≥ 0} is a dominating sequence for the convolution
{(g � p)n, n ≥ 0}. In other words,∑

k>n

(s � r)k ≥
∑
k>n

(g � p)k

for all n ≥ −1.
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Proof. Applying Lemma 3.1 for the difference

∑
k>n

k∑
j=0

(s � r)j −
∑
k>n

k∑
j=0

(g � p)j ,

we obtain

(1)
∑
k>n

(s � r)k −
∑
k>n

(g � p)k =

n∑
k=0

skRn−k −
n∑

k=0

gkPn−k + SnR−GnP.

By condition, Rn−k ≥ Pn−k, whence

n∑
k=0

skRn−k −
n∑

k=0

gkPn−k + SnR−GnP ≥
n∑

k=0

(sk − gk)Pn−k + SnR−GnP

=
n∑

k=0

(
Sk−1 − Sk − (Gk−1 −Gk)

)
Pn−k + SnR−GnP

=
n∑

k=0

(Sk−1 −Gk−1)Pn−k −
n∑

k=0

(Sk −Gk)Pn−k + SnR −GnP

= (S−1 −G−1)Pn +
n−1∑
k=1

(Sk −Gk)(Pn−k − Pn−k+1)− (Sn −Gn)P0 + SnR−GnP.

Note that S−1 = S ≥ G = G−1 and R > P . Thus

(S−1 −G−1)Pn +

n−1∑
k=1

(Sk −Gk)(Pn−k − Pn−k+1)− (Sn −Gn)P0 + SnR−GnP

≥ (S −G)Pn +

n−1∑
k=1

(Sk −Gk)pn−k − (Sn −Gn)P0 + SnP −GnP

= (S −G)Pn +

n−1∑
k=1

(Sk −Gk)pn−k + (Sn −Gn)(P − P0)

= (S −G)Pn + (Sn −Gn)p0 +
n−1∑
k=1

(Sk −Gk)pn−k ≥ 0,

since Sn ≥ Gn for all n ≥ 0. Hence both the second and third terms are nonnegative.
The same result for the first term follows from the inequality S ≥ G. We complete the
proof by substituting the results obtained into equality (1). �

A similar result is valid for two-sided sequences, as well.

Theorem 3.2. Consider the following four nonnegative two sided sequences:

{sn,−∞ < n < ∞}, {rn,−∞ < n < ∞},
{gn,−∞ < n < ∞}, {pn,−∞ < n < ∞},

such that

1 ≤
∞∑

k=−∞
sn = S < ∞, 1 ≤

∞∑
k=−∞

rn = R < ∞,

1 ≤
∞∑

k=−∞
gn = G < ∞, 1 ≤

∞∑
k=−∞

pn = P < ∞.
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Assume that, for all n ≥ −∞,

Sn =
∑
k>n

sn ≥ Gn =
∑
k>n

gn,

Rn =
∑
k>n

rn ≥ Pn =
∑
k>n

pn.

Then the convolution {(s � r)n, n ≥ 0} is a dominating sequence for the convolution
{(g � p)n, n ≥ 0}. In other words,∑

k>n

(s � r)k ≥
∑
k>n

(g � p)k

for all n ≥ −∞.

Proof. First we rewrite the formula for the convolution,

(2)
∑
k>n

(s � r)k =
∑
k>n

∞∑
j=−∞

sjrn−j =
∞∑

j=−∞
sjRn−j .

Then

∑
k>n

(s � r)k −
∑
k>n

(g � p)k =

∞∑
j=−∞

sjRn−j −
∞∑

j=−∞
gjPn−j

= lim
N→∞

( N∑
j=−N

(sjRn−j − gjPn−j)

)
.

Since Rn−j ≥ Pn−j , the latter expression does not exceed

lim
N→∞

( N∑
j=−N

(sj − gj)Pn−j

)

= lim
N→∞

( N∑
j=−N

(
Sj−1 − Sj − (Gj−1 −Gj)

)
Pn−j

)

= lim
N→∞

( N∑
j=−N

(Sj−1 −Gj−1)Pn−j −
N∑

j=−N

(Sj −Gj)Pn−j

)

= lim
N→∞

( N−1∑
j=−N+1

(Sj −Gj)(Pn−j − Pn−j+1)

)

+ lim
N→∞

(
(S−N−1 −G−N−1)P−N−j − (SN −GN )PN−j

)

=

∞∑
j=−∞

(Sj −Gj)pn−j + (S−∞ −G−∞)P−∞ − (S∞ −G∞)P∞

=
∞∑

j=−∞
(Sj −Gj)pn−j + (S −G)P − 0 ≥ 0.

The result just obtained is valid, since all the terms are nonnegative. �

Corollary 3.1. If two independent discrete random variables ξ and η are dominated
by the sequences {sn} and {rn}, respectively, then their sum ξ + η is dominated by the
convolution (s � r)n.
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Corollary 3.2. Consider a sequence of independent random variables ξn, n ≥ 0. Assume

that each random variable ξi is dominated by a sequence
{
s
(i)
n

}
. Then the sum

∑n
j=0 ξj

is dominated by the convolution
(
s(0) � s(1) � · · · � s(n)

)
, n ≥ 1.

Lemma 3.1. Let {an, n ≥ 0} and {bn, n ≥ 0} be two summable nonnegative sequences.
Put An =

∑
k>n ak, Bn =

∑
k>n bk, and

A = A−1 =
∞∑
k=0

an, B = B−1 =
∞∑
k=0

bn.

Then

(3)
∑
k>n

(a � b)k =
n∑

k=0

akBn−k +AnB =
n+1∑
k=0

akBn−k +An+1B.

Proof. We have

∑
k>n

(a � b)k =

∞∑
k=n+1

k∑
j=0

ajbk−j =

n+1∑
k=0

ak

∞∑
j=n+1−k

bj +

∞∑
k=n+2

ak

∞∑
j=0

bj

=
n+1∑
k=0

akBn−k +
∑

k>n+1

akB =
n+1∑
k=0

akBn−k + An+1B.

This proves the second equality in (3).

To prove the first equality in (3), note that the last term in the sum
n+1∑
k=0

akBn−k is

equal to

an+1Bn−(n+1) = an+1B−1 = an+1B.

Substituting this expression into the formula just obtained, we conclude that

∑
k>n

(a � b)k =

n+1∑
k=0

akBn−k +An+1B =

n∑
k=0

akBn−k + an+1B +An+1B

=
∑
k>n

akBn−k + (an+1 +An+1)B =
∑
k>n

akBn−kAnB.

This proves the first equality in (3). �

4. Stochastically dominating sequence for random sums

In this section, we construct a dominating sequence for random sums of random vari-
ables. The random variables that constitute the sum are not necessarily assumed to be
independent. Note that random sums appear naturally when dealing with renewal se-
quences generated by nonhomogeneous Markov chains (more detail is given in Section 5).

Let (U,U) be a measurable space and let ξ(u), u ∈ U, be a family of independent
random variables whose indices belong to U. Further let

{νn, n ≥ 0}
be a sequence of random variables assuming values in the space (U,U) and such that
ξ(u) does not depend on νn for all n and u.

Put

ξn = ξ(νn).

Note that the random variables in the family {ξi, i ≥ 0} as well as in the sequence
{νn, n ≥ 0} are not supposed to be independent. Moreover, the random variables in the
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sequence {ξi, i ≥ 0} are not supposed to be independent of the random variables in the
sequence {νn, n ≥ 0}.

Let ζ be a random variable that does not depend on every one of the random variables
ξi and νn. Denote

pm = P{ζ = m}.
Our aim is to construct a dominating sequence for the sum

(4)

ζ∑
k=0

ξk.

We assume that all random variables are defined on a common probability space
(Ω,F,P). The symbol E stands in the sequel for the mean value with respect to the
probability measure P.

Theorem 4.1. Let {sn(u), n ≥ 0} be a sequence that dominates a random variable ξ(u),
u ∈ U. We further assume that

(5) sup
u∈U

∑
j≥0

sj(u) < ∞.

Then the sequence

(6) ŝn = E
[(
s(ν0) � s(ν1) � · · · � s(νζ)

)
n

]
stochastically dominates random sum (4).

Proof. Consider the sum

S =

ζ∑
k=0

ξk =

ζ∑
k=0

ξ(νk).

Let ı̂(m) = (ı̂0, ı̂1, . . . , ı̂m) be a vector of dimension m+1 whose coordinates are integer.
Consider the set

A
(
ı̂(m)

)
= {ν0 = ı̂0, ν1 = ı̂1, . . . , νm = ı̂m}.

Then

S =
∞∑

m=0

(∑
ı̂(m)

S�A(ı̂(m))

)
pm =

∞∑
m=0

(∑
ı̂(m)

( m∑
k=0

ξ(ı̂k)

)
�A(ı̂(m))

)
pm.

Hence

(7) P{S > n} =
∑
m

∑
ı̂(m)

P
{
S > n

∣∣ ζ = m,A
(
ı̂(m)

)}
P{A

(
ı̂(m)

)
, ζ = m}.

Note that ζ and random variables νi are independent, whence we conclude that

(8) P
{
ζ = m,A

(
ı̂(m)

)}
= P{ζ = m}P

{
A
(
ı̂(m)

)}
= P

{
A
(
ı̂(m)

)}
pm.

Moreover, the random variable ξ(u) (u is fixed) is independent of ζ and of all νn. Thus
ξ(u) for a fixed u is independent of A(ı̂(m)). Therefore

(9)

P
{
S > n

∣∣ ζ = m,A
(
ı̂(m)

)}
= P

{ m∑
k=0

ξ
(
ı̂k(m)

)
> n

∣∣∣∣ ζ = m,A
(
ı̂(m)

)}

= P

{ m∑
k=0

ξ
(
ı̂k(m)

)
> n

}
.



40 V. V. GOLOMOZYĬ

Substituting (8) and (9) into (7), we obtain

(10) P{S > n} =

∞∑
m=0

∑
ı̂(m)

P

{ m∑
k=0

ξ
(
ı̂k(m)

)
> n

}
P
{
A
(
ı̂(m)

)}
pm.

On the other hand, ξ(ı̂k) are independent random variables and the theorem on the
dominating sequence of a sum of independent random variables implies that

(11) P

{ m∑
k=0

ξ
(
ı̂k(m)

)
> n

}
≤

∑
j>n

(
s(ı̂0) � · · · � s(ı̂m)

)
j
.

Substituting (11) into (10), we get

P{S > n} ≤
∑
m≥0

[∑
ı̂(m)

⎛
⎝∑

j>n

(
s(ı̂0) � · · · � s(ı̂m)

)
j

⎞
⎠P

{
A
(
ı̂(m)

)}]
pm

=
∑
m≥0

⎡
⎣∑
j>n

(∑
ı̂(m)

(
s(ı̂0) � · · · � s(ı̂m)

)
j
P
{
A
(
ı̂(m)

)})⎤⎦ pm

=
∑
j>n

⎡
⎣∑
m≥0

(∑
ı̂(m)

(
s(ı̂0) � · · · � s(ı̂m)

)
j
P
{
A
(
ı̂(m)

)})
pm

⎤
⎦

=
∑
j>n

⎛
⎝∑

m≥0

E
[(
s(ν0) � · · · � s(νm)

)
j

∣∣ ζ = m
]
pm

⎞
⎠

=
∑
j>n

E
[(
s(ν0) � · · · � s(νm)

)
j

]
.

This proves Theorem 4.1.
Note that the change of order of summation is justified by condition (5). �

The following result is an obvious corollary of Theorem 4.1.

Theorem 4.2. Let ξn, n ≥ 0, be a sequence of independent discrete random variables.
Let ζ be another nonnegative discrete random variable being independent of all (ξn, n ≥
0). The distribution of ζ is denoted by pn = P{ζ = n}, n ≥ 0.

Further let ξi be stochastically dominated by the sequence
{
s
(i)
n

}
. Then

∑ζ
j=0 ξj is

stochastically dominated by the sequence

sn =

∞∑
k=0

pk

(
s(0) � · · · � s(k)

)
n
.

Proof. The result follows from Theorem 4.1 with

U = {0, 1, 2, . . .}
and νn = n. �

5. Stochastically dominating sequence of a renewal sequence generated

by a nonhomogeneous Markov chain

The method described in the preceding section is useful for constructing a coupling
of two different nonhomogeneous Markov chains. In doing so one needs to analyze the
renewal sequence generated by a nonhomogeneous Markov chain and to find a stochastic
dominating sequence for a random number of renewals.
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We construct the renewal sequence mentioned above and show how Theorem 4.1 is
used to find a stochastically dominating sequence for a random number of renewals.

Let a probability space (Ω,F,P) be given. All random variables considered below are
assumed to be defined on this probability space.

Consider some time nonhomogeneous Markov chainXn assuming values in a measurab-
le space (E,E). Let Pt(x,A) denote its transition probability at step t. The initial
distribution of the chain is denoted by μ0.

Also let μt,x(·), x ∈ E, t > 0, be a family of probability measures.
Let C ∈ E be some set. The renewal sequence generated by a nonhomogeneous chain

Xn is constructed as follows. First we put

θ0 = inf
t
{t > 0: Xt ∈ C}.

Now we define the random variable θ1. Consider a Markov chain X
(1)
t = Xθ0+t, t ≥ 0,

with the initial distribution μθ0,Xθ0
(·).

Then

θ1 = inf
t

{
t > 0: X

(1)
t ∈ C

}
.

Put

τk =
k∑

j=0

θk, k ≥ 0.

The chains X
(k)
n = X

(k−1)
τk−1+t, k ≥ 1, with the initial distribution μ

τk−1,X
(k−1)
θk−1

are defined

similarly.

Let s
(t)
n (x) be a stochastically dominating sequence for the chain that starts at mo-

ment t from the state x. Put

s(t)n (μ, x) =

∫
E

s(t)(y)μt,x(dy).

Also let

S(t)
n (x) =

∑
k>n

s
(t)
k (x), S(t)

n (μ, x) =
∑
k>n

s
(t)
k (μ, x).

The sequence ŝ
(k)
n (x), n ≥ 0, is defined recursively for k ≥ 0.

Let ŝ
(1)
n (x) = s

(0)
n (x) and assume that the sequence ŝ

(k)
n (x) is defined for some k. Then

the sequence ŝ
(k+1)
n (x) is defined by

(12) ŝ(k+1)
n (x) = E

[
ŝ(k)(x) � s

(τk)

μ,X
(k+1)
0

]
.

With the notation introduced above we obtain the following result.

Theorem 5.1. The sequence
{
ŝ
(k)
n (x), n ≥ 0

}
is a stochastically dominating sequence

for the sum
∑k

j=0 θj provided the chain starts from the point x ∈ E.

Proof. We apply Theorem 4.1 in the proof.
The set U is taken as the set of all possible pairs (t, x), t ≥ 0, x ∈ E. Then νn = (t, x)

if the nth visit to the set C happens at the moment t and the value of the chain at that
time is x ∈ C.

Then the statement of Theorem 5.1 follows from Theorem 4.1. �
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6. An application

Consider an example of applications of the theorems proved in the preceding sections.
The following coupling construction is introduced in the paper [7].

Let Xn, X
′
n, n ≥ 0, be two time nonhomogeneous Markov chains defined on a common

probability space (Ω,E,P). The chains assume values in a measurable space (E,E). Let
Pt(x,A) and P ′

t(x,A) be the transient probability at step t for the chains X and X ′,
respectively. Some conditions on the closeness of the transient probabilities are known
from [7], however these conditions are not useful for our example.

Let C ∈ E be some set such that

min{Pt(x,A), P ′
t(x,A)} ≥ αν(A) for all x ∈ C,

where α ∈ (0, 1] is a constant and ν(·) is a probability distribution.
The initail value of the stochastic process (Yn, Y

′
n) considered in [7] is such that

Y0 = X0, Y ′
0 = X ′

0.

If (Yn, Y
′
n) /∈ C × C, then (Yn+1, Y

′
n+1) ∼ (Pn(Yn, ·), P ′

n(Y
′
n, ·)). In other words, the

distribution of the pair of processes (Yn, Y
′
n) is the same as that of (Xn, X

′
N ) up to the

moment when the chain enters the set C × C.
If (Yn, Y

′
n) ∈ C × C, then the chains couple with probability α and Yn+1 = Y ′

n+1

in what follows with a certain distribution; the processes do not couple with probability
1−α and the distribution of the pair (Yn+1, Y

′
n+1) is (Pα(Yn, ·), P ′

α(Y
′
n, ·)) in what follows,

where Pα and P ′
α are certain transient probabilities.

The stochastically dominating sequence for the coupling moment is an important tool
when constructing a bound for the deviation between transient probabilities over n steps
for the chains X and X ′.

It is clear that if a stochastic dominating sequence is known for the moment when
the pair (Xn, X

′
n) enters the set (C × C), then a stochastically dominating sequence for

the coupling moment is easy to construct by using Theorem 5.1. This theorem allows
one not only to show that a stochastically dominating sequence exists for the coupling
moment but also it provides some properties of that sequence under certain conditions.
For example, one can estimate the mean value of the coupling time in terms of the mean
value of the stochastically dominating sequence for the moment when the chain enters
the set C × C.
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