CONSISTENCY OF THE LEAST SQUARES ESTIMATORS OF PARAMETERS IN THE TEXTURE SURFACE SINUSOIDAL MODEL

A. V. IVANOV AND O. V. MALYAR

Abstract

We consider the texture surface sinusoidal model of observations. In other words, we consider a model where the regression function is the sum of twoparameter harmonic oscillations while the noise is an isotropic and homogeneous Gaussian random field on the plane. Conditions for the joint consistency of the least squares estimator of unknown amplitudes and angular frequencies are obtained for this trigonometric regression model.

1. Introduction

In the paper, we consider a two-dimensional texture surface sinusoidal model of observations. Various discrete modifications of this model have attracted considerable interest in the literature on signal processing, since those models are used when analyzing textures [1]-4. In particular, some applications are known in the theory of processing of the so-called symmetric gray-scale texture images under the assumption that the intensity of the gray color at every pixel of an image is proportional to the value of a process observed at this pixel. Special interest in this problem appears in spectral analysis [5, 6] (also see [4] and references therein).

The consistency of the least squares estimator of unknown parameters of the sinusoidal model is studied in the case where the random noise is an isotropic and homogeneous Gaussian field on the plane [7,8]. From the point of view of mathematics, such a setting of the problem is a natural generalization of the well-known problem on detecting hidden periodicities (see, for example, [9, 10]).

Asymptotic properties of the least squares estimator are considered in the papers [11, [12] for the discrete setting where the errors of observations are independent identically distributed (Gaussian, for example) random variables. These results are generalized in 13 for the case of errors of observations represented by a discrete linear homogeneous field. Note that multiparameter harmonic oscillations are studied in the paper [14] under the assumption that the errors of observations constitute a homogeneous random field for which spectral densities of all orders exist. Some results on the asymptotic behavior of peridogram estimators as well as those of the least squares estimators of unknown amplitudes and angular frequencies of these harmonic oscillations are also obtained in [14].

[^0]
2. Setting of the problem

Consider the observation model

$$
\begin{equation*}
X\left(t_{1}, t_{2}\right)=g\left(t_{1}, t_{2} ; \theta^{0}\right)+\varepsilon\left(t_{1}, t_{2}\right), \quad t=\left(t_{1}, t_{2}\right) \in \mathbb{R}_{+}^{2}, \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
g\left(t_{1}, t_{2} ; \theta^{0}\right) & =\sum_{k=1}^{N}\left(A_{k}^{0} \cos \left(\lambda_{k}^{0} t_{1}+\mu_{k}^{0} t_{2}\right)+B_{k}^{0} \sin \left(\lambda_{k}^{0} t_{1}+\mu_{k}^{0} t_{2}\right)\right) \tag{2}\\
\theta^{0} & =\left(\theta_{1}^{0}, \theta_{2}^{0}, \theta_{3}^{0}, \theta_{4}^{0}, \ldots, \theta_{4 N-3}^{0}, \theta_{4 N-2}^{0}, \theta_{4 N-1}^{0}, \theta_{4 N}^{0}\right) \\
& =\left(A_{1}^{0}, B_{1}^{0}, \lambda_{1}^{0}, \mu_{1}^{0}, \ldots, A_{N}^{0}, B_{N}^{0}, \lambda_{N}^{0}, \mu_{N}^{0}\right)
\end{align*}
$$

here the number $N \geq 1$ is known and $\left(A_{k}^{0}\right)^{2}+\left(B_{k}^{0}\right)^{2}>0, k=1, \ldots, N$, is a vector of true values of unknown parameters. The random field $\varepsilon=\left\{\varepsilon\left(t_{1}, t_{2}\right),\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}\right\}$ is defined on a complete probability space $(\Omega, \mathcal{F}, \mathrm{P})$ such that
N. ε is a mean square and almost surely continuous homogeneous Gaussian random field with zero mean and covariance function

$$
B\left(t_{1}, t_{2}\right)=\mathrm{E} \varepsilon\left(t_{1}, t_{2}\right) \varepsilon(0,0), \quad\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}
$$

such that either
(i) the field ε is isotropic and $B\left(t_{1}, t_{2}\right)=B(\|t\|)=L(\|t\|)\|t\|^{-\alpha}, \alpha \in(0,1)$, where L is a nondecreasing slowly varying at infinity function, $t=\left(t_{1}, t_{2}\right)$, and $\|t\|=$ $\left(t_{1}^{2}+t_{2}^{2}\right)^{1 / 2}$; or
(ii) $\int_{\mathbb{R}^{2}}\left|B\left(t_{1}, t_{2}\right)\right| d t_{1} d t_{2}<\infty$.

The regression functions (2) like the classical trigonometric regression functions with $\mu_{k}^{0}=0, k=1, \ldots, N$, do not distinguish the parameters in an optimal way if $N \geq 2$ in the sense that the functions (2) do not satisfy any condition of a general theorem on the consistency of the least squares estimator of parameters in a model of nonlinear regression (see, for example, [8, 15]). Therefore one needs to impose an additional condition allowing the trigonometric regression function to distinguish the parameters and to be able to prove the consistency of the least squares estimator of parameters (2). This can be achieved by choosing a parametric set for determining the least squares estimator such that the parameters are well distinguished.

We write $(a, b)<(c, d)$ for two points (a, b) and (c, d) in the plane if $a<c$ and $b<d$. The model (1)-(2) is considered in this paper under the following assumption.

R1. The numbers λ_{j}^{0} and $\mu_{j}^{0}, i, j=1, \ldots, N$, are positive and all different; moreover, $\left(\lambda_{k}^{0}, \mu_{k}^{0}\right)<\left(\lambda_{k+1}^{0}, \mu_{k+1}^{0}\right), k=1, \ldots, N-1$.

This assumption means that the parametric sets containing the values of parameters $\lambda^{0}=\left(\lambda_{1}^{0}, \ldots, \lambda_{N}^{0}\right)$ and $\mu^{0}=\left(\mu_{1}^{0}, \ldots, \mu_{N}^{0}\right)$ are such that

$$
\begin{align*}
\Lambda(\underline{\lambda}, \bar{\lambda}) & =\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}: 0 \leq \underline{\lambda}<\lambda_{1}<\cdots<\lambda_{N}<\bar{\lambda}<\infty\right\} \tag{3}\\
M(\underline{\mu}, \bar{\mu}) & =\left\{\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathbb{R}^{N}: 0 \leq \underline{\mu}<\mu_{1}<\cdots<\mu_{N}<\bar{\mu}<\infty\right\} \tag{4}
\end{align*}
$$

Put

$$
\begin{equation*}
Q_{T}(\theta)=T^{-2} \int_{0}^{T} \int_{0}^{T}\left[X\left(t_{1}, t_{2}\right)-g\left(t_{1}, t_{2} ; \theta\right)\right]^{2} d t_{1} d t_{2} \tag{5}
\end{equation*}
$$

According to the standard definition, any random vector

$$
\begin{equation*}
\theta_{T}=\left(A_{1 T}, B_{1 T}, \lambda_{1 T}, \mu_{1 T}, \ldots, A_{N T}, B_{N T}, \lambda_{N T}, \mu_{N T}\right) \tag{6}
\end{equation*}
$$

is called the least squares estimator of the parameter θ^{0} constructed from observations after the field $X\left(t_{1}, t_{2}\right),\left(t_{1}, t_{2}\right)=[0, T] \times[0, T]$, if (6) minimizes the functional (5) in the
parametric set $\Theta \subset \mathbb{R}^{4 N}$, where A_{k} and $B_{k}, k=1, \ldots, N$, may assume arbitrary values, while λ and μ assume values in the closed sets $\Lambda^{c}(\underline{\lambda}, \lambda)$ and $M^{c}(\underline{\mu}, \bar{\mu})$, respectively.

To prove relations (27) and (28) and to perform further calculations, one needs to guarantee the almost sure convergence to zero as $T \rightarrow \infty$ of the variables

$$
\begin{gather*}
\frac{\sin T\left(\lambda_{k T}-\lambda_{j T}\right)}{T\left(\lambda_{k T}-\lambda_{j T}\right)}, \quad \frac{\sin T\left(\mu_{k T}-\mu_{j T}\right)}{T\left(\mu_{k T}-\mu_{j T}\right)}, \quad \frac{\sin T\left(\lambda_{k T}-\lambda_{j}^{0}\right)}{T\left(\lambda_{k T}-\lambda_{j}^{0}\right)}, \\
\frac{\sin T\left(\mu_{k T}-\mu_{j}^{0}\right)}{T\left(\mu_{k T}-\mu_{j}^{0}\right)}, \quad k \neq j ; \quad \frac{\sin T \lambda_{k T}}{T \lambda_{k T}}, \quad \frac{\sin T \mu_{k T}}{T \mu_{k T}}, \quad k=1, \ldots, N . \tag{7}
\end{gather*}
$$

On the other hand, one cannot derive the behavior of the denominators of ratios (7) as $T \rightarrow \infty$ from the above definition of the estimators

$$
\lambda_{T}=\left(\lambda_{1 T}, \ldots, \lambda_{N T}\right) \quad \text { and } \quad \mu_{T}=\left(\mu_{1 T}, \ldots, \mu_{N T}\right) .
$$

Walker [16] proposed a modification of the definition of the least squares estimator of angular frequencies for the classical problem of determining hidden periodicities. This definition in our case guarantees the almost sure convergence to zero of the variables (7) and to prove the consistency of the above estimators. Walker [16] defines the estimator (6) as a point of minimum of the functional (5) in a parametric set that depends on T and asymptotically, as $T \rightarrow \infty$, distinguishes the set of frequencies λ and μ.

Consider the two families of nondecreasing open sets

$$
\begin{equation*}
\Lambda_{T} \subset \Lambda(\underline{\lambda}, \bar{\lambda}), \quad M_{T} \subset M(\underline{\mu}, \bar{\mu}), \quad T \geq T_{0}>0 \tag{8}
\end{equation*}
$$

that contain true values of parameters λ^{0} and μ^{0}, respectively, and that satisfy the following conditions:

$$
\begin{gather*}
\text { R2. } \quad \lim _{T \rightarrow \infty} \inf _{\substack{1 \leq j \leq N-1 \\
\lambda \in \Lambda_{T}}} T\left(\lambda_{j+1}-\lambda_{j}\right)=\lim _{T \rightarrow \infty} \inf _{\substack{1 \leq j \leq N-1 \\
\mu \in M_{T}}} T\left(\mu_{j+1}-\mu_{j}\right)=\infty, \tag{9}\\
\lim _{T \rightarrow \infty} \inf _{\lambda \in \Lambda_{T}} T \lambda_{1}=\lim _{T \rightarrow \infty} \inf _{\mu \in M_{T}} T \mu_{1}=\infty . \tag{10}
\end{gather*}
$$

Condition (10) holds if $\underline{\lambda}>0$ and $\underline{\mu}>0$. If $\Lambda_{T} \subset \Lambda(0, \bar{\lambda})$ and $M_{T} \subset M(0, \bar{\mu})$, then conditions (91) and (10) are satisfied for sets Λ_{T} and M_{T} such that

$$
\begin{align*}
\inf _{\substack{1 \leq j \leq N-1 \\
\lambda \in \Lambda_{T}}}\left(\lambda_{j+1}-\lambda_{j}\right) & =\inf _{\substack{1 \leq j \leq N-1 \\
\mu \in M_{T}}}\left(\mu_{j+1}-\mu_{j}\right) \tag{11}\\
& =\inf _{\lambda \in \Lambda_{T}} \lambda_{1}=\inf _{\mu \in M_{T}} \mu_{1}=T^{-1 / 2} .
\end{align*}
$$

Conditions (9) and (10) allow one to treat the case of close frequencies in the families λ^{0} and μ^{0} and the case where the frequencies λ_{1}^{0} and μ_{1}^{0} are close to zero.

Definition 2.1. Any random vector θ_{T} of the form (6) that minimizes the functional (5) in the set of parameters $\Theta \subset \mathbb{R}^{4 N}$, where the amplitudes A_{k} and $B_{k}, k=1, \ldots, N$, assume arbitrary values, while the frequencies λ and μ assume values in the closed sets Λ_{T}^{c} and M_{T}^{c}, respectively, is called the least squares estimator (Walker least squares estimator) of the vector parameter θ^{0} of the form (2) in the model (1), (22).

In the rest of the paper, we study the Walker least squares estimator θ_{T} of the parameter θ^{0} in the sense of Definition 2.1.

3. Auxiliary results

Lemma 3.1 below generalizes the corresponding result of [9]. Let $\varphi=\left(\varphi_{1}, \varphi_{2}\right) \in \mathbb{R}^{2}$.
Lemma 3.1. If condition $\mathbf{N}(\mathrm{i})$ holds and $\rho<\alpha / 6$, then
(12) $\quad \xi(T)=\sup _{\varphi \in \mathbb{R}^{2}} T^{-2+\rho}\left|\int_{0}^{T} \int_{0}^{T} e^{-i\left(\varphi_{1} t_{1}+\varphi_{2} t_{2}\right)} \varepsilon\left(t_{1}, t_{2}\right) d t_{1} d t_{2}\right| \rightarrow 0 \quad$ almost surely as $T \rightarrow \infty$.

Proof. Changing the variables we obtain

$$
\begin{aligned}
& \left|\int_{0}^{T} \int_{0}^{T} e^{-i\left(\varphi_{1} t_{1}+\varphi_{2} t_{2}\right)} \varepsilon\left(t_{1}, t_{2}\right) d t_{1} d t_{2}\right|^{2} \\
& =\int_{0}^{T} \int_{0}^{T} e^{-i \varphi_{1}\left(t_{1}-s_{1}\right)} \int_{0}^{T} \int_{0}^{T} e^{-i \varphi_{2}\left(t_{2}-s_{2}\right)} \varepsilon\left(t_{1}, t_{2}\right) \varepsilon\left(s_{1}, s_{2}\right) d t_{1} d t_{2} d s_{1} d s_{2} \\
& =2 \int_{0}^{T} \int_{0}^{T} \cos \left(\varphi_{1} u_{1}+\varphi_{2} u_{2}\right) \\
& \quad \times \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \varepsilon\left(v_{1}, v_{2}\right) \varepsilon\left(v_{1}+u_{1}, v_{2}+u_{2}\right) d v_{1} d v_{2} d u_{1} d u_{2} \\
& \quad+2 \int_{0}^{T} \int_{0}^{T} \cos \left(\varphi_{1} u_{1}-\varphi_{2} u_{2}\right) \\
& \quad \times \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \varepsilon\left(v_{1}+u_{1}, v_{2}\right) \varepsilon\left(v_{1}, v_{2}+u_{2}\right) d v_{1} d v_{2} d u_{1} d u_{2} .
\end{aligned}
$$

Further

$$
\begin{aligned}
\mathrm{E} \xi^{2}(T) \leq & 2 T^{-4+2 \rho} \int_{0}^{T} \int_{0}^{T} \mathrm{E}\left|\int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \varepsilon\left(v_{1}, v_{2}\right) \varepsilon\left(v_{1}+u_{1}, v_{2}+u_{2}\right) d v_{1} d v_{2}\right| d u_{1} d u_{2} \\
& +2 T^{-4+2 \rho} \int_{0}^{T} \int_{0}^{T} \mathrm{E}\left|\int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \varepsilon\left(v_{1}+u_{1}, v_{2}\right) \varepsilon\left(v_{1}, v_{2}+u_{2}\right) d v_{1} d v_{2}\right| d u_{1} d u_{2} \\
\leq & 2 T^{-4+2 \rho} \int_{0}^{T} \int_{0}^{T} \Psi_{1}^{1 / 2}\left(u_{1}, u_{2}\right) d u_{1} d u_{2}+2 T^{-4} \int_{0}^{T} \int_{0}^{T} \Psi_{2}^{1 / 2}\left(u_{1}, u_{2}\right) d u_{1} d u_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\Psi_{1}\left(u_{1}, u_{2}\right)= & \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \mathrm{E} \varepsilon\left(v_{1}+u_{1}, v_{2}+u_{2}\right) \varepsilon\left(v_{1}, v_{2}\right) \\
= & \times \varepsilon\left(w_{1}+u_{1}, w_{2}+u_{2}\right) \varepsilon\left(w_{1}, w_{2}\right) d v_{1} d v_{2} d w_{1} d w_{2} \\
& +\int_{0}^{\left.T-u_{1}\right)^{2}\left(T-u_{2}\right)^{2} B^{2}\left(u_{1}, u_{2}\right)} \int_{0}^{T-u_{2}} \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} B^{2}\left(v_{1}-w_{1}, v_{2}-w_{2}\right) d v_{1} d v_{2} d w_{1} d w_{2} \\
& +\int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} B\left(v_{1}-w_{1}+u_{1}, v_{2}-w_{2}+u_{2}\right) \\
= & \times B\left(v_{1}-w_{1}-u_{1}, v_{2}-w_{2}-u_{2}\right) d v_{1} d v_{2} d w_{1} d w_{2} \\
= & \Psi_{j=1}^{3} \Psi_{1 j}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Psi_{2}\left(u_{1}, u_{2}\right)= \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \mathrm{E} \varepsilon\left(v_{1}+u_{1}, v_{2}\right) \varepsilon\left(v_{1}, v_{2}+u_{2}\right) \\
& \times \varepsilon\left(w_{1}+u_{1}, w_{2}\right) \varepsilon\left(w_{1}, w_{2}+u_{2}\right) d v_{1} d v_{2} d w_{1} d w_{2} \\
&=\left(T-u_{1}\right)^{2}\left(T-u_{2}\right)^{2} B^{2}\left(u_{1},-u_{2}\right) \\
&+\int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} B^{2}\left(v_{1}-w_{1}, v_{2}-w_{2}\right) d v_{1} d v_{2} d w_{1} d w_{2} \\
&+\int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} B\left(v_{1}-w_{1}+u_{1}, v_{2}-w_{2}-u_{2}\right) \\
& \times B\left(v_{1}-w_{1}-u_{1}, v_{2}-w_{2}+u_{2}\right) d v_{1} d v_{2} d w_{1} d w_{2} \\
&= \sum_{j=1}^{3} \Psi_{2 j}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

by the Isserlis theorem.
Since $\sqrt{a+b+c} \leq \sqrt{a}+\sqrt{b}+\sqrt{c}$ for all nonnegative real numbers a, b, and c, we obtain

$$
\Psi_{i}^{1 / 2}\left(u_{1}, u_{2}\right) \leq \sum_{j=1}^{3} \Psi_{i j}^{1 / 2}\left(u_{1}, u_{2}\right)
$$

for $i=1,2$. Now we conclude from the above consideration that the second moment of the random variable ξ is estimated as follows:

$$
\begin{equation*}
\mathrm{E} \xi^{2}(T) \leq \sum_{i=1}^{2} \sum_{j=1}^{3} I_{i j}(T) \tag{13}
\end{equation*}
$$

where the terms $I_{i j}(T), i=1,2, j=1,2,3$, in the sum on the right-hand side of (13) are given by

$$
I_{i j}(T)=2 T^{-4+2 \rho} \int_{0}^{T} \int_{0}^{T} \Psi_{i j}^{1 / 2}\left(u_{1}, u_{2}\right) d u_{1} d u_{2}
$$

Now we estimate each term $I_{i j}(T), i=1,2, j=1,2,3$, separately. For the sake of brevity, let

$$
b_{u}\left(v_{1}-w_{1}, v_{2}-w_{2}\right)=B\left(v_{1}-w_{1}+u_{1}, v_{2}-w_{2}+u_{2}\right) B\left(v_{1}-w_{1}-u_{1}, v_{2}-w_{2}-u_{2}\right)
$$

We have

$$
\begin{aligned}
\Psi_{13}\left(u_{1}, u_{2}\right)= & \int_{0}^{T-u_{1}} \int_{0}^{T-u_{1}} \int_{0}^{T-u_{2}} \int_{0}^{T-u_{2}} b\left(v_{1}-w_{1}, v_{2}-w_{2}\right) d v_{1} d w_{1} d v_{2} d w_{2} \\
= & \left(T-u_{1}\right)\left(T-u_{2}\right) \\
& \times \int_{-\left(T-u_{1}\right)}^{T-u_{1}} \int_{-\left(T-u_{2}\right)}^{T-u_{2}}\left(1-\frac{\left|t_{1}\right|}{T-u_{1}}\right)\left(1-\frac{\left|t_{2}\right|}{T-u_{2}}\right) b_{u}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \\
= & T^{2}\left(T-u_{1}\right)\left(T-u_{2}\right) \\
& \times \int_{-\left(1-u_{1} T^{-1}\right)}^{1-u_{1} T^{-1}} \int_{-\left(1-u_{2} T^{-1}\right)}^{1-u_{2} T^{-1}}\left(1-\frac{\left|t_{1}\right|}{1-u_{1} T^{-1}}\right)\left(1-\frac{\left|t_{2}\right|}{1-u_{2} T^{-1}}\right) b_{u}\left(T t_{1}, T t_{2}\right) d t_{1} d t_{2} \\
\leq & T^{2}\left(T-u_{1}\right)\left(T-u_{2}\right) \int_{-1}^{1} \int_{-1}^{1} b_{u}\left(T t_{1}, T t_{2}\right) d t_{1} d t_{2} \\
\leq & T^{2}\left(T-u_{1}\right)\left(T-u_{2}\right)\left[B(0) \int_{0}^{1} \int_{0}^{1} B\left(T t_{1}+u_{1}, T t_{2}+u_{2}\right) d t_{1} d t_{2}\right. \\
& +B(0) \int_{-1}^{0} \int_{-1}^{0} B\left(T t_{1}-u_{1}, T t_{2}-u_{2}\right) d t_{1} d t_{2} \\
= & T^{2}\left(t-u_{1}\right)\left(T-u_{2}\right) \sum_{k=1}^{4} \Psi_{13}^{(k)}\left(u_{1}, u_{2}\right) .
\end{aligned}
$$

By the assumption of Lemma3.1, $\Psi_{13}^{(1)}=\Psi_{13}^{(2)}$ and $\Psi_{13}^{(3)}=\Psi_{13}^{(4)}$. Thus we need to estimate $\Psi_{13}^{(1)}$ and $\Psi_{13}^{(3)}$. Since $\|T t \pm u\| \leq 2 \sqrt{2} T$, we obtain $L(\|T t \pm u\|) \leq(1+\varepsilon) L(T)$ for an arbitrary $\varepsilon>0$ and for sufficiently large T (for $T>T_{0}$, say) in view of the monotonicity of L. On the other hand,

$$
\begin{gather*}
\|T t+u\|^{\alpha} \geq T^{\alpha} t_{1}^{\alpha}, \tag{14}\\
\Psi_{13}^{(1)} \leq(1+\varepsilon)(1-\alpha)^{-1} B(0) B(T), \quad T>T_{0} . \tag{15}
\end{gather*}
$$

Passing to the term $\Psi_{13}^{(3)}$, note that the bound (14) holds for the first factor $b_{u}\left(T t_{1}, T t_{2}\right)$, while the second one is estimated by

$$
\begin{equation*}
\|T t-u\|^{\alpha} \geq T^{\alpha} t_{2}^{\alpha} \tag{16}
\end{equation*}
$$

that is

$$
\begin{equation*}
\Psi_{13}^{3} \leq(1+\varepsilon)^{2}(1-\alpha)^{-2} B^{2}(T), \quad T>T_{0}, \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
I_{13}(T) \leq \frac{8}{9} \sqrt{2}\left((1+\varepsilon)^{1 / 2}(1-\alpha)^{-1 / 2} B^{1 / 2}(0) B^{1 / 2}(T)+(1+\varepsilon)(1-\alpha)^{-1} B(T)\right) T^{2 \rho} \tag{and}
\end{equation*}
$$

for the same T.
Reasoning similarly, we get the bounds

$$
\begin{gather*}
\Psi_{12}\left(u_{1}, u_{2}\right) \leq 4 B(0) T^{2}\left(T-u_{1}\right)\left(T-u_{2}\right) \int_{0}^{1} \int_{0}^{1} B\left(T t_{1}, T t_{2}\right) d t_{1} d t_{2} \\
I_{12}(T) \leq \frac{16}{9}(1+\varepsilon)^{1 / 2}(1-\alpha)^{-1 / 2} B^{1 / 2}(0) B^{1 / 2}(T) T^{2 \rho} . \tag{19}
\end{gather*}
$$

In addition,

$$
\begin{align*}
I_{11}(T) & \leq 2 T^{-4+2 \rho} \int_{0}^{T} \int_{0}^{T}\left(T-u_{1}\right)\left(T-u_{2}\right) B\left(u_{1}, u_{2}\right) d u_{1} d u_{2} \\
& \leq T^{2 \rho} \int_{0}^{1} \int_{0}^{1} B\left(T u_{1}, T u_{2}\right) d u_{1} d u_{2} \leq 2(1+\varepsilon)(1-\alpha)^{-1} B(T) T^{2 \rho} \tag{20}
\end{align*}
$$

for $T>T_{0}$. Thus the bounds (18)-(20) imply that

$$
\begin{equation*}
\sum_{j=1}^{3} I_{1 j}=O\left(B^{1 / 2}(T) T^{2 \rho}\right) \tag{21}
\end{equation*}
$$

as $T \rightarrow \infty$. Put

$$
c_{u}\left(v_{1}-w_{1}, v_{2}-w_{2}\right)=B\left(v_{1}-w_{1}+u_{1}, v_{2}-w_{2}-u_{2}\right) B\left(v_{1}-w_{1}-u_{1}, v_{2}-w_{2}+u_{2}\right)
$$

As in the case of the term $\Psi_{13}\left(u_{1}, u_{2}\right)$, we conclude that

$$
\begin{aligned}
\Psi_{23}\left(u_{1}, u_{2}\right) \leq & T^{2}\left(T-u_{1}\right)\left(T-u_{2}\right) \\
& \times\left(\int_{0}^{1} \int_{0}^{1}+\int_{-1}^{0} \int_{-1}^{0}+\int_{0}^{1} \int_{-1}^{0}+\int_{-1}^{0} \int_{0}^{1}\right) c_{u}\left(T t_{1}, T t_{2}\right) d t_{1} d t_{2} \\
= & T^{2}\left(T-u_{1}\right)\left(T-u_{2}\right) \sum_{k=1}^{4} \Psi_{23}^{(k)}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

By the assumptions of Lemma 3.1.

$$
\Psi_{23}^{(1)}=\Psi_{23}^{(2)}=\Psi_{13}^{(3)}=\Psi_{13}^{(4)}, \quad \Psi_{23}^{(3)}=\Psi_{23}^{(4)}=\Psi_{13}^{(1)}=\Psi_{13}^{(2)} .
$$

Moreover, $\Psi_{21}=\Psi_{11}$ and $\Psi_{22}=\Psi_{12}$. This means that

$$
\begin{equation*}
\sum_{j=1}^{3} I_{2 j}=O\left(B^{1 / 2}(T) T^{2 \rho}\right) \tag{22}
\end{equation*}
$$

as $T \rightarrow \infty$. Relations (21) and (22) together with (14) show that

$$
\begin{equation*}
\mathrm{E} \xi^{2}(T)=O\left(L^{1 / 2}(T) T^{-\alpha / 2+2 \rho}\right) \tag{23}
\end{equation*}
$$

as $T \rightarrow \infty$.
Let $T_{n}=n^{\beta}$, where $\beta>0$ is such that $\left(\frac{\alpha}{2}-2 \rho\right) \beta=1+\delta$ for some $\delta>0$. Then

$$
\sum_{n=1}^{\infty} \mathrm{E} \xi^{2}\left(T_{n}\right)<\infty
$$

that is, $\xi\left(T_{n}\right) \rightarrow 0$ almost surely as $n \rightarrow \infty$.

Consider the following sequence of random variables:

$$
\begin{aligned}
& \zeta_{n}= \sup _{T_{n} \leq T \leq T_{n+1}}\left|\xi(T)-\xi\left(T_{n}\right)\right| \\
& \leq \sup _{T_{n} \leq T \leq T_{n+1}} \sup _{\varphi \in \mathbb{R}^{2}} \mid T^{-2+\rho} \int_{0}^{T} \int_{0}^{T} e^{-i\left(\varphi_{1} t_{1}+\varphi_{2} t_{2}\right)} \varepsilon\left(t_{1}, t_{2}\right) d t \\
&-T_{n}^{-2+\rho} \int_{0}^{T_{n}} \int_{0}^{T_{n}} e^{-i\left(\varphi_{1} t_{1}+\varphi_{2} t_{2}\right)} \varepsilon\left(t_{1}, t_{2}\right) d t \mid \\
& \leq\left(\frac{T_{n+1}^{2-\rho}}{\left.T_{n}^{2-\rho}-1\right)} \xi\left(T_{n}\right)\right. \\
&+T_{n}^{-2+\rho}\left(\int_{T_{n}}^{T_{n+1}} \int_{0}^{T_{n}}+\int_{0}^{T_{n}} \int_{T_{n}}^{T_{n+1}}+\int_{T_{n}}^{T_{n+1}} \int_{T_{n}}^{T_{n+1}}\right)\left|\varepsilon\left(t_{1}, t_{2}\right)\right| d t_{1} d t_{2} \\
&= \sum_{i=1}^{4} \zeta_{n}^{(i)} .
\end{aligned}
$$

It is obvious that $\zeta_{n}^{(1)} \rightarrow 0$ almost surely as $n \rightarrow \infty$. For $k \in \mathbb{N}$, consider

$$
\begin{aligned}
\mathrm{E}\left(\zeta_{n}^{(2)}\right)^{2 k} & =T_{n}^{-2 k(2-\rho)} \int_{T_{n}}^{T_{n+1}} \int_{0}^{T_{n}} \stackrel{2 k}{2 k} \int_{T_{n}}^{T_{n+1}} \int_{0}^{T_{n}} \mathrm{E} \prod_{j=1}^{2 k}\left|\varepsilon\left(t_{1}^{(j)}, t_{2}^{(j)}\right)\right| \prod_{j=1}^{2 k} d t_{1}^{(j)} d t_{2}^{(j)} \\
& \leq(2 k-1)!!B^{k}(0) T_{n}^{-2 k(2-\rho)}\left(T_{n+1}-T_{n}\right)^{2 k} T_{n}^{2 k} \\
& =(2 k-1)!!B^{k}(0)\left(\frac{T_{n+1}}{T_{n}}-1\right)^{2 k} T_{n}^{2 k \rho}=O\left(n^{-2 k(1-\beta \rho)}\right), \quad n \rightarrow \infty
\end{aligned}
$$

If $\beta \rho<1$, then the series $\sum_{n=1}^{\infty} \mathrm{E}\left(\zeta_{n}^{(2)}\right)^{2 k}$ converges for an appropriate k and hence $\zeta_{n}^{(2)} \rightarrow 0$ almost surely as $n \rightarrow \infty$, whence $\beta \rho=\frac{\rho(1+\delta)}{\alpha / 2-2 \rho}<1$ or $\rho<\frac{\alpha}{2(3+\delta)}$. Since $\delta>0$ can be chosen arbitrarily small, the assumption $\rho<\alpha / 6$ implies the convergence of $\zeta_{n}^{(2)}$ as well as the convergence $\zeta_{n}^{(3)} \rightarrow 0$ almost surely as $n \rightarrow \infty$. Since

$$
\mathrm{E}\left(\zeta_{n}^{(4)}\right)^{2} \leq(2 k-1)!!B^{k}(0)\left(\frac{T_{n+1}}{T_{n}}-1\right)^{4 k} T_{n}^{2 k \rho}=O\left(n^{-2 k(2-\beta \rho)}\right), \quad n \rightarrow \infty
$$

and $\zeta_{n}^{(4)} \rightarrow 0$ almost surely as $n \rightarrow \infty$, Lemma 3.1 is proved.
Lemma 3.2. Assume that condition $\mathbf{N}(i i)$ holds. Then $\xi(T) \rightarrow 0$ almost surely as $T \rightarrow \infty$ if $\rho<1 / 3$.

Proof. Using the notation introduced in Lemma 3.1 and the assumption of Lemma 3.2, we obtain for $i=1,2$ that

$$
\begin{gather*}
I_{i 1}(T)=O\left(T^{-2+2 \rho}\right), \quad I_{i 2}(T)=O\left(T^{-1+2 \rho}\right), \quad I_{i 3}(T)=O\left(T^{-1+2 \rho}\right), \tag{24}\\
T \rightarrow \infty
\end{gather*}
$$

Let $T_{n}=n^{\beta}$, where $(1-2 \rho) \beta=1+\delta$ and $\delta>0$. Then, similarly to the proof of Lemma 3.1, $\xi\left(T_{n}\right) \rightarrow 0$ almost surely as $n \rightarrow \infty$. Put $\zeta_{n}=\sum_{i=1}^{4} \zeta_{n}^{(i)}$. Then $\zeta_{n}^{(1)} \rightarrow 0$ almost surely as $n \rightarrow \infty$. As in the proof of Lemma 3.1 the assumption $\rho<1 / 3$ implies the convergence $\zeta_{n}^{(i)} \rightarrow 0$ almost surely as $n \rightarrow \infty$ for $i=2,3,4$.

4. Main result

Theorem 4.1. Assume that conditions N, R1, and R2 hold. Then the Walker least squares estimator θ_{T} is a strongly consistent estimator of the parameter θ^{0}, namely

$$
A_{k T} \rightarrow A_{k}^{0}, \quad B_{k T} \rightarrow B_{k}^{0}, \quad T\left(\lambda_{k T}-\lambda_{k}^{0}\right) \rightarrow 0, \quad T\left(\mu_{k T}-\mu_{k}^{0}\right) \rightarrow 0
$$

almost surely as $T \rightarrow \infty, k=1, \ldots, N$.
Proof. Consider the following system of linear equations with respect to the least squares estimators $A_{k T}$ and $B_{k T}, k=1, \ldots, N$:

$$
\left.\frac{\partial Q_{T}(\theta)}{\partial A_{p}}\right|_{\theta=\theta_{T}}=\left.\frac{\partial Q_{T}(\theta)}{\partial B_{p}}\right|_{\theta=\theta_{T}}=0, \quad p=1, \ldots, N .
$$

We rewrite this system in the form

$$
\begin{cases}\sum_{k=1}^{N} a_{k p}^{(1)} A_{k T}+\sum_{k=1}^{N} b_{k p}^{(1)} B_{k T}=c_{p}^{(1)}, & p=1, \ldots, N ; \tag{25}\\ \sum_{k=1}^{N} a_{k p}^{(2)} A_{k T}+\sum_{k=1}^{N} b_{k p}^{(2)} B_{k T}=c_{p}^{(2)}, & p=1, \ldots, N .\end{cases}
$$

Let

$$
\begin{align*}
\cos \left(\lambda_{k T} t_{1}+\mu_{k T} t_{2}\right)=\cos _{k}, \quad \sin \left(\lambda_{k T} t_{1}+\mu_{k T} t_{2}\right) & =\sin _{k}, \\
\cos \left(\lambda_{k}^{0} t_{1}+\mu_{k}^{0}\right)=\cos _{k}^{0}, \quad \sin \left(\lambda_{k}^{0} t_{1}+\mu_{k}^{0}\right)=\sin _{k}^{0}, \quad k & =1, \ldots, N . \tag{26}
\end{align*}
$$

Then the coefficients of system (25) are such that

$$
\begin{array}{cl}
a_{k p}^{(1)}=T^{-2} \int_{0}^{T} \int_{0}^{T} \cos _{k} \cos _{p} d t_{1} d t_{2}, & a_{k p}^{(2)}=T^{-2} \int_{0}^{T} \int_{0}^{T} \cos _{k} \sin _{p} d t_{1} d t_{2}, \\
b_{k p}^{(1)}=T^{-2} \int_{0}^{T} \int_{0}^{T} \sin _{k} \cos _{p} d t_{1} d t_{2}, & b_{k p}^{(2)}=T^{-2} \int_{0}^{T} \int_{0}^{T} \sin _{k} \sin _{p} d t_{1} d t_{2}, \\
c_{p}^{(1)}=T^{-2} \int_{0}^{T} \int_{0}^{T} X\left(t_{1}, t_{2}\right) \cos _{p} d t_{1} d t_{2}, & c_{k p}^{(2)}=T^{-2} \int_{0}^{T} \int_{0}^{T} X\left(t_{1}, t_{2}\right) \sin _{p} d t_{1} d t_{2} .
\end{array}
$$

Below we use the symbol $o(1)$ to denote various stochastic processes (possibly different in different places) that depend on the parameter T and that almost surely approach zero as $T \rightarrow \infty$.

Taking into account properties (9) and (10) of parametric sets Λ_{T} and M_{T} whose closures contain the values of the estimators λ_{T} and μ_{T}, respectively, we find after simple algebra that

$$
\begin{array}{cl}
a_{k p}^{(1)}=o(1), \quad k \neq p, & a_{p p}^{(1)}=\frac{1}{2}+o(1), \quad a_{k p}^{(2)}=o(1), \quad k, p=1, \ldots, N ; \\
b_{k p}^{(1)}=a_{p k}^{(2)}=o(1), & b_{k p}^{(2)}=o(1), \quad k \neq p, \quad b_{k p}^{(2)}=\frac{1}{2}+o(1), \tag{28}\\
k, p=1, \ldots, N .
\end{array}
$$

Further let

$$
\begin{array}{cc}
x_{\lambda p}=\frac{\sin T\left(\lambda_{p T}-\lambda_{p}^{0}\right)}{T\left(\lambda_{p T}-\lambda_{p}^{0}\right)}, & x_{\mu p}=\frac{\sin T\left(\mu_{p T}-\mu_{p}^{0}\right)}{T\left(\mu_{p T}-\mu_{p}^{0}\right)}, \quad p=1, \ldots, N ; \\
y_{\lambda p}=\frac{1-\cos T\left(\lambda_{p T}-\lambda_{p}^{0}\right)}{T\left(\lambda_{p T}-\lambda_{p}^{0}\right)}, & y_{\mu p}=\frac{1-\cos T\left(\mu_{p T}-\mu_{p}^{0}\right)}{T\left(\mu_{p T}-\mu_{p}^{0}\right)}, \quad p=1, \ldots, N . \tag{29}
\end{array}
$$

Then

$$
\begin{align*}
c_{p}^{(1)} & =T^{-2} \int_{0}^{T} \int_{0}^{T} \varepsilon\left(t_{1}, t_{2}\right) \cos _{p} d t_{1} d t_{2}+T^{-2} \int_{0}^{T} \int_{0}^{T} g\left(t_{1}, t_{2} ; \theta^{0}\right) \cos _{p} d t_{1} d t_{2} \tag{30}\\
& =\frac{1}{2}\left[A_{p}^{0}\left(x_{\lambda p} x_{\mu p}-y_{\lambda p} y_{\mu p}\right)-B_{p}^{0}\left(x_{\mu p} y_{\lambda p}+x_{\lambda p} y_{\mu p}\right)\right]+o(1)
\end{align*}
$$

in view of Lemmas 3.1 and 3.2. Analogously

$$
\begin{equation*}
c_{p}^{(2)}=\frac{1}{2}\left[A_{p}^{0}\left(x_{\mu p} y_{\lambda p}+x_{\lambda p} y_{\mu p}\right)+B_{p}^{0}\left(x_{\lambda p} x_{\mu p}-y_{\lambda p} y_{\mu p}\right)\right]+o(1) \tag{31}
\end{equation*}
$$

Since $\left|x_{\lambda p}\right| \leq 1,\left|x_{\mu p}\right| \leq 1,\left|y_{\lambda p}\right| \leq 1$, and $\left|y_{\mu p}\right| \leq 1, p=1, \ldots, N$, solutions of system (25) can be represented as

$$
\begin{gather*}
A_{p T}=A_{p}^{0}\left(x_{\lambda p} x_{\mu p}-y_{\lambda p} y_{\mu p}\right)-B_{p}^{0}\left(x_{\mu p} y_{\lambda p}+x_{\lambda p} y_{\mu p}\right)+o(1) \\
B_{p T}=A_{p}^{0}\left(x_{\mu p} y_{\lambda p}+x_{\lambda p} y_{\mu p}\right)+B_{p}^{0}\left(x_{\lambda p} x_{\mu p}-y_{\lambda p} y_{\mu p}\right)+o(1) \tag{32}\\
p=1, \ldots, N,
\end{gather*}
$$

according to relations (27), (28), (30), and (31).
In turn, relation (32) implies the inequalities

$$
\begin{equation*}
\left|A_{p T}\right|,\left|B_{p T}\right| \leq 2\left(\left|A_{p}^{0}\right|+\left|B_{p}^{0}\right|\right)+o(1), \quad p=1, \ldots, N . \tag{33}
\end{equation*}
$$

Put

$$
G_{T}\left(\theta_{1} ; \theta_{2}\right)=T^{-2} \int_{0}^{T} \int_{0}^{T}\left[g\left(t_{1}, t_{2} ; \theta_{1}\right)-g\left(t_{1}, t_{2} ; \theta_{2}\right)\right]^{2} d t_{1} d t_{2}
$$

By the definition of the least squares estimator,

$$
\begin{align*}
0 & \geq Q_{T}\left(\theta_{T}\right)-Q_{T}\left(\theta^{0}\right) \\
& =G_{T}\left(\theta_{T} ; \theta^{0}\right)+2 T^{-2} \int_{0}^{T} \int_{0}^{T} \varepsilon\left(t_{1}, t_{2}\right)\left(g\left(t_{1}, t_{2} ; \theta^{0}\right)-g\left(t_{1}, t_{2} ; \theta_{T}\right)\right) d t_{1} d t_{2} \tag{34}
\end{align*}
$$

The second term on the right-hand side of equality (34) is $o(1)$ in view of Lemmas 3.1 and 3.2 and relation (33). This means that

$$
\begin{equation*}
G_{T}\left(\theta_{T} ; \theta^{0}\right) \rightarrow 0 \quad \text { almost surely as } T \rightarrow \infty \tag{35}
\end{equation*}
$$

Now we rewrite the expression for $G_{T}\left(\theta_{T} ; \theta^{0}\right)$ in such a way that relation (35) implies the consistency of the least squares estimators of parameters λ_{k}^{0} and $\mu_{k}^{0}, k=1, \ldots, N$. We have

$$
\begin{aligned}
G_{T}\left(\theta_{T} ; \theta^{0}\right)= & T^{-2} \int_{0}^{T} \int_{0}^{T} g^{2}\left(t_{1}, t_{2} ; \theta_{T}\right) d t_{1} d t_{2}+T^{-2} \int_{0}^{T} \int_{0}^{T} g^{2}\left(t_{1}, t_{2} ; \theta^{0}\right) d t_{1} d t_{2} \\
& -2 T^{-2} \int_{0}^{T} \int_{0}^{T} g\left(t_{1}, t_{2} ; \theta_{T}\right) g\left(t_{1}, t_{2} ; \theta^{0}\right) d t_{1} d t_{2} \\
= & J_{1}+J_{2}+J_{3}
\end{aligned}
$$

Using (33) and (27), (28) we obtain

$$
\begin{gather*}
J_{1}=\frac{1}{2} \sum_{k=1}^{N}\left(A_{k T}^{2}+B_{k T}^{2}\right)+o(1), \tag{36}\\
J_{2}=\frac{1}{2} \sum_{k=1}^{N}\left(\left(A_{k}^{0}\right)^{2}+\left(B_{k}^{0}\right)^{2}\right)+o(1) \tag{37}
\end{gather*}
$$

$$
\begin{align*}
J_{3}= & -2 \sum_{p=1}^{N} \sum_{k=1}^{N} T^{-2} \int_{0}^{T} \int_{0}^{T}\left(A_{p T} A_{k}^{0} \cos _{p} \cos _{k}^{0}+A_{p T} B_{k}^{0} \cos _{p} \sin _{k}^{0}\right) d t_{1} d t_{2} \\
& -2 \sum_{p=1}^{N} \sum_{k=1}^{N} T^{-2} \int_{0}^{T} \int_{0}^{T}\left(B_{p T} A_{k}^{0} \sin _{p} \cos _{k}^{0}+B_{p T} B_{k}^{0} \sin _{p} \sin _{k}^{0}\right) d t_{1} d t_{2} \\
= & \sum_{p=1}^{N}\left(A_{p T} A_{p}^{0}\left(x_{\lambda p} x_{\mu p}-y_{\lambda p} y_{\mu p}\right)-A_{p T} B_{p}^{0}\left(x_{\mu p} y_{\lambda p}+x_{\lambda p} y_{\mu p}\right)\right) \tag{38}\\
& -\sum_{p=1}^{N}\left(B_{p T} A_{p}^{0}\left(x_{\mu p} y_{\lambda p}+x_{\lambda p} y_{\mu p}\right)+B_{p T} B_{p}^{0}\left(x_{\lambda p} x_{\mu p}-y_{\lambda p} y_{\mu p}\right)\right)+o(1) .
\end{align*}
$$

Put $z_{1 p}=x_{\lambda p} x_{\mu p}-y_{\lambda p} y_{\mu p}$ and $z_{2 p}=x_{\mu p} y_{\lambda p}+x_{\lambda p} y_{\mu p}, p=1, \ldots, N$. Substituting expressions (32) into (36) and (38), we get

$$
\begin{aligned}
G_{T}\left(\theta_{T} ; \theta^{0}\right)= & \frac{1}{2} \sum_{p=1}^{N}\left[\left(A_{p}^{0} z_{1 p}-B_{p}^{0} z_{2 p}\right)^{2}+\left(A_{p}^{0} z_{2 p}+B_{p}^{0} z_{1 p}\right)^{2}+\left(A_{p}^{0}\right)^{2}+\left(B_{p}^{0}\right)^{2}\right] \\
& -\sum_{p=1}^{N}\left[\left(A_{p}^{0}\right)^{2} z_{1 p}^{2}-2 A_{p}^{0} B_{p}^{0} z_{1 p} z_{2 p}+\left(B_{p}^{0}\right)^{2} z_{2 p}^{2}\right] \\
& -\sum_{p=1}^{N}\left[\left(A_{p}^{0}\right)^{2} z_{2 p}^{2}+2 A_{p}^{0} B_{p}^{0} z_{1 p} z_{2 p}+\left(B_{p}^{0}\right)^{2} z_{1 p}^{2}\right]+o(1) \\
= & \frac{1}{2} \sum_{p=1}^{N}\left(\left(A_{p}^{0}\right)^{2}+\left(B_{p}^{0}\right)^{2}\right)\left(1-z_{1 p}^{2}-z_{2 p}^{2}\right)+o(1) \\
= & \frac{1}{2} \sum_{p=1}^{N}\left(\left(A_{p}^{0}\right)^{2}+\left(B_{p}^{0}\right)^{2}\right)\left(1-\left(x_{\lambda p}^{2}+y_{\lambda p}^{2}\right)\left(x_{\mu p}^{2}+y_{\mu p}^{2}\right)\right)+o(1) \\
= & \frac{1}{2} \sum_{p=1}^{N}\left(\left(A_{p}^{0}\right)^{2}+\left(B_{p}^{0}\right)^{2}\right) \\
& \times\left[1-\left(\frac{\sin \frac{1}{2} T\left(\lambda_{p T}-\lambda_{p}^{0}\right)}{\frac{1}{2} T\left(\lambda_{p T}-\lambda_{p}^{0}\right)}\right)^{2}\left(\frac{\sin \frac{1}{2} T\left(\mu_{p T}-\mu_{p}^{0}\right)}{\frac{1}{2} T\left(\mu_{p T}-\mu_{p}^{0}\right)}\right)^{2}\right]+o(1) .
\end{aligned}
$$

Equality (39) together with (35) proves that

$$
T\left(\lambda_{p T}-\lambda_{p}^{0}\right) \rightarrow 0, \quad T\left(\mu_{p T}-\mu_{p}^{0}\right) \rightarrow 0
$$

almost surely as $T \rightarrow \infty, p=1, \ldots, N$. Now (29) implies that $x_{\lambda p} \rightarrow 1, x_{\mu p} \rightarrow 1$ and $y_{\lambda p} \rightarrow 0, y_{\mu p} \rightarrow 0$ almost surely as $T \rightarrow \infty, p=1, \ldots, N$. We also obtain from (32) that

$$
A_{p T} \rightarrow A_{p}^{0}, \quad B_{p T} \rightarrow B_{p}^{0}
$$

The theorem is proved.

5. Concluding remarks

The strong consistency of the least squares estimator of parameters in the texture surface sinusoidal model is proved in the paper under the assumption that the random noise is an isotropic and homogeneous Gaussian random field. It is natural to extend this result in order to find conditions for the consistency of least squares estimators in the
case of a non-Gaussian noise and to prove the asymptotic normality of the least squares estimators.

Bibliography

[1] J. M. Francos, A. Z. Meiri, and B. Porat, A united texture model based on 2-D Wald type decomposition, IEEE Trans. Signal Process. 41 (1993), 2665-2678.
[2] T. Yuan and T. Subba Rao, Spectrum estimation for random fields with application to Markov modelling and texture classification, Markov Random Fields, Theory and Applications (R. Chellappa and A. K. Jain, eds.), Academic Press, New York, 1993.
[3] H. Zhang and V. Mandrekar, Estimation of hidden frequencies for 2D stationary processes, J. Time Series Anal. 22 (2001), 613-629. MR 1859568
[4] S. Nandi, D. Kundu, and R. K. Srivastava, Noise space decomposition method for two-dimensional sinusoidal model, Comput. Statist. Data Anal. 58 (2013), 147-161. MR2997932
[5] P. Malliavan, Sur la norte d'une matrice circulante Gaussienne, Comptes Rendus de l'Academie des Sciences, Serie 1 (Mathematique) (1994), 45-49.
[6] P. Malliavin, Estimation d'un signal Lorentzien, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 9, 991-997. MR1302805
[7] M. I. Yadrenko, Spectral Theory of Random Fields, Optimization Software, New York, 1983. MR697386
[8] A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, Kluwer Academic Publishers, Dordecht-Boston-London, 1989. MR 1009786
[9] A. V. Ivanov, Consistency of the least squares estimator of the amplitudes and angular frequencies of a sum of harmonic oscillations in models with long-range dependence, Theory Probab. Math. Statist. 80 (2010), 61-69. MR2541952
[10] A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina, and B. M. Zhurakovsky, Estimation of harmonic component in regression with cyclically dependent errors, Statistics 49 (2015), 156-186. MR3304373
[11] C. R. Rao, L. C. Zhao, and B. Zhou, Maximum likelihood estimation of 2-D superimposed exponential, IEEE Trans. Signal Process. 42 (1994), 795-802.
[12] D. Kundu and A. Mitra, Asymptotic properties of the least squares estimates of 2-D exponential signals, Multidimens. Syst. Signal Process. 7 (1996), 135-150. MR 1388718
[13] D. Kundu and S. Nandi, Determination of discrete spectrum in a random field, Statistica Neerlandica 57 (2003), no. 2, 258-284. MR2028915
[14] D. R. Brillinger, Regression for randomly sampled spatial series: The trigonometric case, J. Appl. Probab. 23 (1986), 275-289. MR 803178
[15] A. V. Ivanov, Asymptotic Theory of Nonlinear Regression, Kluwer Academic Publishers, Dordecht-Boston-London, 1997. MR 1472234
[16] A. M. Walker, On the estimation of a harmonic component in a time series with stationary dependent residuals, Adv. Appl. Probab. 5 (1973), 217-241. MR0336943

Department of Mathematical Analysis and Probability Theory, Faculty for Physics and Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Peremogy Avenue, 37, Kyiv 03057, Ukraine

Email address: alexntuu@gmail.com
Department of Mathematical Analysis and Probability Theory, Faculty for Physics and Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Peremogy Avenue, 37, Kyiv 03057, Ukraine

Email address: malyar95@ukr.net
Received 30/OCT/2017
Translated by S. V. KVASKO

[^0]: 2010 Mathematics Subject Classification. Primary 62J02; Secondary 62J99.
 Key words and phrases. Texture surface sinusoidal model of observations, isotropic and homogeneous random field, least squares estimator, consistency.

