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MULTI-CHANNEL QUEUEING NETWORKS

WITH INTERDEPENDENT INPUT FLOWS IN HEAVY TRAFFIC

UDC 519.21

E. O. LEBEDEV, O. A. CHECHELNITSKY, AND G. V. LIVINSKA

Abstract. A service process in a multi-channel stochastic network with interde-
pendent input flows is considered. Such a model is used when analyzing computer
or communication networks as well as in medicine and particle physics (high-energy
physics). Under the assumption of the critical load, theorems on diffusion approxi-
mations are proved. The local characteristics of the diffusion process are expressed
in terms of parameters of the network.

1. Introduction

Modern information and telecommunication networks are becoming more and more
complex. This trend is explained by the growing requirements concerning the reliability
of a network, rate of transmission as well as that of processing the information in the
network, and also by wider branching of the networks. Methods of the theory of stochastic
processes are an effective tool for studying the networks of transmitting information,
computer networks, systems of collective access, etc. These methods allow one to estimate
the capability of a network and to find reserve loads as well as to control information
flows in an optimal way. Also they allow one to choose the capacity of buffer memory of
service nodes in the case of packet switching in the network (see, for example, [1]).

Stochastic networks (known also as queueing networks) are an adequate model for
various real-life networks. The structure of the processes in such networks is described
by the probability characteristics of input flows, disciplines of service, and commutation
schemes for customer packages. The process of servicing the customers in a stochastic
network (which is the main object of interest in this paper) can be viewed as a vector
of a high dimension determined by a complex system of stochastic relations. Earlier
papers (see [2, 3] and [4, 5]) deal with networks whose input flows are independent. The
dependence between components of the network occurs only if the customer trajectories
intersect at nodes of a network during the service process. We remove this restriction in
the current paper and this leads to an essential complication of the model.

Since our models are complicated, we follow the method of functional limit theorems
for studying the multi-dimensional service process. This method allows us to find the
main characteristics of the service process, to construct the corresponding approximation
process, and to evaluate the distribution of important functionals that estimate the
service efficiency.

A model of a network of a parallel structure is considered in Section 2. Each node
of a such a system is a multi-channel queueing system. The input traffic in the system
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consists of two types of flows, namely of autonomous flows (each node of the system has
its own autonomous input flow) and of a common flow of customers arriving in packages.
The size of a package equals the number of nodes in the system. Each customer in a
package arrives at every node simultaneously for a parallel service. Input flows of such a
type are considered in the papers [6, 7].

We study a multi-dimensional service process in such a system functioning in the
overloaded mode. The convergence of the normalized service process to a diffusion process
is proved in the uniform topology.

A more complex model of type [G |M |∞]
r
is considered in Sections 3 and 4 for multi-

channel stochastic networks. Neither assumption is imposed on the structure of the input
process. The service time at nodes of the network has an exponential distribution. The
traffic within the stochastic network is described by the routing matrix.

We prove the convergence in the uniform topology of the normalized service process
to a Gaussian process under the assumptions that the functional central limit theorem
holds for the multi-dimensional input flow and that the service intensity is low at every
node of the network. The limit process is the sum of two independent Gaussian processes
and each of them has its own description in terms of the stochastic network. It is also
shown that the limit Gaussian process is a multi-dimensional diffusion.

A [G |M |∞]
r stochastic network is studied in Section 4 for a quasistationary mode. In

addition to the critical load, there exists an initial load in the network and it is asymp-
totically large. Based on the main limit theorem of Section 3, we prove the convergence
of the normalized service process to a multi-dimensional Ornstein–Uhlenbeck process.

2. Multi-channel queueing network with multi-dimensional

Poisson input flow

Consider a model consisting of r nodes E1, . . . , Er. Each node is functioning as an
M/M/∞ queueing system. This means that the arrival times of customers at every node
Ei are described by Poisson processes yi(t) with rates λi > 0, i = 1, 2, . . . , r (in other
words, the distribution function of interarrival times is exponential). The service of every
customer arriving according to the process yi(t) starts immediately after arrival by one
of the service units. Note that every node is equipped with an infinite number of service
units. The service time at a node Ei, i = 1, 2, . . . , r, has an exponential distribution with
parameter μi > 0, i = 1, 2, . . . , r. Every customer is served at only one node and leaves
the system immediately after the service is complete. In addition, there is a common
flow of packages in the system described by a Poisson process y(t) with the rate b > 0.
Each package contains r customers that simultaneously are distributed among r nodes
for a parallel service.

Therefore the input process in this system is, in fact, a multi-dimensional Poisson
process

(ν1(t), . . . , νr(t))

with parameters λi > 0, i = 1, 2, . . . , r, and b > 0. According to the procedure described
above, every component νi(t) admits the following representation:

νi(t) = yi(t) + y(t).

Models of the type described above can be used when scheduling the functioning of mod-
ern computer networks and allow one to increase the speed of processing the information
and to save a considerable amount of time and other resources.

Denote by Q(t) = (Q1(t), . . . ,Qr(t))
′, t ∈ [0, T ], the total number of customers at

nodes of the system at a moment t. Our aim is to study the transition mode for the
multi-dimensional service process Q(t) in the overloaded mode. This means that the
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parameters μi > 0, i = 1, 2, . . . , r, of the exponential distribution of the service time
depend on the number of series n (that is, μi = μi(n)) and that

1) limn→∞ nμi(n) = μi �= 0, i = 1, 2, . . . , r.

Denote by Q(n)(nt) =
(
Q(n)

1 (nt), . . . ,Q(n)
r (nt)

)′
, t ∈ [0, T ], the total number of cus-

tomers at nodes of the queueing system in the scale of transformed time nt. We also
assume that the system is empty at the initial moment, that is,

2) Q(n)
i (0) = 0, i = 1, 2, . . . , r.

We prove the convergence of the normalized service process

ξ(n)(t) =
(
ξ
(n)
1 (t), . . . , ξ(n)r (t)

)′
= n−1/2

(
Q(n)(nt)− α(t)n

)
to a diffusion process in the uniform topology, where α(t) = (α1(t), . . . , αr(t))

′ and
αi(t) = (λi + b)(1− e−μit), i = 1, 2, . . . , r.

Theorem 1. Let conditions 1) and 2) hold. Then the sequence of service processes

ξ(n)(t) =
(
ξ
(n)
1 (t), . . . , ξ

(n)
r (t)

)′
weakly converges in the uniform topology on an arbitrary

interval [0, T ] to a diffusion process ξ(t)
(
ξ(0) = ξ0 = (0, . . . , 0)′

)
with the drift vector

α(x) =
(
α1(x), . . . , αr(x)

)′
=

(
−μ1x1, . . . ,−μrxr

)′
and diffusion matrix

B =

⎛
⎜⎜⎜⎝
(λ1 + b)(2− e−μ1t) b . . . b

b (λ2 + b)(2− e−μ2t) b b
... b

. . . b
b . . . b (λr + b)(2− e−μrt)

⎞
⎟⎟⎟⎠ .

There is a long history of studying queueing systems functioning in an overloaded
mode. Several approaches are known and each of them is directed toward a specific class
of systems. We prove Theorem 1 by following the local approach, which is the most useful
in the case of models under consideration in this paper. Some more detail concerning
this approach can be found in [8].

Proof. According to the local approach, the finite-dimensional distributions of the process
ξ(n)(t) converge to those of a diffusion process ξ(t) with a drift vector α(x) and diffusion
matrix B if

ξ(n)(0)
d⇒ ξ0, n → +∞,

δ1(n) =

dn−1∑
k=0

E
∣∣E {Δξnk

| Fnk
} − α

(
ξnk

)
Δtnk

∣∣ → 0, n → +∞,

δ2(n) =

dn−1∑
k=0

E
∣∣∣E{(

Δξnk
, z

)2 ∣∣∣ Fnk

}
−

(
Bz, z

)
Δtnk

∣∣∣ → 0, n → +∞, z ∈ R
r,

δ3(n) =

dn−1∑
k=0

P
{∣∣Δξnk

∣∣ ≥ ε
}
→ 0, n → +∞, for all ε > 0 and z ∈ R

r.

Here the symbol
d⇒ stands for the weak convergence of random vectors, Δξnk

= ξnk+1
−

ξnk
, ξnk

= ξ(n)(tnk
),

{tnk
, k = 0, 1, . . . , dn}

is a sequence of partitions of the interval [0, T ] by points

0 = tn0
< tn1

< · · · < tndn
= T
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such that maxΔtnk
→ 0, Fnk

= F (tnk
), and {Fn(t), t ∈ [0, T ]} is the sequence of families

of the increasing σ-algebras (that is, Fn(t1) ⊆ Fn(t2) if t1 < t2) generated by the processes
ξ(n)(u), u � t.

For simplicity, we prove the convergence on the unit interval

[0, T ] = [0, 1].

Put tnk
= k/dn, n = 1, 2, . . . , k = 1, . . . , dn, where dn → ∞, n → ∞, is a sequence

of positive integer numbers such that limn→∞ dn/n = 0. Let Fn(t) be the σ-algebra
generated by the family of random variables

{
ξ(n)(τ ), τ � t

}
. Then the above conditions

for the process

Q(n)(nt) =
(
Q(n)

1 (nt), . . . ,Q(n)
r (nt)

)′

can be rewritten as follows:

ξn(0)
d⇒ ξ0, n → ∞,(1)

dn−1∑
k=0

E
∣∣∣E{

Δξ
(n)
i (tnk

)
∣∣∣ Fnk

}
+ μiξ

(n)
i (tnk

)Δtnk

∣∣∣ → 0, n → +∞, i = 1, 2, . . . , r,

(2)

dn−1∑
k=0

E

∣∣∣∣E
{(

Δξ
(n)
i (tnk

)
)2

∣∣∣∣ Fnk

}
− (λi + b)(2− e−μit)Δtnk

∣∣∣∣ → 0,

n → +∞, i = 1, 2, . . . , r,

(3)

dn−1∑
k=0

E
∣∣∣E{(

Δξ
(n)
i (tnk

)Δξ
(n)
j (tnk

)
) ∣∣∣ Fnk

}
− bΔtnk

∣∣∣ → 0, n → +∞, i �= j,(4)

dn−1∑
k=1

P
{∣∣Δξnk

∣∣ ≥ ε
}
→ 0, n → +∞, for all ε > 0.(5)

Since
(
ξ
(n)
1 (0), . . . , ξ

(n)
r (0)

)
= (0, . . . , 0), condition (1) holds for(

ξ
(0)
1 (0), . . . , ξ(0)r (0)

)
= (0, . . . , 0).

Conditions (2)–(4) mean that the process ξ(n)(t) converges to a diffusion process if the
characteristics of the prelimit process are asymptotically close to the corresponding char-
acteristics of the diffusion process.

In order to check conditions (2)–(4) one needs to evaluate the conditional expectations

E
{
Δξ

(n)
i (tnk

)
∣∣∣ Fnk

}
,

E

{(
Δξ

(n)
i (tnk

)
)2

∣∣∣∣ Fnk

}
,

E
{(

Δξ
(n)
i (tnk

)Δξ
(n)
j (tnk

)
) ∣∣∣ Fnk

}
,

i �= j, i, j = 1, 2, . . . , r.

These conditional expectations can be evaluated for processes of the specific form we
are dealing with if we are able to calculate the following conditional expectations for the
process Q(t):

E {Qi(t) | Qi(0) = mi} , E
{
Qi(t)

2 | Qi(0) = mi

}
, i = 1, 2, . . . , r,

E {Qi(t)Qj(t) | Qi(0) = mi,Qj(0) = mj} , i �= j, i, j = 1, 2, . . . , r.
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First of all we obtain the explicit form of the following conditional generating function:

ϕ(zi, zj , t) = M
{
z
Qi(t)
i z

Qj(t)
j

∣∣∣ Qi(0) = mi,Qj(0) = mj

}
, i �= j, i, j = 1, 2, . . . , r.

To solve this problem we use the explicit representation of the components of the vec-
tor (Qi(t),Qj(t)) in the form of a sum of random indicators along trajectories of the
input Poisson flows. Every indicator describes the service process of a separate customer
arriving at the system.

Introduce three families of independent two-dimensional random vectors,
{
χi
k(t)

}∞
k=1

,{
χj
k(t)

}∞
k=1

, and {χk(t)}∞k=1, whose distributions do not depend on the index k. The

random vector χi
k(t) assumes the value (1, 0) with probability e−μit or the value (0, 0)

with probability 1 − e−μit. The random vector χj
k(t) assumes the value (0, 1) with

probability e−μjt or the value (0, 0) with probability 1− e−μjt.
Finally, the random vector χk(t) assumes four values, namely (1, 1) with probability

e−(μi+μj)t, (1, 0) with probability e−μit
(
1− eμjt

)
, (0, 1) with probability

e−μjt
(
1− eμit

)
,

or (0, 0) with probability
(
1− eμit

)(
1− eμjt

)
.

Then the vector constituted by the ith and jth components of the service process
admits the representation

(
Qi(t),Qj(t)

) d
=

mi∑
k=1

χi
k(t) +

mj∑
k=1

χj
k(t) +

yi(t)∑
k=1

χi
k

(
t− tik

)
+

yj(t)∑
k=1

χj
k

(
t− tjk

)
+

y(t)∑
k=1

χk

(
t− tk

)
,

where the symbol
d
= means the equality of conditional distributions for fixed

mi, mj , tik, tjk, tk, k = 1, 2, . . . , i �= j, i, j = 1, 2, . . . , r.

The symbols above denote the sequential arrival times of customers according to the
independent Poisson flows yi(t), yj(t), y(t), i �= j, i, j = 1, 2, . . . , r, correspondingly.

Using the well-known properties of conditional expectations we find

ϕ
(
zi, zj , t

)
=

(
1− e−μit + zie

−μit
)mi

(
1− e−μjt + zje

−μjt
)mj

× E

{
yi(t)∏
k=1

((
1− e−μi(t−tik)

)
+ zie

−μi(t−tik)
)

×
yj(t)∏
k=1

((
1− e−μj(t−tjk)

)
+ zje

−μj(t−tjk)
)

×
y(t)∏
k=1

{(
1− e−μi(t−tk)

)(
1− e−μj(t−tk)

)
+ zie

−μi(t−tk)
(
1− e−μj(t−tk)

)

+ zje
−μj(t−tk)

(
1− e−μi(t−tk)

)
+ zizje

−(μi+μj)(t−tk)
}}

.

The latter expression allows one to obtain the explicit form of the conditional gener-
ating functions. To derive this explicit form, we rewrite ϕ

(
zi, zj , t

)
as the conditional
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expectation given yi(t), yj(t), and y(t):

ϕ
(
zi, zj , t

)
=

(
1− e−μit + zie

−μit
)mi

(
1− e−μjt + zje

−μjt
)mj

× E

{
E

{
yi(t)∏
k=1

((
1− e−μit

)
+ zie

−μi(t−tik)
)

×
yj(t)∏
k=1

((
1− e−μj(t−tjk)

)
+ zje

−μj(t−tjk)
)

×
y(t)∏
k=1

{(
1− e−μi(t−tk)

)(
1− e−μj(t−tk)

)

+zie
−μi(t−tk)

(
1− e−μj(t−tk)

)
+zje

−μj(t−tk)
(
1− e−μi(t−tk)

)

+zizje
−(μi+μj)(t−tk)

} ∣∣∣∣∣ yi(t), yj(t), y(t)
}}

.

It is well known from the theory of random flows of customers that the moments of
jumps given the number of jumps in the Poisson flow have the same distribution as order
statistics constructed from the uniform distribution in the interval [0, t]. This property of
the Poisson flow yields the explicit form of the generating function of the random vector(
Qi(t), Qj(t)

)
:

ϕ
(
zi, zj , t

)
=

(
1− e−μit + zie

−μit
)mi

(
1− e−μjt + zje

−μjt
)mj

× E
{
A1

(
zi, t

)}yi(t) E
{
A2

(
zj , t

)}yj(t) E
{
A3

(
zi, zj , t

)}y(t)
.

The generating functions A1

(
zi, t

)
, A2

(
zj , t

)
, and A3

(
zi, zj , t

)
admit the following

representations:

A1

(
zi, t

)
=

1

t

∫ t

0

(
1− e−μi(t−u) + zie

−μi(t−u)
)
du,

A2

(
zj , t

)
=

1

t

∫ t

0

(
1− e−μj(t−u) + zje

−μj(t−u)
)
du,

A3

(
zi, zj , t

)
=

1

t

∫ t

0

(
1−

(
e−μi(t−u) − e−(μi+μj)(t−u)

)(
1− zi

)
−

(
e−μj(t−u) − e−(μi+μj)(t−u)

)(
1− zj

)
− e−(μi+μj)(t−u)

(
1− zizj

))
du.

Note that the factor 1/t appears in the above representations of the generating func-
tions A1(zi, t), A2(zj , t), and A3(zi, zj , t), since it is equal to the density of the uniform
distribution in the interval [0, t].
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Finally, the generating functions A1(zi, t), A2(zj , t), and A3(zi, zj , t) can be written
as

A1(zi, t) = 1− 1

μit

(
1− e−μit

)
(1− zi),

A2(zj , t) = 1− 1

μjt

(
1− e−μjt

)
(1− zj),

A3(zi, zj , t) = 1−
(

1

μit

(
1− e−μit

)
− 1(

μi + μj

)
t

(
1− e−(μi+μj)t

)) (
1− zi

)

−
(

1

μjt

(
1− e−μjt

)
− 1(

μi + μj

)
t

(
1− e−(μi+μj)t

)) (
1− zj

)

−
(

1(
μi + μj

)
t

(
1− e−(μi+μj)t

))(
1− zizj

)
.

Substituting these expressions into ϕ
(
zi, zj , t

)
we obtain the explicit form of the gener-

ating function,

ϕ
(
zi, zj , t

)
=

(
1− e−μit + zie

−μit
)mi

(
1− e−μjt + zje

−μjt
)mj

× exp

{
−
(λi + b

μi

(
1− e−μit

)
− b

μi + μj

(
1− e−(μi+μj)t

))(
1− zi

)

−
(
λj + b

μj

(
1− e−μjt

)
− b

μi + μj

(
1− e−(μi+μj)t

)) (
1− zj

)

− b

μi + μj

(
1− e−(μi+μj)t

)(
1− zizj

)}
,

i �= j, i, j = 1, 2, . . . , r.

Differentiating the conditional generating functions we evaluate the conditional ex-
pectations,

E {Qi(t) | Qi(0) = mi} = mie
−μit +

λi + b

μi

(
1− e−μit

)
, i = 1, 2, . . . , r,(6)

E
{
Qi(t)

2 | Qi(0) = mi

}
= mi

(
mi − 1

)
e−2μit + 2mie

−μit
λi + b

μi

(
1− e−μit

)

+

(
λi + b

)2
μ2
i

(
1− e−μit

)2
+mie

−μit +
λi + b

μi

(
1− e−μit

)
,

i = 1, 2, . . . , r,

(7)

E {Qi(t)Qj(t) | Qi(0) = mi,Qj(0) = mj}

= mje
−μjt

{
mie

−μit +
λi + b

μi

(
1− e−μit

)}

+mie
−μit

λj + b

μj

(
1− e−μjt

)
+

b

μi + μj

(
1− e−(μi+μj)t

)
+

(λi + b)(λj + b)

μiμj

(
1− e−μit

)(
1− e−μjt

)
, i �= j, i, j = 1, 2, . . . , r.

(8)
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Now we are in position to check conditions (2)–(4) for the sequence of stochastic
processes ξ(n)(t). First we use expression (6) to evaluate the following conditional ex-
pectation E

{
ξink+1

− x | ξink
= x

}
:

(9)

E
{
ξink+1

− x
∣∣∣ ξink

= x
}

= E

{
ξink+1

− x | Qn
i

(
ntnk

)
=

√
nx+

λi + b

μi

(
1− e−μitnk

)}

= n−1/2

{(√
nx+

λi + b

μi

(
1− e−μitnk

))
e−μiΔtnk +

λi + b

μi
n
(
1− e−μiΔtnk

)}
− x

= −x
(
1− e−μiΔtnk

)
,

where ξink
= ξ

(n)
i (tnk

) and ξink+1
= ξ

(n)
i (tnk+1

).

Then equality (7) implies the uniform boundedness of the second moment of the
process ξ(n)(t),

(10) sup
t∈[0,T ]

E
∣∣∣ξ(n)(t)∣∣∣2 < L0,

since the exponential function is uniformly bounded in the interval [0, T ] and since the
second moment of the number of customers at nodes of the network is finite (recall that
it has the Poisson distribution).

Using (9) and (10) we conclude that

dn−1∑
k=0

E
∣∣−ξink

(
1− e−μiΔtnk

)
+ μiξ

i
nk
Δtnk

∣∣

=

dn−1∑
k=0

E
∣∣ξink

∣∣ (e−μiΔtnk − 1 + μiΔtnk

)
�

dn−1∑
k=0

√
E
(
ξink

)2(
e−μiΔtnk − 1 + μiΔtnk

)

�
√
L0

dn−1∑
k=0

(
e−μiΔtnk − 1 + μiΔtnk

)
=

√
L0dn

(
e−μi

1
dn − 1 + μi

1

dn

)
−−−−→
n→∞

0.

The latter relation proves condition (2) for the process ξ(n)(t). Using the explicit ex-
pressions (7) and (8) for the second moments one can similarly check conditions (3)
and (4).

The convergence of the process ξ(n)(t) in the uniform topology in the case of a network
is similar to that in the case of a single system M/M/∞ (see [12, p. 158]). This indeed
is the case, since

(11) P
{∣∣∣ξ(n)(t)− ξ(n)(t1)

∣∣∣ � ε,
∣∣∣ξ(n)(t)− ξ(n)(t2)

∣∣∣ � ε
}
� 1

ε2r
(
H(t2)−H(t1)

)2α
for t1 � t � t2, t1, t2, t ∈ [0, T ], n � 1, γ = 2, α = 3

4 , ε > 0, and H(t) = ct. Theorem 1 is
proved. �

Theorem 1 allows one to use functionals of a diffusion process when evaluating func-
tionals of a compound jump service process. This is the case, for example, in the problem
of evaluating the total profit of the service of customers in a stochastic network.
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3. Stochastic networks of the type [G |M |∞]
r
. Transient mode

More complex models of multi-channel networks are considered in this section. We
assume that the network consists of r service nodes. Customers arrive at an ith node at
times τ

(i)
k , k = 1, 2, . . . , and let νi(t) be the total number of customers arriving at the

system during the interval [0, t]. Each of the r nodes is a multi-channel queueing system
and each of them begins servicing a customer immediately after its arrival. The service
time for a node i has an exponential distribution with parameter μi, i = 1, 2, . . . , r.
The traffic inside the network is described by the routing matrix P = ‖pij‖r1. For every
i = 1, 2, . . . , r, the number pir+1 = 1 −

∑r
j=1 pij means the probability of exit from the

network for a customer whose service is completed by the node i.
We view the service process in a [G|M |∞]r network as an r-dimensional process,

Q′(t) = (Q1(t), . . . , Qr(t)), t ≥ 0,

where Qi(t) denotes the total number of customers in the node i at time t.
Our main aim is to study the service process Q(t) in an overloaded mode.The over-

loaded mode means that the parameters of the network depend on n (the number of a
series) in such a way that conditions 1) and 2) of Section 2 hold and the input flow is
close to a Brownian motion. More precisely,

3) there exist constants λi ≥ 0, i = 1, 2, . . . , r, such that λ1 + · · ·+ λr �= 0 and

n−1/2
(
ν
(n)
1 (nt)− λ1nt, . . . , ν

(n)
r (nt)− λrnt

)
U
=⇒
n→∞

W (t)′ =
(
W1(t), . . . ,Wr(t)

)
,

where W (t) is an r-dimensional Brownian motion with zero mean, EW (1) = 0,
and correlation matrix

EW (1)W ′(1) = σ2 = ‖σ2
ij‖r1.

Here the symbol
U
=⇒ stands for the weak convergence in the uniform topology.

Note that all other parameters of the [G|M |∞]r network do not depend on n.
We consider the sequence of stochastic processes

ξ(n)(t) = n−1/2
(
Q(n)(nt)− nq(t)

)
, t ≥ 0,

for an open [G|M |∞]r network, where q′(t) = (q1(t), . . . , qr(t)) = (θ/μ)′(I − P (t)) and(
θ
/
μ
)′

=
(
θ1
/
μ1, . . . , θr

/
μr

)
. Here

θ′ =
(
θ1, . . . , θr

)
= λ′(I − P

)−1

is a solution of the balance equation for the [G|M |∞]r network, λ′ =
(
λ1, . . . , λr

)
,

P (t) = ‖pij(t)‖r1 = exp [Δ(μ)(P − I)t] ,

and Δ(μ) = ‖δijμi‖r1 is a diagonal matrix.
We introduce two independent Gaussian stochastic processes

ξ(1)
′
(t) =

(
ξ
(1)
1 (t), . . . , ξ(1)r (t)

)
and ξ(2)

′
(t) =

(
ξ
(2)
1 (t), . . . , ξ(2)r (t)

)
to construct the limit process for the sequence ξ(n)(t).

The process ξ(1)(t) is determined by its mean values

E ξ(1)(t) = 0
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and correlation matrix

R(1)(t) = E ξ(1)(t)ξ(1)
′
(t)− E ξ(1)(t)E ξ(1)

′
(t) =

∫ 1

0

P ′(u)σ2P (u) du,

P (1)(s, t) = E ξ(1)(s)ξ(1)(t)− E ξ(1)(s)E ξ(1)
′
(t) = R(1)(s)P (t− s), s > t.

The process ξ(2)(t) is such that

E ξ(2)(t) = 0,

R(2)(t) =
r∑

m=1

λm

∫ 1

0

(
Δ[pm(u)]− pm(u)p′m(u)

)
du,

R(2)(s, t) = R(2)(s)P (t− s), s < t,

where p′m(u) =
(
pm1(u), . . . , pmr(u)

)
is the mth row of the matrix P (u), while

Δ[pm(u)] = ‖pmi(u)δij‖r1
is a diagonal matrix.

The process ξ(1)(t) + ξ(2)(t) describes the asymptotic behavior of the sequence of
stochastic processes ξ(n)(t).

Theorem 2. Let conditions 1)–3) of Section 2 hold for a stochastic network of the
type [G|M |∞]

r
. Assume that the spectral radius of the routing matrix P is strictly less

than 1. Then the sequence of stochastic processes ξ(n)(t) weakly converges as n → ∞ in
the uniform topology to ξ(1)(t) + ξ(2)(t) on every finite interval [0, T ].

The convergence of finite-dimensional distributions is a corollary of the following two
auxiliary results.

Lemma 1. The finite-dimensional distributions of
∫ 1

0
dW ′(u)P (t−u) coincide with those

of the Gaussian process ξ(1)(t).

Lemma 1 follows directly from properties of stochastic integrals (see, for example, [9]
concerning the appropriate properties of a stochastic integral).

Note that the trajectory of a customer arriving at a [G|M |∞]r network through a
node m can be described by the Markov chain η(m)(t) ∈ {1, 2, . . . , r, r + 1}, t ≥ 0, with
the infinitesimal matrix ‖qij‖r+1

1 ,

qij =

⎧⎪⎨
⎪⎩
−μi(1− pii), i = j = 1, 2, . . . , r,

μipij , i �= j, i = 1, 2, . . . , r, j = 1, 2, . . . , r, r + 1,

0, i = r + 1, j = 1, 2, . . . , r, r + 1.

The initial distribution of the Markov chain is given by

P
(
η(m)(0) = i

)
= δmi, i = 1, 2, . . . , r + 1.

We associate an r-dimensional indicator process

χ(m)(t) =
(
χ
(m)
1 (t), . . . , χ(m)

r (t)
)′

, t ≥ 0, m = 1, . . . , r,

to the Markov chain η(m)(t) as follows:

χ(m)(t) =

{
ej , η(m)(t) = j, j = 1, . . . , r,

e0, η(m)(t) = r + 1,

where ej is an r-dimensional vector whose jth component is equal to 1, while all others
are equal to 0; e0 is the zero r-dimensional vector.
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Given a positive natural number N and

z(j) =
(
z1(j), . . . , zr(j)

)′
, j = 1, 2, . . . , N,

∣∣z(j)∣∣ ≤ 1,

the joint generating function of the random vectors χ(m)(t1), . . . , χ
(m)(tN ), 0 < t1 <

· · · < tN , is denoted by Φ =
(
Φ(1), . . . ,Φ(r)

)′
and let

Φ(m) = Φ(m)
(
t1, . . . , tN , z(1), . . . , z(N)

)
.

Lemma 2. Given N = 1, 2, . . . and 0 < t1 < · · · < tN ,

(12) Φ = 1 +
N∑
j=1

P (Δt1)Δ [z(1)] · · ·P (Δtj−1)Δ [z(j − 1)]P (Δtj)(z(j)− 1),

where 1 is the r-dimensional vector whose components are equal to 1, Δti = ti − ti−1

(t0 = 0), and

Δ[z(i)] = ‖zk(i)δkm‖r1
is a diagonal matrix.

The proof of equality (12) uses the induction with respect to the parameter N .
In addition to the convergence of finite-dimensional distributions, one can prove that

(13) lim
Δ→∞

lim
n→∞

P
(
ωΔ(ξ

(n)) > δ
)
= 0

for all δ > 0, where

ωΔ(x) = sup
|t−u|≤Δ
0≤t,u≤T

∣∣x(t)− x(u)
∣∣.

The proof of (13) uses condition 3) and is based on the representation of the service
process as the sum of indicators χm(·) defined on the trajectory of the input flow.

Also one can check that the limit Gaussian process in Theorem 2 is a diffusion.
The Markov property for Gaussian processes in the one-dimensional case can be de-

rived from the corresponding criteria (see [10, p. 115]). The principal condition of the
criteria is given in terms of covariances and is close to the characteristic property of the
exponential function. This property is rather easy to check. The case of a higher dimen-
sion is more complicated, since there is no such criteria in this case. However sufficient
conditions are obtained in [11] for Gaussian processes to possess the Markov property in
the multi-dimensional case. Using these conditions we obtain the following result.

Corollary 1. If the spectral radius of the routing matrix P is strictly less than 1, then
the limit Gaussian process ξ(1)(t) + ξ(2)(t) is an r-dimensional diffusion with the drift
vector A(x) = Q′x and diffusion matrix

B(t) = Δ [q′(t)Q]−Q′Δ [q(t)]−Δ [q(t)]Q+ σ2,

where Q = Δ(μ)(P − I) and Δ(x) is the diagonal matrix whose principal diagonal is
constituted by the vector x.

Now the diffusion approximation can be obtained from Theorem 2. Note however that
it contains more information concerning the structure of the limit process. The first term
ξ(1)(t) is related to the fluctuations of the input flow, while the second one, ξ(2)(t), to
those of the service time at nodes of the network.
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4. [G|M |∞]
r
networks in a quasistationary mode

In this section, we use condition

4) Q
(n)
i (0) =

[
nθi

/
μi +

√
nη0i

]
, i = 1, 2, . . . , r, η0 = (η01 , . . . , η

0
r ) ∈ R

r

instead of 2) and study the sequence of stochastic processes

η(n)(t) = n−1/2
(
Q(n)(nt)− nθ/μ

)
, n ≥ 1.

If condition 4) holds, then the process η(n)(t) is functioning in a quasistationary mode
and this changes some properties of the limit process.

To approximate η(n)(t), we consider one more Gaussian stochastic process ξ(3)(t) which
is independent of ξ(1)(t) and ξ(2)(t) and is determined by the vector of mean values

E ξ(3)(t) = P ′(t)η0

and correlation matrix

R(3)(t) = Δ
[
(θ
/
μ)′P (t)

]
− P ′(t)Δ(θ

/
μ)P (t),

R(3)(s, t) = R(3)(s)P (t− s), s < t.

The quasistationary mode is approximated by a sum of Gaussian processes in the
following way.

Theorem 3. Assume that conditions 1), 3), and 4) hold for a [G|M |∞]
r
stochastic

network. If the spectral radius of the routing matrix P is strictly less than 1, then the
sequence of stochastic processes η(n)(t), n ≥ 1, weakly converges as n → ∞ to ξ(1)(t) +
ξ(2)(t) + ξ(3)(t) in the uniform topology on an arbitrary finite interval [0, T ].

The extra term ξ(3)(t) in the limit process is explained by fluctuations of the service
time of the customers that are in the nodes of the network at the initial time.

The limit process ξ(1)(t) + ξ(2)(t) + ξ(3)(t) can be represented as a diffusion.

Corollary 2. If the spectral radius of the routing matrix P is strictly less than 1, then the
limit Gaussian process ξ(1)(t) + ξ(2)(t) + ξ(3)(t) is an r-dimensional Ornstein–Uhlenbeck
diffusion process η(t), η(0) = η0, with the drift vector A(x) = Q′x and diffusion matrix
B = Δ(θ)(I − P ) + (I − P ′)Δ(θ)−Δ(λ) + σ2.

Note that Theorems 2 and 3 generalize the results on the diffusion approximation
for multi-channel networks obtained in [12], since there is no restriction imposed on the
input flow in Theorems 2 and 3.

5. Concluding remarks

Theorem 3 and Corollary 2 deal with the overloaded quasistationary mode, since con-
dition 4) is used rather than condition 2). The initial distribution of the limit process η(t)
is degenerate since η(0) = η0 with probability one and does not coincide with the sta-
tionary distribution of an Ornstein–Uhlenbeck process. Therefore the limit process η(t)
is functioning in the transient mode in view of the approximation of the quasistationary
mode.

The components of the routing matrix do not depend on the series parameter n in the
case under consideration. If one omits this restriction and puts

P = Pn = P0 + n−1Bo +
(
n−1

)
,

where P0 =
∥∥δαβP (α)

∥∥r0
1

and P (α) =
∥∥p(α)ij

∥∥
i,j∈Iα

are nondecomposable stochastic ma-

trices, then the phenomenon of the merging of nodes of the initial network can be seen.
In other words, r → r0, r0 � r. The nodes of the subset Iα are merged in a node with
the number α.
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