
Teor�� �Imov�r. ta Matem. Statist. Theor. Probability and Math. Statist.
Vip. 97, 2017 No. 97, 2018, Pages 201–209

https://doi.org/10.1090/tpms/1057
Article electronically published on February 21, 2019

ACCURACY AND RELIABILITY

OF A MODEL OF AN ISOTROPIC AND HOMOGENEOUS

GAUSSIAN RANDOM FIELD IN THE SPACE C(T)

N. V. TROSHKI

Abstract. The accuracy and reliability of a model of an isotropic homogeneous
random field are studied in the space C(T).

1. Introduction

Computer simulation is developing along with the development of computer tech-
nologies. Numerical simulation of stochastic processes and random fields is widely used
nowadays in various fields of natural and social science, in particular in meteorology,
radio engineering, sociology, and financial mathematics, as well as in testing different
technical systems. Computer simulation became an effective tool allowing one to under-
stand the essence of natural phenomena and to predict consequences of human activity
and its impact on the environment.

A variety of methods for simulation of stochastic processes and random fields were
developed by Mikhăılov and his collaborators [12]–[16]. G. O. Mikh̆ılov, in particular,
proposed the method of partition and randomization of the spectrum, the most popular
method of simulation for stationary processes. A no less significant contribution to the
development of methods of simulation was done by M. I. Yadrenko and his students [17,
18, 22–24].

The question about the accuracy and reliability of a model and the rate of approxi-
mation of a stochastic process or random field in various metrics is as important as the
question of simulation itself. This question has been studied by Yu. V. Kozachenko and
his students (see [4–8, 11]).

A mean-square continuous real-valued isotropic homogeneous Gaussian random field
in R

2 is studied in the current paper. Like the papers [11, 20, 21], a model for such a
field is constructed by using a modified method of partition and randomization of the
spectrum. In doing so we apply the representation of an isotropic and homogeneous
random field proposed by M. I. Yadrenko in his monograph [23].

This paper is a continuation of [19]. One of the main results of the current paper is
a bound for the probability of deviations in the uniform metric between a field and its
model in a compact set T. More precisely, we find a bound for the probability

P

{
sup

(t,x)∈T

∣∣∣X(t, x)− X̂(t, x)
∣∣∣ > ε

}
,
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where X(t, x), (t, x) ∈ R
2, is a random field and X̂(t, x) is its model. The bound for the

distribution of the deviation between a field and its model in the space C(T) is derived
from the corresponding bounds obtained in the paper [19]. In addition, the accuracy and
reliability of the model are studied in the current paper.

The paper is organized as follows. Main results of the paper are described in Sec-
tion 1. Section 2 contains necessary definitions and auxiliary results of the theory of
sub-Gaussian random variables. Some results of the papers [19] are also given in Sec-
tion 2. A bound for the probability of the deviation between an isotropic homogeneous
random field and its model is found in Section 3. In addition, the reliability and accuracy
of the model in the space C(T) are also studied in Section 3. Section 4 summarizes the
main results of the paper.

2. Auxiliary notions and results

Definition 2.1 ([1]). A random variable χ is called sub-Gaussian if there exists a con-
stant a ≥ 0 such that

E exp{λχ} ≤ exp

{
a2λ2

2

}
for all λ ∈ R.

The space of all sub-Gaussian random variables defined in a standard probability space
{Ω,B,P} is denoted by Sub(Ω). Note that Sub(Ω) is a Banach space with respect to the

norm τ (χ) = supλ �=0

[
2 lnE exp{λχ}/λ2

]1/2
.

Definition 2.2 ([1]). A random field X = {X(u, v), u ∈ R, v ∈ R} is called sub-Gaussian
if X(u, v) ∈ Sub(Ω) for all u, v ∈ R and supu,v∈R

τ (X(u, v)) < ∞.

Definition 2.3 ([23]). A random field X = {X(z), z ∈ R
2} is called homogeneous in the

wide sense in R
2 if EX(z) = const, z ∈ R

2, and

EX(z)X(w) = B(z − w) =

∫
R2

ei(λ,z−w) dF (λ), z, w ∈ R
2.

Definition 2.4 ([23]). Let SO(2) denote the group of rotations in R
2 about the origin.

A homogeneous random field X(z), z ∈ R
2, is called isotropic if

EX(z)X(w) = EX(gz)X(gw)

for all elements g of the group SO(2) and for all z, w ∈ R
2.

Let X = {X(u, v), u ∈ R, v ∈ R} be a mean-square continuous real-valued isotropic
homogeneous Gaussian random field in R

2. We assume that EX(u, v) = 0. Similarly to
the case of a complex-valued random field (see [23]) one can easily obtain a representation
of the field X(t, x) with (t, x) the polar coordinates, that is, t ∈ R

+ and x ∈ [0, 2π].
Namely

(1) X(t, x) =
∞∑
k=1

cos(kx)

∫ ∞

0

Jk(tλ) dη1,k(λ) +
∞∑
k=1

sin(kx)

∫ ∞

0

Jk(tλ) dη2,k(λ),

where ηi,k(λ), i = 1, 2, k = 1, 2, . . . , are independent Gaussian processes with indepen-
dent increments, E ηi,k(λ) = 0, E(ηi,k(b) − ηi,k(c))

2 = F (b) − F (c), b > c, F (λ) is the
spectral function of the field, and Jk(u) =

1
π

∫ π

0
cos(kϕ−u sinϕ) dϕ is the Bessel function

of the first kind, k = 1, 2, . . . .
Consider a partition L = {λ0, . . . , λN} of the set [0,∞) such that λ0 = 0, λl < λl+1,

λN−1 = Λ, λN = ∞, and C = max0<l≤N−2 λl+1/λl < ∞.



ACCURACY AND RELIABILITY OF A MODEL OF A GAUSSIAN RANDOM FIELD 203

Then

(2) X̂(t, x) =
M∑
k=1

cos(kx)
N−1∑
l=0

η1,k,lJk(tζl) +
M∑
k=1

sin(kx)
N−1∑
l=0

η2,k,lJk(tζl)

is treated as a model of the field X(t, x), where ηi,k,l =
∫ λl+1

λl
dηi,k(λ), i = 1, 2, and ηi,k,l

are independent Gaussian random variables such that E ηi,k,l = 0, E η2i,k,l = F (λl+1) −
F (λl) = b2l , b

2
l > 0, and ζl, l = 0, . . . , N − 2, are independent random variables that

do not depend on ηi,k,l and are distributed in the intervals [λl, λl+1] according to the
distribution functions

Fl(λ) = P{ζl < λ} =
F (λ)− F (λl)

F (λl+1)− F (λl)
,

ζN−1 = Λ. If b2l = 0, then ζl = 0 with probability one. For simplicity we suppose that
b2l > 0, l = 0, 1, . . . , N − 1.

It is shown in the paper [20] that X̂(t, x) and X(t, x) − X̂(t, x) are sub-Gaussian
random fields.

Put

(3) χM (t, x) = X(t, x)− X̂(t, x), 0 ≤ t ≤ T, 0 ≤ x ≤ 2π,

and let

σ0 = sup
0≤t≤T

0≤x≤2π

τ
(
χM (t, x)

)
and

σ(h) = sup
|t−s|≤h
|x−y|≤h

τ
(
χM (t, x)− χM (s, y)

)
,

where 0 ≤ t, s ≤ T and 0 ≤ x, y ≤ 2π.

Proposition 2.1 ([19]). Let X(t, x) and X̂(t, x) be defined in (1) and (2), respectively.
Assume that a partition L = {λ0, . . . , λN} of the set [0,∞) is such that λl < λl+1 and
λl+1 − λl =

Λ
N−1 , l = 0, . . . , N − 2. If∫ ∞

0

λ2α dF (λ) < ∞

for some 1
2 < α ≤ 1, then

σ0 ≤
[
42(1−α)+1T 2απ2αM

2α− 1

(
2α− 1

M2α−1

)(
Λ

N − 1

)2α

×
(
F (Λ) +

(
3T

2

)2α ∫ Λ

0

λ2α dF (λ)

)
+ 8M2

(
F (+∞)− F (Λ)

)
+
22(1−α)+1T 2απ2α

(2α− 1)M2α−1

∫ ∞

0

λ2α dF (λ)

] 1
2

.

Proposition 2.2 ([19]). Let X(t, x) and X̂(t, x) be defined in (1) and (2), respectively,
and let

σ(h) = sup
|t−s|≤h
|x−y|≤h

τ
(
χM (t, x)− χM (s, y)

)
,



204 N. V. TROSHKI

where χM (t, x) is given by (3). Assume that a partition L = {λ0, . . . , λN} of the interval
[0,∞) is such that λl < λl+1 and λl+1 − λl =

Λ
N−1 . If∫ ∞

0

λ2ν dF (λ) < ∞

for some ν > 1
2 , then

σ(h) ≤ C1(
ln
(
1
h + 1

))δ ,
where

(4)

C1 =

[
2 · 42(2−α)

(
δ

α

)2δ (π
2

)2α M

2α− 1

(
2α− 1

M2α−1

)(
Λ

N − 1

)2α

×
(
F (Λ) +

[(
3T

4

)2α

+ (1 + 2α+1)T 2α +

(
3T 2Λ

2

)2α
]∫ Λ

0

λ2α dF (λ)

)

+ 9 · 44−2αM2

(
δ

α

)2δ (∫ ∞

Λ

|λ− Λ|2α dF (λ) + 22αΛ2α
(
F (+∞)− F (Λ)

))
+ 44−2αT 2απ2αM

(
M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

)(
Λ

N − 1

)2α

×
(
F (Λ) +

(
3T

2

)2α ∫ Λ

0

λ2α dF (λ)

)

+ 16M(F (+∞)− F (Λ))

M∑
k=1

(
ln
(
k2 + eδ

))2δ
+

43−2απ2α

(2α− 1)M2α−1

×
((

δ

α

)2δ ∫ ∞

0

λ2α dF (λ) + (2T )2α
(
δ

β

)2δ ∫ ∞

0

λ2ν dF (λ)

)

+ 24−αT 2απ2α

∫ ∞

0

λ2α dF (λ)
∞∑

k=M+1

(
ln
(
k2 + eδ

))2δ
k2α

] 1
2

,

1
2 < α ≤ 1, α

δ ≤ 1, δ > 0, and 0 < β ≤ 1.

Definition 2.5. Let T = {0 ≤ t ≤ T, 0 ≤ x ≤ 2π}. We say that a random field X̂(t, x)
approximates a Gaussian field X(t, x) with reliability 1 − γ, 0 < γ < 1, and accuracy
q > 0 in the space C(T) if there exists a partition L such that

P

{
sup
t∈T

∣∣∣X(t, x)− X̂(t, x)
∣∣∣ > q

}
≤ γ.

Theorem 2.1. Let R
2, T = {t = (t1, t2) : 0 ≤ ti ≤ T, i = 1, 2}, T > 0, d(t, s) =

max1≤i≤2 |ti − si|, and X = {X(t), t ∈ T} be a sub-Gaussian random field. Assume that
supd(t,s)≤h τ

(
X(t)−X(s)

)
≤ σ(h), where σ(h) is a continuous decreasing function such

that σ(h) → 0 as h → 0 and∫ ε0

0

√
−1

2
ln
(
σ(−1)(ε)

)
dε < ∞,

where ε0 = supt∈T

(
E|X(t)|2

)1/2
< ∞ and σ(−1)(ε) denotes the inverse function to σ(ε).
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Then

P

{
sup
t∈T

|X(t)| > u

}
≤ 2Ã(u, θ)

for all 0 < θ < 1 and u > 2˜I(θε0)
θ(1−θ) , where

Ã(u, θ) = exp

{
− 1

2ε20

(
u(1− θ)− 2

θ
Ĩ(θε0)

)2
}
,

Ĩ(v) =

∫ v

0

(
2 ln

(
T

2σ(−1)(ε)
+ 1

)) 1
2

dε.

Theorem 2.1 is a particular case of Theorem 8 of [10] (also see [9]).

3. Mainstream

Theorem 3.1. Let a model X̂(t, x) be constructed from a partition L such that q >
2˜I(θε0)
θ(1−θ) , 0 < θ < 1, and

2 exp

{
− 1

2ε20

(
q(1− θ)− 2

θ
Ĩ(θε0)

)2
}

≤ γ,

where ε0 = sup0≤t≤T τ (χM (t, x)) = σ0 and χM (t, x) is defined by (3). Further let

Ĩ(θε0) ≤ Î(θε0), where

Î(θε0) =

∫ θε0

0

√√√√2 ln

(
T

2

(
exp

{(
C1

ε

)1/δ
}

− 1

)
+ 1

)
dε,

C1 is defined by (4), T > 2π, 1
2 < α ≤ 1, α

δ ≤ 1, δ > 0, 0 < β ≤ 1, and ν > 1
2 .

Then the model X̂(t, x) approximates the Gaussian random field X(t, x) with reliability
1− γ, 0 < γ < 1, and accuracy q > 0 in the space C(T).

Proof. According to Theorem 2.1

P

{
sup
t∈T

|χM (t, x)| > q

}
≤ 2 exp

{
− 1

2ε20

(
q(1− θ)− 2

θ
Ĩ(θε0)

)2
}

for q > 2˜I(θε0)
θ(1−θ) , 0 < θ < 1, where

Ĩ(θε0) =

∫ θε0

0

(
2 ln

(
T

2σ(−1)(ε)
+ 1

)) 1
2

dε, σ(h) = sup
|t−s|≤h
|x−y|≤h

τ
(
χM (t, x)− χM (s, y)

)
.

Proposition 2.2 with σ(h) implies

σ(−1)(h) =
1

exp
{(

C1

h

)1/δ}− 1
,

where 1
2 < α ≤ 1, α

δ ≤ 1, δ > 0, 0 < β ≤ 1, ν > 1
2 , and C1 is defined by (4). Then

Ĩ(θε0) ≤
∫ θε0

0

√√√√2 ln

(
T

2

(
exp

{(
C1

ε

)1/δ
}

− 1

)
+ 1

)
dε = Î(θε0)

and Î(θε0) can be arbitrarily small with a certain choice of parameters M , Λ, and N .
More precisely, given an accuracy and reliability we choose M in such a way that the
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fifth and sixth terms in (4) are arbitrarily small. Then using this value of M we choose Λ
such that the second and fourth terms in (4) are arbitrarily small. Finally, with M and
Λ fixed as above we choose N such that the first and third terms in (4) are arbitrarily
small. Note that not only is C1 arbitrarily small for M , Λ, and N chosen above but also
ε0 defined in Proposition 2.1 is arbitrarily small. This means that there exists a partition
L such that

2 exp

{
− 1

2ε20

(
q(1− θ)− 2

θ
Ĩ(θε0)

)2
}

≤ γ.

This together with Definition 2.5 implies that the model X̂(t, x) constructed above ap-
proximates the field X(t, x) with reliability 1− γ, 0 < γ < 1, and accuracy q > 0 in the
space C(T). �

Example. For an isotropic homogeneous Gaussian random field consider a model X̂(t, x)
constructed according to equality (2). Put

F (λ) =

{
1− 1

λ4 , if λ ≥ 1,

0, if λ < 1.

Now we estimate the constants C1 and ε0. Represent both constants as sums of three
terms as follows:

C1 = (CI + CII + CIII)
1
2 ,

where

CI =
43−2απ2α

(2α− 1)M2α−1

((
δ

α

)2δ ∫ ∞

0

λ2α dF (λ) + (2T )2α
(
δ

β

)2δ ∫ ∞

0

λ2ν dF (λ)

)

+ 24−αT 2απ2α

∫ ∞

0

λ2α dF (λ)
∞∑

k=M+1

(
ln
(
k2 + eδ

))2δ
k2α

,

CII = 9 · 44−2αM2

(
δ

α

)2δ (∫ ∞

Λ

|λ− Λ|2α dF (λ) + 22αΛ2α
(
F (+∞)− F (Λ)

))

+ 16M
(
F (+∞)− F (Λ)

) M∑
k=1

(
ln
(
k2 + eδ

))2δ
,

CIII = 2 · 42(2−α)

(
δ

α

)2δ (π
2

)2α M

2α− 1

(
2α− 1

M2α−1

)(
Λ

N − 1

)2α

×
(
F (Λ) +

[(
3T

4

)2α

+ (1 + 2α+1)T 2α +

(
3T 2Λ

2

)2α
]∫ Λ

0

λ2α dF (λ)

)

+ 44−2αT 2απ2αM

(
M∑
k=1

(
ln
(
k2 + eδ

))2δ
k2α

)(
Λ

N − 1

)2α

×
(
F (Λ) +

(
3T

2

)2α ∫ Λ

0

λ2αdF (λ)

)
,

and

ε0 = (εI + εII + εIII)
1
2 .
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Here

εI =
22(1−α)+1T 2απ2α

(2α− 1)M2α−1

∫ ∞

0

λ2α dF (λ),

εII = 8M2
(
F (+∞)− F (Λ)

)
,

εIII =
42(1−α)+1T 2απ2αM

2α− 1

(
2α− 1

M2α−1

)(
Λ

N − 1

)2α

×
(
F (Λ) +

(
3T

2

)2α ∫ Λ

0

λ2α dF (λ)

)
.

Choose α = 1, β = 1
2 , δ = 1, ν = 3

2 , and T = 1. After simple algebra we obtain

CI =
784π2

3M
+ 16π2

∞∑
k=M+1

(
ln(k2 + e)

)2
k2

,

CII =
336M2

Λ2
+

16M

Λ4

M∑
k=1

(
ln
(
k2 + e

))2
,

CIII = 8π2(2M − 1)

(
Λ

N − 1

)2(
9

2
Λ2 − 89

8Λ2
− 1

Λ4
+

61

8

)
+ 16π2M

(
Λ

N − 1

)(
11

2
− 9

2Λ2
− 1

Λ4

) M∑
k=1

(
ln
(
k2 + e

))2
k2

.

Now we fix particular values of the accuracy and reliability for a model that approxi-
mates the field. Namely q = 0.06 and 1 − γ = 0.99. Also let θ = 1

2 . Then Theorem 3.1
implies

2 exp

{
− 1

2ε20

(
0.06 · 1

2
− 4Î

(ε0
2

))2
}

≤ 0.01,

where

Î
(ε0
2

)
=

∫ ε0
2

0

√
2 ln

(
1

2

(
exp

{(
C1

ε

)}
− 1

)
+ 1

)
dε

=

∫ ε0
2

0

√
2 ln

(
1

2
exp

{
C1

ε

}
+

1

2

)
dε,

that is,

2 exp

⎧⎨⎩− 1

2ε20

(
0.03− 4

∫ ε0
2

0

√
2 ln

(
1

2
exp

{
C1

ε

}
+

1

2

)
dε

)2
⎫⎬⎭ ≤ 0.01.

One can check numerically that the latter inequality holds if Ĉ1 = 15.79 and ε̂0 = 0.97.
In other words,

(CI + CII + CIII)
1
2 ≤ Ĉ1

and

(εI + εII + εIII)
1
2 ≤ ε̂0.

Without loss of generality assume that

CI ≤ Ĉ2
1/3, CII ≤ Ĉ2

1/3, CIII ≤ Ĉ2
1/3
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and

εI ≤ ε̂20/3, εII ≤ ε̂20/3, εIII ≤ ε̂20/3.

Solving the inequalities for CI and εI with respect to M we find two values of M , say
M1 and M2. Then we choose M = max{M1,M2}. With this value of M we solve the
inequalities for CII and εII with respect to Λ. As Λ we take the maximal solution of
these inequalities. Substituting M and Λ just found in the inequalities for CIII and εIII
we evaluate N in a similar fashion.

Using an appropriate software one can easily solve the inequalities mentioned above
and find values of all parameters of interest. Then one can construct the corresponding
model for an isotropic homogeneous Gaussian random field.

4. Concluding remarks

This paper is a continuation of research initiated in [19]. In the current paper, bounds
are found for the deviation between an isotropic and homogeneous random field and its
model in the metric of the space C(T). These bounds allow us to study the accuracy
and reliability of the model constructed according to a modified method of partition and
randomization of the spectrum.
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[16] G. A. Mikhăılov and A. V. Voytishek, Numerical Statistical Modeling, “Akademia”, Moscow, 2006.

(Russian)
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