
ON  THE ORDER OF  LINEAR  HOMOGENEOUS GROUPS*

BY

H.   F. BLICHFELDT

The different types of finite groups of linear homogeneous substitutions in

two and three variables have been enumerated by Klein, Gordan, C. Jordan

and Valentiner. The different types of such groups in two variables were

determined by Klein! through geometrical considerations ; GordanJ made the

problem depend upon that of finding the different solutions of the equation

1 + cos <px + cos cj>2 + cos cf>3 = 0, <f>x, <f>2, <p3 being rational angles. Jordan §

and Valentiner ¡| constructed certain fundamental equations involving the

orders of the different types of groups in three variables, which equations would

furnish a finite number of groups only.

Jordan then attempted to employ his method in enumerating all the groups

in four variables, If but found the complete discussion of his fundamental equa-

tion well nigh impossible. Even in the case of three variables the work was a

formidable one, as shown by the fact that two simple groups of orders 168 and

360 respectively escaped his notice.

It may, therefore, not be amiss to give some general theorems of a simple

nature bearing on the order of the linear homogeneous groups in n variables.

In particular, limits are found to the number of different primes dividing the

order of the " primitive groups."

The following explanation of technical terms and phrases used will be neces-

sary. Any substitution S of a linear homogeneous group H of finite order in

ft variables xx, x2, ■ ■ ■, ay will be of the form

x'i = a.xxx + ai2x2+-(- a.nxn (*=1, 2, •••, »).

We shall say the group is of degree n.

* Presented to the Society (San Francisco), April 25, 1903, under a different title. Received

for publication June 15, 1903.
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If it is possible to choose new variables yx,y2, ■ ■ ■, yn, where

Vi = Kxi + Kx3 +•■■ + Kxn. (i = l, 2, •• -, »),

auch that all the substitutions of H are of the form

y'i = a{xVx + aav* + ■■■ + aimym (<=1, ». •■•,«; »<«),

Vi ""ßj.m+xVm+X + ßi,m+2ym+2 +-H ßj.nV»     (j=m + l,m + 2, ■•'■,«),

we shall say that the group H is intransitive, otherwise the group is said to be

■transitive.*

A transitive group is said to be imprimitive, if the variables of the group

can be so selected that they fall in systems of m each, m <»i, of such a nature

that any substitution of the group will transform all the variables of any one

system into linear functions of the variables of the same or another system. If

the variables of a transitive group cannot be so selected, the group is said to be

primitive.

It has been proved in several waysf that the variables may be so chosen that

& substitution S of finite period can be thrown into canonical form :

x'i = a.xi (¿ = l, 2, •••,»),

in which case the constants ai, called the multipliers of the substitution, are

certain roots of unity. In fact, if k is the least integer for which the equation

ak = 1 is satisfied by aL, a2, ■ ■ ■, an, then is k the order of the above substitu-

tion.    If a, = a2 = . ■ • = an, the substitution is called a similarity-substitution.

Now, it may be possible so to choose the variables that all the substitutions of

of a group H have the canonical form. In such an event we shall say that the

group is written in canonical form. A group that can be written in canonical

form is plainly abelian, i. e., its substitutions are permutable, and it is intransi-

tive, if n > 1.

Since every group considered is linear and homogeneous, we shall, as a rule,

dispense with the adjectives " linear " and " homogeneous " with reference to a

group.

Theorem I.     Every abelian group can be written in canonical form. %

* Maschke has used the word "intransitive" with the meaning given here. See Mathe-

matische Annalen, vol. 52 (1899), p. 363.

fSee Moore, An Universal Invariant for Finite Groups of Linear Substitutions, etc., Mathe-

matische Annalen, vol. 50 (1898), p. 215, for proof and references.

X Burnside, Proceedings London Mathematical Society (1898), p. 331; L. E.

Dickson, these Transactions (1902), pp. 292-293.
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Theorem II. If a group H has a self-conjugate subgroup G which is

abelian and whose substitutions are not all similarity-substitutions, the group

H is intransitive or imprimitive.

By a proper choice of the variables xx, x2, ■ ■ •, xn, the group G will be writ-

ten in canonical form (Theorem I). Suppose, if G be so written, its substitu-

tions have the form

' ' ' Q ' fí ' '
X,   —  Ci.t/, ,    Xn  ~~  (^Xq ,    X.,   ——  pJXç ,    X,   ———  ¡*jX. ,    ^c   ——  yx. ,     *  • ' ,    .</     - m )

where no two of the multipliers a, ß, y, ■ ■ ■, k are equal for every substitution

of G.    Then are the expressions

^l XX    '    ^2*^2 '    ^3 XS +  ^i Xi '    ^*5 X5 '    ' ' ' '    *^nXn)

a,, a., • • ■ being arbitrary constant, relative invariants of G.

Now, since G is self-conjugate in H, any substitution of H will transform

the system of invariants just given into another such system, say

bxxx + b2x2, 63a53 + 64a;4, 65cc5, •••, bnxn.

This substitution will therefore transform the variables xx, x2 into linear func-

tions of themselves or into linear functions of x3, x4 or any other set of two let-

ters that constitute the variables of an invariant of G. It is readily seen that

the group H is intransitive or imprimitive.

§2.

Theorem III. If the order h of a group H in n variables is paqb ■ ■ •,

where p, q, ■ ■ ■ are primes each greater- than n, then must H be abelian.

The theorem is self-evident for n = 1. Assume the theorem true for all

groups of the kind considered in less than n variables, to prove it true for any

such group in n variables.

We may restrict ourselves to the case of groups whose substitutions have the

determinant 1. For it is plain that if the group of substitutions of determinant

1 obtained from any group H m the manner indicated in Weber's Algebra, II,

2d edition, pp. 188-189, is abelian, the group //will be abelian.

Let us therefore consider a group G of linear substitutions of determinant 1.

Let the order of G be p"1 qbl ■ ■ ■ ; p, q, ■ ■ ■ being primes each greater than n,

the degree of G. It is evident that this group can contain no similarity-sub-

stitutions except the identical substitution.

If G is non-abelian, all of its subgroups may be abelian, or it must contain

at least one non-abelian subgroup all of whose subgroups are abelian. Let G'

be such a non-abelian group, of order |/'2 qhl ■ ■ ■. ■   Groups of this character have
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been studied by G. A. Miller and H. C. Moreno,* who proved that they are

composite.

It follows (Theorem IT) that G' is intransitive or imprimitive. In any event,

it is plain that the group generated by the n ! th powers of the substitutions of

G' is intransitive. The group so generated is, however, the group G' itself,

the order of this being prime to »I.

The groups obtained from G' by selecting its different systems of transitivity

are, by assumption, abelian. This must, therefore, also be the case with G',

contrary to the supposition as to the nature of G'. Thus G must be abelian,

and therefore also ZZ.

§3-

In the proof of the next theorem the following lemma is used :

Lemma. Let E = 0 be an equation, the left-hand member of which is the

sum of certain roots of unity. If the factors of the indices of these roots

are powers of primes p, q, r, • ■ •, the exponents of these powers being less

than a + l,ô + l,c + l,---, respectively, then we may write each of the

roots considered in the form :

aAßByc---afißfiy?-.^

where alf ßt, yx, ■ ■ ■ are, respectively, primitive roots of the equations

0" - 1 = 0, 6" - 1 = 0, 0r - 1 = 0, • • -,

and where a, ß, y, ■ • ■, are, respectively, primitive roots of the equations

6"" — 1 = 0, 05" — 1 = 0, 6r" — 1 = 0, ....    Moreover, the numbers

A, R, G, ■ ■ ■, Al, Z>j, Cj, • • •

may be so chosen that A <.pa~l, AY <.p; R < a6-1, Rx < q; etc.

Xow, let the terms of E be so written, and let us substitute the arbitrary

letters x,y, z, ■■■ for a, ß, y, •••, and x,, yx, z,, •■• for a1? /31( y,, ■ •-,

calling the resulting expression E'.    If then we replace the powers

Vi ' y i ' ■ ■ ■ ' y i   > zi' z] ' ' ' ' ' zi   '

by the numbers +1,0, — 1 in any manner such that we get

1+2/1 + 2/Î+--- +2/r1 = 0> l + z, + z2+ ••• + ^-l = 0,...,

and if we replace xx, x, y, z, ■ ■ ■ and their powers by + 1, the resulting value

of E' will be an integer = 0 (mod.p).

*Non-abelian Groups in which every Subgroup is Abelian, these Transactions, vol. 4 (1903),

pp. 398-404.
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The first part of this lemma is evident. To prove the second part we need

the following theorem due to Kronecker * : if p is a prime and a any integer,

the expression X = 1 + xpa~l + x2p"1 + ■ ■ ■ + x(-p~i)pa~l can not be decomposed

into factors of lower degree in x, whose coefficients are rational functions of

a primitive root of unity, unless the exponent of this root is divisible by p.

It follows from this theorem that if the coefficients c. in the function

f(x) = S0^' are sums of roots of unity, whose indices are prime to p, and if

f(a) = 0, where a is a primitive root of the equation 6pa — 1 = 0, then \sf(x)

divisible by X. Moreover, we readily see that if we write f=fi +_/'2 +f3 + • • •,

where fk consists of all of the terms of X) cix% f°r which the exponents i will

give the same remainder rk ( mod. pa~x ), then must every expression fk be divi-

sible by X. j

It follows that if the coefficients c, , of the functiont)3

pa-l—\ p—X

f(x,xx)=  £   2><ii«'a>i
i=0    ¿=0

are sums of roots of unity whose indices are prime to p, and if f(a, ax) = 0,

where a and ax are, respectively, primitive roots of 0P° — 1 = 0, 0P — 1 = 0,

then is f(x, xx) divisible by 1 + xx + x\ + • • • + xpx~l, and the quotient is free

from xx. From this again it follows that we can write the expression E' of the

lemma in the form

E' = (1 + xx + x\ + ■ ■ ■ + xp~l ) Ex + (1 + yx + y\ + • • • + y\~' ) E2

+ (l + zx + z\+ ...-x-z\-1)E3+ •••,

where the expressions Ei are integral functions of x, y, z, • ■ •, xx, yx, zx,

with integral coefficients.    In addition, Ex is free from xx, E2 from yx, E3 from

zx, etc.    The truth of the second part of the lemma is seen immediately.

§4-

Theorem IV. In any group H of degree n, all the substitutions whose

orders are divisible by no prime less than (n — 1)(2«+1) +1 form a sub-

group.

In any substitution T of finite period, say

(1) x\ = aiXxx + ai2x2 +-V a.nxn (< = 1,8, •••,»),

the sum of the multipliers (which, as remarked above, are certain roots of unity),

* Mémoire sur les facteurs irréductibles de l'expression x" — 1, Journal d e Mathématiques

pures et appliquées, t. 19 (1854), p. 178.

fThis argument is given by GoEDAN : lieber endliche Gruppen, etc., Mathematische

Annalen, vol. 12 (1877), pp. 29-30.
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is equal to an + a.n + • ■ • + ann, as they are the roots of the characteristic

equation of T.*    We shall call this sum the weight of the substitution T.

Now, let S and T be any two substitutions of a group H in n variables, and

let the orders of S and T he p° and p"qb ■ ■ ■ respectively, p, q, • • • being primes

each greater than (n — l)(2n + 1).

Let the variables be chosen in such a manner that S has the canonical form.

Suppose this to be

Xy = ax^, x2 = ax2, x3 = px3, x4 = px4, x5 = yx., • • •, xn = /cxn,

where a=(=/3 + 7+-.- + Ä:.    Let T be of the form (1).

Then if the substitutions

T, ST, S2T, ■■■, S""-XT,

be formed, we will find certain linear relations among their weights.* Indicat-

ing these by (T), (ST), ■■■, (S^T), we have namely,

(2)

(77) = au + a22 + a33+ ■ ■ ■ + ann,

(ST) = aan + aa22 + ßa^ + • • ^+ «„,

(S2T) = a2an + a2a22 + Paa + • • • + K*am,

(S""-1 T) = a""-1 au + a?"-1 a22 + ß^1 aM + • • • + *p.-i

Supposing there are just m different multipliers, a, ß, y, k, in S, we can

eliminate the quantities an + a22, a^ + a4i, ■ ■ ■, ann between m + 1 of the equa-

tions (2), say the first m and the r + 1th, m = r = p" — 1.

The equation thus obtained will be of the form

(3)

(T)

(ST)

(S2T)

a

a2

1

ß

ß2

K

(Sm-'T) Om-l       rym-1

(SrT) a- ßr rf       ...       K"

= (T)A'0 - (ST)A[ + -  - + (-ir(S'T)A'm = 0 ,

say, which equation, it may be noticed, is true for all values of r.

*Jordan, Journal für Mathematik, vol. 84 (1878), p. 112.

tCompare Gordan, Mathematische Annalen, vol.  12 (1877), pp. 23-25 ; Maschke,

ibid., vol. 50 (1898), p. 492.
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As a, ß, y, •. ■ are all different and are p"th roots of unity, the alternant

X ± aß2 ■ • • Km~l is not zero and is plainly a factor of each of the coefficients

A'0, A'x, ■ ■ •. Dividing this factor out, we obtain a typical form of the desired

linear relations

(4)

E=(T)A0-(ST)AX + ... + (-iy-'(S'n-lT)Av

§5.

+ (-l)m(SrT) = 0.

We can apply the lemma of § 3 to the equation (4).    To begin with, let 1 be

substituted for every root of the equation ( 6P° — 1 ) ( 6P" — 1 ) = 0  that may

occur in (4), and   let y, z, be  written for all other roots,

according to the rule laid down in the lemma. If then we substitute 1 for

y,z,- ■ ■ and their powers, and assign to the powers yx,y\,- ■ -, yqx~x, zx, z\ ■ ■ ■, etc.,

the values — 1, 0 or + 1 in any manner such that we get

l+2/i + 2/i+ ••• + 2/r1=0,    etc.,

the left-hand member of (4) becomes an integer = 0 ( mod. p ). Let the result

be written in the form

(5)
B"= [T]B0- [ST]BX+ • ■ • + (-1)~-1[#-1T].B1„

+ (-l)m[SrT] = 0    (moäp),

where Bk is the resulting value of Ak, which contained no other root than those

of 0pv - 1 = 0 and &l - 1 = 0 ; and [S"T~\ that of (SkT).

As each of the weights (SkT) is the sum of n roots of unity, it is easily seen

that the expressions [/S'*/7] must be integers lying between — n and + n

inclusive.

It remains for us to find the number Bk, the resulting value of the coefficient

Ak, which is the ratio of two minors of the determinant (3). In the quotient,

1 is to be substituted for the quantities a, ß, ■ ■ ■, k , which are roots of the

equation 8P" — 1 = 0.

Jacobi has given the value of the determinant of m2 elements

aa ß" ... k"

ab ßb ••• k"

ac    ß"     •••     kc

in the form

JS      H  ,m      a m      a—1

TT TT

m""ô m"" 6-1

TT        TT

TT
m      a—m+l

m      b—m+1

TT

m      c—m+1

1    1

a      ß

a2    ß2
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where mH¡ = 0, if t <C 0 ; mH0 = 1 ; and where mHt, t = 1, represents the sum

of all products of degree t in the m letters a, ß, • • -, k. Substituting 1 for

each of these letters in mHt, t = 1, this becomes

(m +t — 1)!

(m-l)\ t\ =■ mH[,m       t '

say.

Now we easily find

H'      H ,
mam      a—I

H'     H .
mom       b — 1

H'     H' .
mem       c—1

m      a—m+1

m      o—m+1

H   .,
m      c—m+1

lH'a 2H'a-l

XH'h 2H'b-l

lH'c       2H'c-l

H'    +1
m       a—m+1

m       b—m+1

H'
m       c—m+1

1    a    a2

1    b    b2

1    c    c2

o'"

6'" -i-{2!3!...(m-l)!}.

Hence,

^0 =

1    (m-1)2

-h {2!3!---(m-l)!} =
(r — l)(r— 2)--.(r-m+ 1)

^,=

^ =

(m- 1)!

r(r- 2)(r-3).--(r-m + l)

(m-2)! -»•••>

r(r —l)(r —2)-..(r —m + 1)
(fc5=m—1).

(r-¿)(m — k — 1)1 k\

Substituting in (4) and multiplying by (_p — 1 )! (p> m — 1 ) we have

(6)    Pr = { [ T] R0 - [ ST] R, + • • - + ( - 1 )-' [ ff— T]}(p-1)1

= (-l)m [SrT] (mod. p),
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the expression P being an integral function of r with integral coefficients and

of degree m — 1 or less. If the coefficients of r, r2, • • •, rm~l are =0 ( mod. p ),

we must have P„ = Px = • • • = Pm_x ( mod. p ), or

(_1)«-1 IT] = (-1)»-'[Ä7] = ... = (-1)"*-1 [S*-1 T](mod. p).

Accordingly, if [T~\ =^ [-ST] (mod. p), Pr must be an integral function of

r of the first degree at least. Assuming this to be the case, let us substitute in

Pr of (6) the values 0,1, 2, ■ ■ ■, p — 1 for r. This takes a number of differ-

ent values, the remainders of which should all lie between the limits — n and

+ ft inclusive, in order that the congruences (6) may be satisfied. Now, by a

well known theorem, the number of different values (mod. p) of r which, when

substituted in P , will give a definite remainder ( mod. p ), can not exceed the

degree of .P. in r. Accordingly, the total number of different values (mod. p )

of r that could satisfy the congruence (6) can not exceed (m — l)(2n + 1)-

Therefore, as p> (n — 1)( 2ft + 1) = ( ra — 1 ) ( 2ft + 1 ), the congruences (6)

can not be satisfied for all values r under the assumption [T] s^ [/ST] (mod.

p). Thus [T] = [/ST] (mod. p), and as \[T]\ + \[ST]\ m 2n <p,

we must have [T] = [/ST7]. Hence, if p be any prime greater thhn

(n — 1 )(2ft + 1), the congruences (6) require [T~\ = [/ST].

It follows from this that (ST) can not contain roots of unity having prime

indices different from those of the roots in (T) and (S). For, since the

prime indices p, q, • • ■ of the roots contained in (T) and (S) are each greater

than 2ft + 1, we could otherwise distribute the numbers — 1,0, + 1 in such a

manner among the roots designated above hj yx, zl, • • •, y\, z2, • • •, etc., that

the value of [T~\ becomes w, and so that the value of [/ST] becomes less than

ft numerically.

Accordingly, if the order of T is the product of powers of primes each greater

than (n — l)(2n + 1), and the order of S is a power of a prime p greater

than (ft — l)(2ft + l), the order of ST must be a product of powers of primes

each greater than (ft — l)(2ft+ 1). Then, by a well-known theorem concern-

ing the resolution of any substitution into a product of substitutions of the form

S, we see the truth of Theorem IV.

It may be remarked that the limit considered in this theorem, (ft — 1 ) ( 2ft + 1 ),

is, in general, higher than necessary (see § 6). The analysis just given leads to

this question : what is the smallest number Tn = (» — l)(2ft + 1) such that no

function exists of the form P = arn~l + brn~2 + ■ ■ ■ + 4 of degree not less than

1 and with integral coefficients, whose remainders (mod. p),p being any given

prime greater than rn, will not all lie between — n and + n inclusive? The

answer given above, rn == (ft — 1 )(2n + 1) is that most readily found, but is,

as remarked, unnecessarily high in general.
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From Theorems HI and IV it follows that all the substitutions whose orders

are products of powers of primes each greater than (n — l)(2n -\- 1) form an

abelian subgroup of the group H, which is evidently self-con jugate in H.

§6-

We shall now consider more particularly the groups of degrees 3, 4, 5 and 6.

We shall restrict ourselves to groups whose substitutions are of determinant 1,

in which case none of the substitutions except identity considered in Theorem IV

can be similarity-substitutions.    We can therefore employ Theorem II directly.

Concerning the groups in three variables.

As remarked above, the limit (n — 1 )(2n + 1 ) can, in general be reduced.

For n = 3 the reduction depends upon the solution of the following problem :

what is the least number r3 such that for any prime p > t3 no function exists of

the form ar2 + br + c =^ c(mod. p), a, b, c being integers, all of whose

remainders ( mod. p ) lie between — 3 and + 3 inclusive ? By trying in turn

all the primes less than 14 \_ = (n — l)(2n + 1)~\ we find that t3 must be 7 at

least, but need not be higher.    Accordingly, we have the

Theorem V. The order of a primitive group in three variables has the

prime factors 2, 3, 5 and 7 only.

Concerning the groups in four and five variables.

Here we have to find if functions

ar3 + br2 + cr + d ^ d, ar* + br3 + cr2 + oV + e ^ e ( mod. p ),

exist, all of whose remainders lie between — 4 and + 4, — 5 and + 5 (limits

included), respectively. In the first case, no such function exists if p is a prime

greater than 13, and no function of the second form exists for a primep greater

than 19.    Hence

Theorem IV. The order of a primitive group in four variables is di-

visible by no prime greater than 13. The order of a primitive group in five

variables is divisible by no prime greater than 19.

Concerning groups in six variables.

The limit is here found to be 23.* An exception occurs in the case of

p = 31. The function r5 has the remainders (mod. 31) 0, ± 1, ± 5, ± 6 .

By a more detailed study of the possible forms of the quantities \_SkT^¡ (§ 5)

* The limit may be 19 for n = 6. The author has not considered whether functions may exist

of the form ar5 + br1 + cr3 + dr2 + er +/all of whose remainders (mod. 23) lie between —6 and

+ 6 inclusive.
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it is found, however, that if one of these numbers can be + 5, another may be

put equal to 4 or 3 by a proper distribution of the numbers — 1,0, +1 among

the roots indicated in § 5 by yt, z,, ■ • •, y\, z\, ■ ■ ■, etc. As the remainders of

r5 ought to be the numbers [¿S^Z1], we may exclude the prime/» = 31.

Theorem VII. Ihe order of a primitive group in six variables is divisible

by no prime greater than 23.

The orders of imprimitive and intransitive groups do not, of course, obey

these laws. But such groups are, in general, of a simpler type. Thus, the

imprimitive groups in three variables are of the type

x'x = ax.,    x'2 = bxj,    x'3 = cxk, (i,j, fc = l, 2, 3);

the constants a, b, c being certain roots of unity and different for the different

substitutions.

Again, either an imprimitive group in four variables has the type

x[ = ax,., x'2 = bXj, x'3 = cxk, x4 = dxt,    (i,j, k, 1=1, 2, 3, 4) ;

or else its substitutions can be divided into two sets of the following types :

x[ = ax3 + bx4,    x'2 = cx3 + dx4,    x'3 = axx + ßx2,    x'4 = yxx + 8x2 ;

x[ = a'xx + b'x2,    x'2 = c'xx + d'x2,    x'3 — a'x3 + ß'x4,    x'4 = y'x3 + 8'x4.

The construction of such a group would depend upon the construction of the

primitive groups in two variables.

In the same way the construction of the imprimitive groups in six variables

would depend upon the construction of'the primitive groups in two and three

variables.

Stanford University,

June, 1903.


