ON NILPOTENT ALGEBRAS*

BY

JAMES BYRNIE SHAW
Part I. INTRODUCTION.

BeNsaMIN PEIRCE first pointed outt that with respect to any idempotent
basis i of an algebra all its numbers may-be divided into four classes (11), (12),
(21), (22) characterized by the following multiplicative relations:

i(11) = (11) = (11)3; i(12) = (12), (12)i=0;
i(22)=0=(22)i; i(21)=0, (21)i=(21);

Then these classes give when multiplied into each other the results shown in the

following table :
11 12 21 22

1111 12 0 0
121 0 0 11 12
21121 22 0 O
22| 0 0 21 22

that is, (¢'2")(g"%")is (¢'k") or 0 according as A’ is or is not the same as g".
Each class forms a sub-algebra of the algebra, the class (11) containing the
idempotent basis. The class (22) may or may not contain an idempotent. If
(11) contains two distinct idempotents, the process may be repeated, giving
classes which we may represent by (11), (12), (13), (21), (22), (23), (31), (32),
(83), with the analogous multiplication table. = This division can be carried on
in the same manner, giving multiplication tables of the form of perfect quad-
rates. The process stops when all independent idempotents have been found
and isolated, so that every class on the main diagonal contains at most one idem-
potent, and otherwise only nilpotents. The classes not appearing on the main
diagonal contain skew numbers only, and their squares vanish. Some of the

* Presented to the Society (Chicago) January 2, 1903. Received for publication Mhy 30, 1903.
t Linear Associative Algebra, American Journal of Mathematics, vol. 4 (1884), p. 111.
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classes on the main diagonal may contain no idempotent, in which case all the
numbers of the class are nilpotent. The problem of determining the skew num-
bers is simple, and easily solved when the direct numbers of the classes (11),
(22) - -- (kk) are known. Thus the basal problem of linear associative algebra
is to determine all nilpotent algebras. With these at hand we may build up
algebras of any type by combining the nilpotent algebras and adding the proper
skew units. The present paper is devoted to the consideration of this basal
problem.

In part II, it is shown that in a canonical form, the units of any nilpotent
algebra are expressible in the forms,

ip iza isa Tty isoa j, ilj, i2j9 R} iso—rjy jza iljza tt

where j”=0. In this order, the product of any two units is expressible
linearly in terms of units which follow both factors. Second, it is shown that
a set of units homologous to the units ¢, 4,, -- -, 7, may be chosen, which form

a sub-algebra, the products being isomorphic with the produects of 4, i, -- - i,,
so far as concerns terms involving only i, i,, ---, 4,. This sub-algebra is the
base, the unit j being adjoined to this base. From any base an increasing
system of nilpotent algebras may be determined, each algebra in turn yielding
others. Finally, in part III, certain applications are given to exemplify the
method.

Parr II.

§ 1. It has been shown in a previous paper * that any linear associative
algebra can be brought to a form in which we may express any number thus:

¢ = 2 aﬁk 7\%,
with the following conditions:
(1) for any given value of k, i =1, --.,8,;7=1, ..., 8;

) %

(8) the number k is called the weight of the term to which it is attached ;
also, for A’s that have the subscripts ¢ and j equal, there is in each case a maxi-
mum weight, called the multiplicity of the \’s corresponding, and represented
by p, for the terms A, ; thus the terms A, are Ao, Ay, Mgy - ooy Ay, 3 We
have then for A, , k= 0, and p, > k> p, — p, — 1;

(4) finally

I

= > .
8§, =8, = 8p;

X"jk . xc"j’k’ = Osﬁ, x\'j’k-’-k"

where 8, = 0if i’ 4 j, 8, = 1if i'=j; and furtherif p, >k + k'> p, — p, — 1,
c=1, whileif tk+ % = p,c=0.

* Theory of linear associative algebra, Transactions of the American Mathematical
Society, vol. 4 (1903), pp. 251-287. This paper is cited hereafter as Theory.
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(6) The numbers ¢ satisfy an equation which consists of factors of determi-
nant form, of orders w,, w,, ---, w, These numbers are the widths of the
factors, and w_ represents the number of multiplicities of a certain value u ,
which are equal. The factor corresponding is a determinant of order w,,
affected with the exponent .. The equation is then

— " .. ”’

@; 50 b, @i 4109 @ w10 4
s 1qs A’ s —_ ¢ ceea,

H i,+12,0 9 3,414,410 ’ i1t pt+w,—10 _ O
Qw1300 Yitw,—14,09 v G it w—10 ¢

(r=wypy + - W ppr—i; r=1,2,---€).

The degree of this equation is the degree of the algebra.
It is also evident that if » is the order of the algebra

Wy + Wy, + oW p,=n or n+1,

according as we have or have not a modulus. When the factors are all linear
the algebra is non-quaternionic in SCHEFFERS’s notation, of type (1,1, ---, 1)
in the nomenclature used here ; when there is a factor of determinant order two,
it is guaternionic, or of type (2, --.), and so for higher types.* The equation
of the algebra determines some of the wunits that define the algebra, but in
general there will be units not determined by the equation. If we cut out of
the algebra the units which are determined by the characteristic equation, those
which are left must form a nilpotent algebra, and for every number of such
algebra we have ¢ =0, (m =n + 1).

It was further shown, 1. c., p. 275 that if we operate by ¢ on a certain set of
n units which define the domain of the algebra, indicated by

¢’u, 4’21» ] ¢ao1a ¢12a ¢’227 Tty ¢'3,2a Tttty tt ity ¢1M_¢ww,’ (m>uy->p),

then
¢¢.; = an’o¢1j + a2i0¢2j + -t alil¢1j+l + -+ ali2¢lj+2 + -

In the nilpotent algebra, ¢, is an idempotent modulus which is used simply to
enable us to express the units in a matricular form. We may choose the nota-
tion so that e, = 0 if j = i.

§ 2. Since only for ¢ = ¢,, does ¢ ¢ contain ¢, from the equation last given ;
since ¢, ¢, contains ¢, whatever i and j are, and since from the formation of

* Cf. with reference to this paper and the preceding: E. CARTAN : Les Groupes Bilinéaires et les
Systemes de Nombres Complexes, Annales de la Faculté des Sciences de Toulouse,
- vol. 12 (1898), pp. 81-99.
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the original matrical forms for the study of associative algebras,* there is a
modulus, in the algebra of order » + 1, therefore ¢, is this modulus, and
therefore ¢y, = Ao + Mgy + Nggo + -+ - Aguo+  The algebra with ¢, has the
equation

(¢ —z,,)"=0 (m=n+1).
The nilpotent algebra formed by the omission of ¢  has the equation
¢"=0 (m=n41).

§3. Now because ¢,, is the modulus

¢’U¢'u = auo¢’u + azlo‘l’m + a111¢’12 +o 4+ a112¢’13 +oee= ¢ii'

Therefore
a, =1, and @, =0 if s4j—1.

ij—1
¢’4j = 7\'1;—1 + ¢:j

and ¢o:j has no constituent of the form @, 2 ,. Obviously no number ¢ of the
algebra contains a multiple of ¢,,.

Hence

§4. It follows at once from the form of ¢, that since A, | must occur in

i1j—1
one number at least, and since
)‘uj—l A= )‘du"
therefore

¢, b1, = b4, + other terms possibly.

But these other terms could arise only from the presence in ¢ of terms having
the form A ,, and there are none such, by the equation above. Hence

¢'q §b1'2 = ¢’q+1 .

Therefore the » units of the algebra are expressed completely by the non-van-
ishing products in the list :

¢'21»¢319 N ] ¢a013 ¢12a ¢21¢‘12a R ] ¢301¢12; ‘ﬁza ¢21¢¥2’ *

§ 5. If we express ¢,,, ¢y, - -, P, 5 in terms of the A’s, there will be certain
terms of weight zero, others of a greater weight. If all those whose weight
exceeds zero be cut off from these expressions, it is obvious that the expressions
left, which we may represent by ¢,9, $s195 - -5 Py10, form a nilpotent algebra of
order sy, — 1. By choosing the coefficients properly, it is evident from the form
of the expression of the general number of such algebra, ¢, that this nilpotent
algebra may be made to be any nilpotent algebra of order s,— 1. Hence,
by adjoining to any nilpotent algebra of order s, —1, an additional unit,
"% Theory, p. 254, § 2.
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b1z =0, and also annexing to the product of any two units, ¢,,, ¢,,,
terms of the form ag, -¢], (which is equivalent to changing ¢, into ¢, ¢,,
into ¢,), we arrive at a new nilpotent algebra of a higher order, the order
depending on the nuimber of non-vanishing products ¢, ¢;,. The original
algebra we call the base. It is primary when it is not derivable from any
lower base. The only primary algebras are those of the form

¢12’ 12’ Tty :3_ ’ ¢‘°—0

These algebras are all of those whose order equals the degree less one.
The adjunction is most simply shown by an example. Suppose the base is
the algebra composed of 7, j, where i = j, *= 0. This takes the form

=Py = Nyyo + Mgyp» J = bg0= Ay

The adjoined unit ¢, will then give us, to fix our ideas, for all nilpotent alge-
bras of order four, on this base, the frames :*

(@) b= ayry, () &= ay,Ny,
F. Gy Agy0 F Tyo Mgy + @yoAg10 + Ty ey
+ @M+ G Mg + My
F By Mgy F By M + @M F G My
In (a), T =y = Ngyp F Aggy + @Ay + BNy,

j=¢31 3xo+a7\'121+bx
k= ¢12 = My + Ay
l= 4’21 ) ¢1z = )"211

We now have &* = A, + @\, + aX,, + bA,,, =4 + ok + bl, and o' =0,
a(c—1)+ ' =0. )
In (3), b=y = Ayyg + Mgy + Gy,

j = ¢31 = sw + b)‘m’
k= ¢'12 = Ay + gy
l= ?2 =My

We have, therefore, & =X, + o\, =j+ al, b= 0, ki=cl.
It is to be observed that if

95.'10 ’ 4’710 a¢k10 +a ¢I/10 ]

* Theory, p. 275, § 1.
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we may have

¢, ¢'j1 =ad,+ &by + oo+ 0Py b+ - Fody b+

§ 6. We can reduce the multiplication table of any given nilpotent algebra
to this canonical form by choosing as the first unit ¢, say, any one of the num-
bers, preferably that one which has the highest power that does not vanish.
Let its successive powers be the next units, €2, €3, -... We may now choose
from the remaining independent numbers one such that its product into ¢, shall
be free from powers of ¢, say ¢,, )

€6, =€,
and

€€, =¢,,
etc. A third may be so chosen, and so on, until the domain is exhausted. This
will give the column of products of ¢, by each unit, in a canonical form, and the
number ¢, may be taken as ¢,. The others are then

¢21’ ¢21¢12’ Tt
¢31’ ‘1’314’12’

Thus, let the algebra be PEIRCE’s (u,)

i 7 k l m
N % o 0 !
il & 0 0o 0 0
El 0 0 0 0 0
I k 0 0 0 k
m|j+rl (L+7r)k 0 rk j+k+(2r—1)1

rP=—1, P—r+1=0.

Put m'=m — (1 4 r)i,7=rl —rj; then the first column is
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According to the general principles worked out in the preceding paper,* the
algebra must be a form of

D = Gy Mg + O My F o Mgy F By Mgy F By Myt B Mgyt By Mgt Bigg Mgy s
In fact,

o= & =Ny — 1 Ny — Ay,
?2" i =7\.112—(1+7’)7\m.

12

1189
=" =Ny + (7 = 1)y — (1 = 7) Ny + Ny
bu = I = Mgy + A
Whence M= Nyyg — ™Ay + Npgs + (1 + 7)Ay, s

= —r"N + N — 72

123°

In any case, it is obvious that we may take any number as adjunct. It and
its powers being removed from the domain, the remaining part of the domain
can be represented by ¢, , ¢, b,y P P2, - - Py, Py, - We then select
as base, ¢, by, - - differing from ¢, , ¢,, - only in the fact that their
products do not contain the terms ¢, ¢, -+, ¢, ¢,,, ---. This base must then
be expressed in the form (which is always possible and feasible),

a210 A'210

+ By Ngyg Ty Rsag
+ .
F B0 Moo T B Maggo F *** F Bagao1.0 Msgso—10°

§ 7. Another theorem is necessary to complete this statement of the possible
forms of nilpotent numbers.

It is obvious from the A forms, (since no one of them can be of the form
) that, if we choose any n — 1 independent numbers (defining the field), say

¢1a ¢2s Tty P

¢T¢‘ (r=1---n—1;8=1---n—1),

llf’

the products

are expressible in terms of at most n — 2 independent numbers, let us say in

terms of n —1 — A,.

*Cf. especially pp. 275-276, § 1.
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The products ¢_¢, must then form an algebra of » — 1 — A units. Let that
part of the domain of the original algebra which is excluded from this sub-
algebra; be defined by the numbers

€ €y -0y € e
Let the sub-algebra be denoted by
{¢"}
Then ee,={¢},
i. e., the product of any two units ¢/ is in the sub-algebra which excludes the
units €.
All triple products ¢_¢, ¢, also form a sub-algebra of at most n —1 — 2, — 1

units, say n — 1 — h, — A,. Let the domain of {¢’’} excluded from this sub-
algebra {¢'"’} be defined by

re ’ ’
€, ,ez 9 °° "y GM.

Then we have the equations
e;{¢l/} = {¢I”}’ {¢II}€; —_ {¢I/’}’
e: e: —_ e/l ¢I” }’ e; e:l _— { ¢III }’ e:l e; —_ { ¢/I/ }.

We may so continue separating the field into classes of units, which give the
table below, wherein »
(€)=C(es &0 -5 €,)s

(€)= (&' &'y s €),
(&) () (&)

(&) [{87) 187} {47)

(€)|{8") {47}

(&) (¢}

As a corollary * we may say that any nilpotent algebra may be written so that
its table is

1 2 3 i n—2 a-—1
1 |(2:-n—1) (8--.n—1) (4---n—1) ..- (n—1) 0
2 |(8--m—1) (4--n—1) ... 0 0
E} (4---n—1)
n—2| (n—1) 0
n—1 0 0

* CARTAN, loo. cit., pp. 13-33.
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A further corollary: If the order is =, then for any n + 1 numbers of the

algebra,
bbby b =0.
Consequently, in the ¢ notation,

¢2l ¢31 tte ¢‘m1 ¢1z 4’21 ¢12
¢21 (4’31'”) (¢41) (4’12"') (4’214’12”’) (4’314’12"')
4?31 (4’41)
";ml (¢12)

¢12 (¢21 <1’12 o )
‘l’zlfi’;z (¢31 4’12 e )

This is equivalent to the statement that for any term A, occurring in the repre-
sentation of ¢, - ¢{,, we must have

@) k=,
and
@) i>g, if  k=t,
®) 1=y, only when k>t.

For instance, if the frame is

210

310 320

410 420 430
111 121

211 221

311 321

112 122 132 142

then the possible forms are
¢, = (210) + a,,,(820) + a,,,(420) + a,,(430)
+ a,,,(121) + a,,, (221) + a,,,(321)
+ a,,,(122) + a,,,(132) + a,,,(142)
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= (310) + a,,,(420) + a;,(430) + -
_(410)+am(121)+
= (111) + a,, (221) + - --
by b= (211) + a},, (321) + @}, (122) + am(182) + a¥, (142),
¢ b, = (311) + a},,(122) + af,,(132) + a],,(142),

¢, = (112). ,
Sincer ¢?, = [(111) + a,5:(221) + - -- 1 = (112) + ay,; a;,; (122) it fol-
lows that a;,; = 0 or a;,; = 0, etc.

We are enabled to reduce the possible forms quite rapidly.

§ 8. It shonld also be remarked that the base is itself subject to the same
laws as any other nilpotent algebra, and may be expressed in the same general
forms.

Parr III. ApPLICATIONS.

§ 1. As the first application of the preceding theory, let us consider all nil-
potent algebras for which the degree = order = n.
There must then be at least one expression ¢ for which

¢9 ¢2’ ¢3’ "‘9‘ ¢”_l9

are all independent and do not vanish. Let this expression be ¢, then the
other unit gives a base of the form
¢21

¢21 0
Hence the form of all such algebras is given by

by = Ayo + Ay $ip =My + 0Ny
We need to note that
¢p = ahy,, = a3, $n b, =0, b Pn = b3z
These results agree with PEIRCE.*
§ 2. We can extend the applications by considering next the class of all nil-

potent algebras for which degree = order —1 =n—1.
The base may be of order one or order two.

*American Journal of Mathematics, vol. 4 (1884), p. 116.
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If the base is of order two, there are two cases, since the two units may com-
bine in two ways. These two algebras are of the formst corresponding to the
two equations

=0, and ¢*=0.

In the first case the algebra is

bras b1,
In the second case it is ¢,,, ¢,,. The base has the indefinite form
210
310 320
and (1) ¢,=210 4320, 2, =310.
(2) ¢,=23810, ¢, = 210.

The first case is represented by the forms
by =NgpoF+ Ny + ANy, + DN, s
Pl =y =N+ o\, .+ O,
‘ bo=ANu+ Ay o+ AN, ,,
b= 0=y¢,-

Since Db = chn_z +dh,,_,=cdiz? + A,
therefore d=0, ¢,b,=0.
In a table, these results would appear as follows:
DA R P A N
7 2 0@ ... 0 e 0
2|8 ¢ ... 0 0 0
210 0 0 0 o
Jjl10o 0 0 7 0
710 0 0 0 0

In the second case,

4’21 = 7\210 + a)‘lzn—z + bXISn—2’
¢31 = 7‘310 + A, + dxl&n—2’

=N+ gy + S Mg s
tAmerican Journal of Mathematics, vol. 4 (1884), p. 121.
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Therefore,
¢;, = adi;?, ¢ =déy?, by by =0 =y by,

¢xz 4’21 = e¢:2—2 ’ ¢12 4’31 =f ¢T2_2 .
Tabulated, we have

R T N S D
i e o8 @ 0 e fir-
& |8 # 0 0 0
1}3 if A 0 0 0
#20 0 0 0 0 0
i lo o o 0 0 0
E |0 0 o 0 0 0

If the base i3 of order one,
Go =Ny + ANy, + DN, Ny,
N WA Ty 10 W S W
PPy =N,, + a'0N,, .
From these equations,
Pl =ary, + b, s+, , + abh,, ;.

This must be equal to a¢, ¢, + bdi;* + el
‘We have to consider separately the cases n =4 and n = 6. Let us suppose
n>5; then

Ay + 0N s+ Ny, GDN,, = ady, + BN, 4 oAy, + ad’bA, .
Hence ab(a’ —1) =0. Again,
Fubu =0 Ny + 0Ny g+ Ny abN,
=a' (A, + a'bNy,, )+ 0 e+ e

therefore
a’b=ab'.

Combining this with the preceding, we have
ab=0, if a=0;
ab' =0, if b=0;
b=ab’, if a'=1.
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The sub-cases are,
(1) a=0=0>, giving ¢, =A,, + A\, _,.
(2) a=0=a’'giving ¢,=X\, + 0N, o+ Ny sy Pu=NAyo+ DNy, s+ Ny,
B) b=0=0', giving ¢, =N\, +a' Ny + Ny sy Py =Nyo + Gy, + CApy, .
4)d'=1, b= ab/, giving
Pu=An+ Ay + 0N, o+,
b =Ayo+ ANy + ab'N,_, + Ay, .
When n =4, we have
Do = Mgy + ANy, + DN, + Ny,
bu=2A, + @ Ny + ¢ Ny,
$u b= Ao + 0D,
PP =0 A+ A+ A, =a' (A, + a'DA,) + ¢,

Therefore,
b(a"+1)(a’—1)=0,

4’:1 = al,, + bxm + cAyp + ab)"m
=a(Ngy + @O0 ) + 0( Ny + @' Ny + ¢'Nyg) + Ay

Therefore,
aa’d 4 b’ = ab, ba' =0, b=0.
Hence .
by =Ny + a, g =
b= A “17"221 + c'xm =
b= Mo
¢12¢21 = a'?\.m + clxm’
or
T i J Ji
il 0 aljitc? 0
210 0 0 0
Jli 0 aji+eci® O
Jilo o0 0 0

This type embraces a number of forms.*

* See PEIRCE’S I, n,, 04, D¢+ sy 74, loc. cil.
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When n =5, we have

Bar = Ngp + gy + DNy + Oy

¢12 =M\ + amzzl + 0 )"Izz +c Apgss
G Pro = Ny + @'ON s

¢§1 = ah,, + bx’uz + A+ ab)tm,,
=a(Nyy + @By ) + B( Ny + B Ny + @' Nygg) + Ayge
Therefore,

aa’b + bb" + a'bb’ = ab.
Again, :
G = @' Ny + B Ny + €N+ DNy + @ Ny
=a" (A, + @BN) + B (N, + D Ny + @'DN ) + ¢ Nygge
Therefore,
a’b 4+ 4+ a b =b+ab.
1) Ifs=0,
b'z(a' +1)=ab".

(1,) If also 3’ = 0, both equations are satisfied. [Case 5,].
1) Ifd 40,0 (a" +1)=a. [Caseb,].
"+1

) IEb+0,a0' +5 +ab —a=0,0ra=b 7,

@) a +£1, b (a +1)=(1—a')(a’ —1)b + b*(a’ + 1), hence
@ +1=0,orea"=—1,anda=0. [Caseb,].

(2) Ifa"=1,00"=0,8=0. [Caseb,].

We have then the following cases :

ifa 1.

5,
] b, = Ayyo + ANy, + Ay,
b =Ny + @' Ny + Ny
5, Paba =P
’ by = Mgy + 5(@ + 1) Ay + Ay
b= A + @ Ny + BNy + Ay,
5 by Pro = Npy -

4’21 = Ay + bxm + Ay
¢’12 =NMn— 7"221 + blxm + c')\m,
¢21 ¢12 = 7\'211 - bxlza‘
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4’21 = leo + “7\2}1 + bxlzz + cxlzs’
¢12 =My + Ay + clhm’
4’21 4’12 = Ay + bxms'

Or*if ¢, =i, ¢, =7,

5li @ # 5 ji o by @ @ j i
GlE @ 0 aji4dP 0 i@ P 0 dji4bAted b
2@ 00 0 0 2@ 00 (a+1)F® 0
#1000 0 0 0 00 0 0
ilii 0 0 gGite® 0 jlji 0 0 (¢ +1)bjite® 0
jilo oo o o jilo o o 0 0
5,00 @ @ j i bl @@ i g
il @0 —jitbEteR b® i@ # 0 jitd® 0
2 & 0 0 0 0 2l# 0 0 0 0
#0 0 o0 0 0 20 0 0 0 0
jlii 0 0 Brqer b jlji 0 0 gjidit4od P
jilo o o — b 0 ji0 0 0 bt 0

§ 3. The next case would obviously be that in which

n—3 __
12 —0'

The discussion, however, must be postponed to a later paper. It involves no
special difficulties.

§ 4. The problem of finding all algebras which satisfy a given equation of
degree m, i. e. such that

=0,
is an interesting one. The simplest case is that in which
$=0.

The adjoined unit must be simply A ;,. The base units ¢, will then give either
$: My =0, 0r 1, + 0.

* These four types represent PEIRCE’S f; to avy inclusive.
Trans. Am. Math. Soc. 28
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In the first case

4’.- = xuo + Li + “‘2")7"121 + a(e.‘)xm + R
¢." =N+ L." + a(zi,)xm + a(bi,))"lsl + 0
where L, and L, are the groups of terms in each of the units ¢, ¢, of the

form A, where s > 1.

Hence .
¢ ¢ r = Ls i'10 + LSLS' + a(i")xlll’

b, =LyNyy+ L, L, + af " Ny, -

But for any associative numbers which all satisfy the law ¢*= 0, we must
have

¢.‘¢." + ¢." ¢.' =0.

) 4 i) = () i
a?+ ai” =0, or a)= — a".

Therefore,

In words, ¢, cannot contain @) ;,, unless ¢, contain — aX .

It is evident the adjunction does not change the form of the base units
in any way, unless for every term of weight unity, a) ,, added to ¢,,, we
add — a),, to ¢,,. Hence we have the protess of building up all algebras of
this class, those of order » + 1 from those of order =.

For examples, we have algebras as follows:

Order 1,

=Ny

From (1), order 2,

T=Nygsd =My
From (2), order 3,
(a)’ i=7"210’j 310”0 Mu

(8), t=MX+ary,j= 310_a)'121’k=xlll°

From (3a), order 4,

(@) =Ny d =g b=y s =2,

(B),  i=Nyt+ ahgsJ =Ny — Qs B =Ny L=
(c), i= 7\210 + aklsl + bxm’j = 7"310 - axm + bll’m’

F= gy — Bhyyy — BNy, 1

111°?

Ay — =My

131°?
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From (3b),
(b,)’ i=7\2w+a7‘m9j=)'sw_ahm’ k=7"no' l=7\'1u’
(d)’ i= Ay + @Ay + bxlSl’j = Agyg — @hygy — bxm’ k= Ao l= N

The forms (b) and (b’ ) are essentially the same.
From (4a), order 5,

(a)’ ":=)‘210’.7.=7\310’k=7"

4109 l= )\'510’ m= )‘m'

(8)s A= Nyt Al =Ny B =Ny I =Ry — @Ay, m =N,
( c), i= Ao + alm,j = Ngp + bxm ) ko= 7\'410 - me, l= 7"510 — Ay,
m = xm‘

(d)’ i= Ao + @A + a,)"m’j = 7\'310 + bxm + bl)"wl’

k=g —ang — DNy L= Ny — aryy — b,xl.‘!l’ m=NAy,-
(e)y it=My+arN,+aN +a Ny, j=N+ b0, + 0N, —a'\y,
k=X —aNg, — A, l=N—ar, —b A, ,m=X%,,.
From (43),

() i=N+ o+ DNy, = Agyg — @Ay + Ny =Ny,
l=Ngy— by — Ay, m= A,

(9)’ i= Ay + @y + bxm + Ay J= Ago — By, + d)\'m — Ay
k=2x,,l= Ao — b

4109 121

c)\lss y M= Ay, .
From (4c),
(R), =Ny + ahgy + Dy, J=Ayy — ANy + DN,
=g — b — 0Ny, U=, m=17,.
(2)y  i=Npo+ @y + By + Ny G = Ny — OAy + BN+ dAyy,
=N — 0y — BNy + ey, I=ny ) — Ay — ANy —er,,
m= N,
(7)y  T=Ng+ aNg + DAy + Ay + Ny, + €N,
J=Ngo— Oy + 0Ny + AN + AN — TN,
=Xy — g — Ny + 6N, — ANy — Ny,
l =‘7‘5lo — Ay — dk’m — €Ay

m=2Ay,.
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From 4d,
(k)y = NggF @y + DAy, + Ay + Ny + TNy

j = 7\'310 — QMg — bxm + dxm + d’)’m — Ay
k=X

410 + ehm - c'lm —dx

1319

l= Ao — c”7\'121 - d,xl.'ﬂ — e\

1417

m=Ay.
In the other class, when ¢,¢,, & 0, then
¢i=x€lo+Li+a(2‘l)lel+ -.-+a(;2)7\m+

bib =2 + Mg Lyt o= — b= —ai Ny + e
Therefore,
a,,=—1, a;j=0, i,
Hence
¢12=7"1u_817"221_827\'331”" 81’82’ ~we=1or0.

As before, ¢, contains a) ;,, only if ¢, contains — al, ;.
For example,

t=Ngo+ Agyr»

k=X

410

j = 7"310 - 7"421’

=N — Mgy — Mgy — Mg m=Ay,, =Ny P=2Ny-

Further developments on this line must be deferred. The next problem
would evidently be the determination of the forms for the class of algebras
satisfying the equation ¢* = 0. The construction of algebras with idempotents
from the nilpotent forms is also a large part of the further development.




