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§ 1.  Introduction.

The object of this paper is the study of differential equations possessing cer-

tain properties, later defined, which may be called Sturmian properties, since

they characterize equations first discussed by Sturm in his celebrated Mémoire

sur les équations linéaires du second ordre, in the first volume of Liouville's

Journal. This memoir of Sturm's is chiefly devoted to the study of the

equation

¿[jr(.fx)^5f^]+e'(.,x)y(.,x)-o,

with a few slightly more general forms. At the close of the article he refers

briefly to the fact that these results were first obtained by the use of equations

in finite differences of the second order, but none of this work was ever pub-

lished, f owing probably to the fact that at that time it was impossible to treat

the subject with sufficient rigor by this method. In the present state of analysis

Sturm's original method may easily be placed on a satisfactory basis as regards

rigor, and it is found to possess certain marked advantages, due to the ease with

which recurrent relations satisfying the necessary conditions are set up, and to

the possibility of generalizing much of the work. Sturm's famous theorem in

regard to the location of the real roots of an equation is only a result of the

application of this general method to polynomials.

In order to establish on a rigorous basis the method of finite differences, use

will be made of a recent theorem ^ of Painlévé and Picard in regard to the

Cauchy-Lipschitz proof of the existence of a solution of a differential equation.

* Presented to the Society at the Boston meeting August 31-September 1, 1903. Received

for publication August 10, 1903.

t A partial reconstruction of the original method of Storm, with proofs of several of the Stur-

mian theorems, was published in the Annals of Mathematics, January, 1902, by M. B.

Porter.

X This theorem has reference to the uniformity of the convergence of the Cauchy algorithm

and to the interval of the convergence of the resulting solution.    See p. 432.
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After recalling some familiar definitions and theorems of which use will be

made, a method will be developed by which recurrent relations of the required

character are constructed. Some properties of the functions which satisfy these

relations will then be established, and it will be shown that these same properties

characterize the differential equations, to which under certain conditions the

recurrent relations lead.

§ 2.   Preliminary Definitions and Statements.

Sturmían Sequence. A sequence of functions, y0(X), yx(X) • • • yn(X),

may be called Sturmian when the number of real roots of y,fX) lying between

any two real values of the argument X is a function of the number of variations

in the signs of the sequence lost or gained as X increases between these two

values.

The functional relation here employed is that in general use, viz., the num-

ber of real roots between any two real values of X is equal to the difference

between the number of variations of the sequence for these two values of X.

In order that a sequence may be Sturmian in this special sense the following

conditions are sufficient :

I. 1. 2/0(X) does not vanish throughout the interval considered.

2. Two consecutive functions cannot vanish for the same value of X.

3. When an intermediate function vanishes, the two adjacent functions

have unlike signs.

II. y„(X) and yn_x(X) have unlike signs just before yn(X) vanishes, and

like signs just after. A sufficient condition to secure this property is the

following :

dXLyn-x(X)jynW=0

Remark. In case the functions have no derivatives, let it be possible to

write 2/„(X) in the vicinity of the point a, at which it vanishes, in the form

yn(X) = (X-a)T(X),

where T( X ) is continuous and does not vanish for X = a.    We then have

y»(x)    ix   a)nx)

an expression which must be finite for values of A. in the vicinity of a, and van-

ish for X = a.    Condition II is then satisfied, provided in the vicinity of a,

-*&L > 0
yn-i(x)>
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The above conditions I and II will be referred to as the first and second

Sturmian conditions respectively.

Character of the Functions Employed. In all this work it will be

assumed that the functions under consideration, as well as the coefficients of the

homogeneous recurrent relation which any three consecutive functions must sat-

isfy, are real, single-valued, continuous, differentiable functions of a real param-

eter X, which is supposed in every case to lie within a certain definite interval,

X. = X = Xk. It is to be noted that none of the functions involved are neces-

sarily analytic.

Notation. For convenience in writing, the argument of the functions will

in general be omitted, but a consistent notation will be employed — the first

letters of the alphabet denoting functions independent of X, all other letters

denoting functions of X.

§ 3.  Development of a Method of Forming Recurrent Relations

such that the functions satisfying them form a

Sturmian Sequence.

Our first effort is to satisfy the second Sturmian condition, that is, to impose

conditions sufficient to secure the increase of yn/yn_x with X either throughout

the interval considered or for values of X for which yn vanishes. It will appear

later that condition I can then be readily imposed.

A homogeneous recurrent relation of the second order, F(ym+x, ym, ym_x ) = 0,

can be written in the form

*«H--/(0 (» = 0,1,2-.   n-1).

where zm+1 = ym+x/ym, zm = ym/ym-x • If now conditions be imposed sufficient

to secure monotone increase of z  ., as a    increases monotone, the second Stur-
m+1 m '

mian condition is evidently met. Our mode of procedure, briefly stated, is to

select a simple expression connecting zm and zm+1, by which under certain con-

ditions the second Sturmian condition is secured, and to operate upon it by

linear transformations such that this condition is at every step conserved, while

the first Sturmian condition also is ultimately satisfied. The simplest possible

relation connecting zm and zm+1 is of the linear fractional type :

w z»+i-jf z +x '
mm' m

which may be regarded as a transformation of the zm plane on the zm+l plane.

Conditions are to be imposed upon K , L ,31 , X , sufficient to secure mono-

tone increase of zm+l when zm increases monotone, both zm+x and zm having a

range of values from — oo to + oo. That is, as zm describes the real axis in

the positive sense, zm+l is to describe the real axis in its plane, also in the posi-

tive sense.    This transformation may be broken up into the following steps :
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(a) a<» = M z   + N .
\   / m m   m    ' m

(&) e ~(i)'

(c) z      -L-M--K-N-¿*> + ?<*
V7 Zm+X — ]\f m   ^ M   '

m m

We shall first develop in detail the recurrent relation of which the differen-

tial equation treated by Sturm may be regarded as the limiting form, and then

indicate briefly how in the same way more general forms may be obtained.

Development of Sturm's Form. The condition of monotone increase of

zm+x with zm is evidently met by the translation

(2) z  ,, = z   + B

where Bm increases monotone with X ( B'm = 0 ). This is a parabolic trans-

formation with its double point at infinity. Each value of zm+x is obtained by

a translation of the corresponding value of zm along the real axis in the positive

direction.    Let now both planes be subjected to the inversion and reflexion,

1 1
Zm+X = Z 5 zm = =- '

Zm+X Zm

The real axis in each plane is preserved, but in the opposite sense, the upper

half of the plane being mapped upon the lower half. Hence in the transformed

equation,

i
~-a_
m+1 * 1 + A i '•

z  ..  decreases as 5    decreases and L   increases.    Monotone increase of £ ,.
m+1 m, m m+l

with zm is secured by making the substitution Bm = 1/Km and imposing the

condition K' = 0.    The resulting linear relation is

Kmzm

(3) »m+l  - z     lK    •
m    ' m

Let now the zm+l and zm planes be transformed once more, using a linear relation

by which merely condition II is preserved. Then in relation (1) the following

conditions are sufficient :

KN-EM>0,

B' N - B N' ^0.
mm m      in

These conditions are obviously fulfilled in the transformation

= K w   - K ,
m, m      m m>

(4)
-&m+XWm+X ~ -"-m+l 5
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provided   Zf; > 0, K\ = 0, (i = m, m + 1).    Applying   this   transformation

to (3),

K»+XW^X   - £m+X  = Km~ KJW,n-

This relation has the property that wm+x increases as it vanishes, provided

K — K ¡w   increases.    Let w  ,, = y  .. ly , w   = y ly    ,, the last equa-
m ml      m m+1 if m+11 if m ^       m ifmlifm—11 *

tion becomes

(5) Km+i(ym+i - ym) = Km(ym - ym-i)>

where, if ym = 0, Xm+1ym+1 = -Kmym_Y, that is, ym+l and ym_, have opposite

signs.

If in place of (3) we write

(6) z^ = z^Tjt + ^ {K-0)
m    *^        m

condition II is still met after the additional translation. Making the same

transformation on zm and zm+1 as before in obtaining (5), the resulting form is

one which will be referred to as Sturm's form :

(7) ^m+i(ym+i - ym) = Km(ym - ym-i) + ■#>»'

or, using the ordinary difference notation,

(7)' HKm*ym-i) = Nmym.

If we impose in both (5) and (7), as always, the condition that y0 does not

vanish throughout the interval, y0, yx • • • y. form a Sturmian sequence. Here,

as in all later similar cases, where the increase of zm+1 is conditioned upon the

increase of zm, the condition of monotone increase must be laid upon zx. Thus

in this case we must have

<-PV>j...
Further for each value of X it is necessary that one or more of the functions

upon which conditions of monotone increase are laid shall actually increase.

If, for some fixed value of X, \fK4(yx — yf)\yf\'= 0, we require that for at

least one value of m(m = 1, 2 ■ ■ ■ n — 1)X'm > 0, or that for two consecu-

tive values of m, or for m = n — 1, X' "> 0.

Development  of  More  General  Recurrent   Relations.     Let  the

hyperbolic transformation used to secure the first Sturmian condition in (6) be

(8) Zm=LmWm-Km (£»>0),

of which (4) is a special form when Lm = Km. The resulting recurrent rela-

tion is

(9) Lm+lVm+l  -  Km+iym =   T^ (A»SC ~ K-V—x)  +  ^^m'
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A{Z  Aw    , + (L   -K)y    ,}
1        m     <7m—1     '     \       »i m / is m — 1 )

(9)' K -B
=   "y-    " {AnA2/m-i + (A,. - Ä'Jy.-i} + ^.y.-

m

Here again both Sturmian conditions are satisfied, provided

b >o, at'so, a'^o, rz,»yi~-g"1yo1'so.

Instead of beginning with the parabolic substitution (2), we may use the

general real elliptic form with fixed points A^ = B   + iC , A[2) = B   — i Cm :

(K +25 )z   -(B2 + (72)
/-J A\ _ \       m    '_m /    m_V       m    '_m /

Forming the derivative with regard to X, we have

„,        KÁ(*m-Bmy+C2m}+z'm{(Km+Bm)2+C2m}
m+i ~ (z + k y

\   m    ' m /

Here z   ,, increases with X, provided IC   and ¡8   increase.     The same transfor-
m+1 'i mm

mations already employed upon (5) give the following form :

(11) K .Ay  .. -y ) = (E +2B )(y   - y    ,)—    m¿   »y    , + A^ y .

m

Both Sturmian conditions are satisfied, provided the same conditions are imposed

as in (7). It is to be noted that (7) is a special form of both (9) and (11). By

writing Cm = 0 in (10) we have the most general parabolic substitution with

double point at Bm. Still another form may be obtained by transforming (10)

by means of (8).

The hyperbolic transformation is found to be useful only as an intermediate

process in securing the first Sturmian property, under the forms already em-

ployed in transforming (6).

In the general linear relation (1) we find that monotone increase of zm+x with zm

throughout the interval is secured only by imposing such complicated conditions

as make this form too cumbrous for use.

Other recurrent relations may, however, be obtained by combining forms

known to satisfy condition II.    Consider for example the recurrent relation

(12) z      - (^+«J.K-(31+_S) + Az   +N\í¿-) Zm+X — Z     A-  K mZm + 1}/m 5
m m

where the following conditions are fulfilled :

A">0,        A"^0,        A   ^0,        N' = 0.
m-^5 m 5 m 5 m

It is evident that zm+x increases monotone with zm. Employ now transformation

(4), which gives the relation
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Km+i(ym+i-ym) = Km(Km + 2ZJm)(ym - ym_x) - (R2m + C2m)ym_x

y K v
f-\c\\ *7m mis m

(10)
A  X (y   -y    ,)      „

m       m \ & m_«7 7»—1 / ■ \      1ÍT

y m—I

If y   = 0, we have

K X ^y  .. = - {(K  +R )2+ C2}y    .
m      m+l^m+1 IV       m1 m/      ' m i if m— 1

and both Sturmian conditions are satisfied.

Other such combinations may readily be made, leading to more or less com-

plicated relations of which (7) will always be found to be a special form. If

(12) were transformed by means of (8), the resulting relation would contain

both (9) and (13) as special cases.

§ 4.  Properties of a Sturmian Sequence.

Having thus indicated the method by which the desired recurrent relations

are set up, we proceed to a consideration of some of the more important prop-

erties of the functions which satisfy these relations.

Graphical Illustration. The variations in the signs of the sequence

y0, yx ■ • ■ yn may be illustrated for any fixed value of X, as X , by plotting the

points whose rectangular coordinates are x = m, y = ym(X ), (m=0, 1 ■ • ■ n).

If the consecutive points whose abscissas are 0, 1 • • • n be joined, the broken

line thus formed cuts the X axis in points which in number and order corres-

pond to the variations in the signs of the functions. These points of intersec-

tion will be referred to as the «-points of the sequence.

Linear Dependence. Two solutions of a recurrent relation, y^ and y^,

are said to be linearly dependent when two constants Cj and c2 exist, such that

«i2/»+c22/»)=°'w = 0'1 •••»•

The two following theorems will be needed for later proofs.

Theorem A. Let y™ and y(2) denote two solutions of a linear difference

equation of the second order. If the coefficient of the y of highest index does

not vanish, the necessary and sufficient condition for the linear dependence

of the two solutions is y^y™ — y^y^ — 0 •

Theorem B. Any solution can be expressed as a linear function of two

linearly independent solutions.

The following theorems are stated for the sake of definiteness for a set of

functions satisfying the recurrent relation (9), but with certain obvious modifi-

cations, often simplifications, they hold for any similar relations.

(9) L,n+iym+i - Km+iym = jf(Lmym-Km ym-x ) + Nmym.
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Let the following conditions be satisfied, the equality signs not holding simul-

taneously for all values of m.    See p. 427.

Lm>o, at;==o, n'^o, [Ayi-WgQ
L yo J

Then, according to the previous work, (Bnyn — Knyn_x )/yn_x increases continu-

ally with X between two roots of ynX, yn/yn_x increases when yn vanishes, and

y0, yx ■ ■ • yn form a Sturmian sequence.

Theorem I. A variation is lost in the sequence w0, yx • ■ ■ yn whenever yn

vanishes.

Theorem II. The roots of yn and of yn_x separate each other ; also the

roots ofBnyn - Knyn_x and of yn_x; also the roots of Bnyn-Knyn_x+Mnyn_x

and of yn_x, provided M'n = 0.

For (Bnyn — Enyn_x + Mnyn_x)/yn_x increases continually with X as X passes

from one root of y x to the next, and assumes in this interval all real values

from —oo to +00. The numerator therefore vanishes once in every such inter-

val, and, as it can have no multiple roots, only once. If Mn = AT , the first

part of the theorem is proved ; if Mn = 0, the second part is proved.

Theorem III. If y^J and y^ are any two linearly independent solutions

of (9) satisfying the condition

B u(i> — K u(i)T

their roots separate each other, provided Km does not vanish throughout the

interval considered.

This is proved by showing that ff>f2-x — '!f2)y{fLx cannot vanish or change

sign. On substituting two consecutive roots of one solution this fact is contra-

dicted, unless the other solution changes sign between these two roots.

Theorem IV. If B' =0, thev-points of the sequence remain stationary

or move to the right as X increases:

Let a «-point lie between y. and y._.. From the fact of the monotone

increase of B y   — K y    Ay    , we have

Hence

rAy.-^y.-i"|'> 0

+ B'.-yj- ^K' i? 0.*y,-i

It follows that (yjy^)' — 0, and as X increases the «-point remains stationary

or shifts toward the right.

Theorem V.    Bet y™ and y^ be any two linearly independent solutions of

(9), and let the only conditions imposed be
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tf' + O.        2/o2>*0,        LmLm_,>0,        Xm + 0.

For any given value of X the v-points of the sequences y^\ f-f1 ■ • ■y^) and

y(2\ fp ■ ■ • y(2> separate each other.

Consider the solution ym = ty^ + y™. By a suitable variation of the para-

meter t the «-points of the sequence y0, yl- ■ ■ yn may be made to move, always in

the same sense, from coincidence with the «-points of the sequence y^\ y^ ■ ■ ■ if^

into coincidence with those of the sequence y{2), y^2) ■ ■ ■ y(2>, without once cross-

ing a «-point of either sequence. Hence the «-points of the two given sequences

separate each other.

Theorem VI. Let Xt and X2 be any two values of X ( Xl < X2 ), and

let (XlfLm)' = 0. Retween two consecutive v-points of the sequence

y0(Xí), yx(Xi). ■ ■yn(Xl) cannot lie more than one v-point of the sequence

2^0(X2)' yi(\)' " ~yn(\)> an<^ between two consecutive v-points of the latter

sequence lies always at least one v-point of the former.

To establish this theorem it may be proved that if a solution has for a given

value of X, as Xj, the two consecutive «-points a and 6, b lying to the right of

a, a solution may be found which for every value of X has the «-point a, and

that its next «-point to the right must lie to the right of 6. For the value

X = X2 the «-points of this solution and of the given solution must separate each

other by Theorem V.    The theorem then follows immediately.

Theorem VII. Theorem of Oscillation. If in the interval ( X. Xk ) Lm

and Xm never exceed in absolute value certain fixed quantities, large at pleas-

ure, if also Xm(X.) =— P2, Xm(Xk)'= Q2, and P2 and Q2 are sufficiently

large, there is one and only one value of X (X{ = X = Xk) such that a solution

ym exists, satisfying the following conditions :

1. The number of variations in the sequence yl, y2 ■ ■ ■ yn is equal to an

assigned integer r (r < w) ;

9 Lxyx-Xlya
L. -= a,

y0

3 Lnyn — Knyn~i = b.

yn-i

a and b being any real constants.

Using condition 2, yl, and therefore all y's of higher index, can be deter-

mined except for the non-vanishing factor y0. Owing to the conditions imposed

upon the coefficients, there are n — 1 variations in the sequence yx, y2 ■ ■ ■ yn

when X = X. and none when X = X,.    Since (L y  — X y   AI y   , increases
t k \n*7îin«7 n— I / / «/ n— l

continually with X between two consecutive roots of yn_x, condition 3 will be

satisfied once and only once in every such interval.
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§ 5.  The Differential Equation.

A recurrent relation of the second order may be written as an equation in

finite differences of the second order, and this, under certain conditions, has as

its limiting form a differential equation of the second order. The Caucht-

Lipschitz proof of the existence of a solution of a differential equation within

a certain interval treats the differential equation as the limit of a difference

equation. Painlévé and Picard have shown * that the solution converges

uniformly to its limit and that the limit represents the solution as long as it

remains continuous. It follows that theorems proved for yn(X) in the differ-

ence equation can be extended without further proof to y(x, X) in the differ-

ential equation which is its limiting form. In particular, theorems proved in

§ 4 go over at once into their well-known analogues for the differential equation.

Consider for example equation (13), which may be written in the form

(13)

ym-x*iK*ym-x] -{ym-x(*K + ~m-^ + ¿mK)

1 Í B2 + C2 ]
+ KK^ym-x \ *ym-x = ymym-x \ Nm - ~^—m} •

On making the usual hypotheses in regard to the limits of the functions in-

volved, in order to pass to the differential equation, we find that Am, Bm and

Cm must approach zero, and that different results may be obtained, depending

upon the manner of approach. If it is sufficiently rapid, Sturm's equation

results.    If on the other hand A   , B   and C   contain 8 in as low a power as
m *        m wi ■*■

possible ( 8 being one of the equal subdivisions of the x interval, x = as0 + m8 ),

other forms are obtained.    Thus if we suppose the limits to be the following :

A 2B B2 4- C2
Yim-^ = A(x),        lim~^=B(x),        lim    m "T    m=C(x),
8=0    ° 8=0      ° 8=0 °

from (13)' we have the differential equation

This possesses the same general properties as Sturm's equation, providing the

following conditions are met :

r

A">0, AT'5 0, i?0.  C50.FÈO,

not all the signs of equality holding simultaneously.

dx

I    V
^o,t

x=je0

»Bulletin  de  la  Société  Mathématique de   France,   vol.   27   (1899),   p.   150.

Comptes Rendus, vol. 128 (1899), p. 1363.

t The sign of differentiation in each case refers as before to A.
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From (14) six special forms may be derived by letting one or two of the

coefficients A, R, C, vanish.

Consider further equation (9)', which may be simplified by writing

L   — X = 31 , whence L' = 31'.    This leads directly to the differential
m m »' mm J

equation

w       £(*î+*)-i(*i+*)+*.
with the conditions

\ T ày    ,, y

L>0, L' sjf-, if' = o,   |-|       go,

not all the signs of equality holding simultaneously.

The theorems proved above for equation (9) are evidently immediately appli-

cable to equation (15).

It may readily be shown that each of the equations (14) and (15), together

with the six special forms referred to, is more general than the equation dis-

cussed by Sturm. For, by the transformation y = uv and by removal of the

term in dv/dx, each may be reduced to the general type to which Sturm's

equation belongs:

dx\     dxj ~~

But in every case it is apparent that the conditions laid upon the function S do

not ensure its monotone increase with X, while in the case of (15) the same

statement holds true for R. It follows that not simply equations (14) and

(15), but many specialized forms of the former as well, are more general than

the equation of Sturm, which appears as a special case under each.

Hence the properties proved in Sturm's memoir for a special equation are

seen to belong to a more extensive class of equations, which are derived by

most simple methods, and which clearly all possess an oscillation theorem in the

Sturmian sense.

Yale University,

May, 1903.


