
A SYMBOLIC TREATMENT  OF THE THEORY OF INVARIANTS
OF QUADRATIC  DIFFERENTIAL  QUANTICS  OF n  VARIABLES*

BY

HEINRICH  MASCHKE

In the article t A new method of determining the differential parameters and

invariants of quadratic differential quantics I have shown that the application

of a certain symbolic method leads very readily to the formation of expressions

remaining invariant with respect to the transformation of quadratic differential

quantics. The presentation in that article was only a preliminary one and the

work practically confined to the case of two independent variables. In my

paper J Invariants and covariants of quadratic differential quantics of n

variables a more complete treatment was intended and the investigation applied

throughout to the case of n variables, leaving aside, however, simultaneous inva-

riant forms of more than one quantic.

The present paper contains in §§ 1-6 and § 8 essentially the content of the

last mentioned paper ; the greater parts of § 5 and § 8, and all the remaining

articles are new, in particular the extensive use of covariantive differentiation.

§ 1.   Befinitions.    The fundamental theorem.

To the given quadratic differential quantic

n

(1) A= 22 aikdx.ßxk,
¿, k=X

with xx, x2, • ■ -, xn as independent variables, and the aik (aki = a(k) as functions

of these variables, we apply the transformation

(2) xi = xi(yx,y2, ■ ■ ■, yn) (< = 1,8, •••, *),

and obtain
n

(3) A = A'= £ a'ikdy{dyk.
i. k—X

•Presented to the Society (Chicago) April 11, 1903, under the title Invariants and covariants

of quadratic differential quantics of n variables.    Received for publication June 20, 1903.

fTransaotions of the American Mathematical Society, vol. 1 (1900), pp. 197-

204.
I The Decennial Publications of the University of Chicago, Chicago, 1903.
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Since the differentials dy are connected linearly with the differentials dx by

means of the formulas
n   dx

(4) ^-S^áy, (¿ = 1,2, ■■■,»),
k=i °yh

we have at once, denoting the discriminant of A by | aik |,

(5) l°«|-**KI'
where r denotes the determinant of the linear substitution, viz. :

« H£
Let now u, v, • • -, be any (arbitrary) functions of xx, x2, ■ • -, xn; u , v ,

the same functions after application of the transformation (2), then we call every

function of the coefficients aik and their derivatives, and of u, v, • ■ ■ and their

derivatives, an invariant expression of the quadratic differential quantic A, if

the expression remains the same, whether formed with the old quantities

aik, u, v, ■ • ■ and their derivatives with respect to x, or with the new quantities

a'ik, u ,v , • • ■ and their derivatives with respect to y.

From u = u it follows, for instance, that every arbitrary function of x is an

invariant expression of A.

If such an invariant expression involves one or more arbitrary functions

u, v, • • • and their derivatives, it is called a differential parameter ; if it involves

no such functions, if it is therefore a function of the a(k and their derivatives

alone, it is called an invariant proper. *

By the order of an invariant expression we shall understand the order of the

highest derivative appearing in it.

Suppose now F1, F2, • ■ •, F" are any n invariant expressions of A , then we

have

Fi' = Fi (i = l,2,..-,«),
and also

»   dFv , J^ dF'

dyk
<%* - Z

k=l

It follows now at once that

dF*

dy*

dx,
dx,      ''

OF'

(¿ = 1,2,

(¿ = 1,2, »).

and therefore with reference to (5)

OF''
1  '*' %*

= r ■

=   a.

dx,

I-M.
dF{

dx,

* Cf. Luigi Bl anchi, Vorlesungen über Differentialgeometrie ; autorisierte deutsche Uebersetz-

ung von Max Lukat, Leipzig (1899), p. 39.
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This equation defines the last expression as an invariant expression, and so we

have the fundamental theorem :

" If Fl, F2, • • •, F" are any n invariant expressions of A, then

-X. dF'

Sx,.

is again an invariant expression of A."

§ 2.   Choice of convenient notations.

Since we shall have in the following to compute continuously with expressions

of the type (7), a shorter notation is indispensable. Let us first agree to indi-

cate differentiation by subscripts.    F being any quantity whatever we write

(8)
dF

Sx.
A7,.

We further denote the reciprocal value of the (positive) square root of the dis-

criminant of A — which we always suppose to be different from zero — by the

single letter ß : *

(9) 0=1«,

The functional determinant of any n quantities F'' (i = 1, 2, ■ • -, n) will

be denoted by

{F\F2,F3, .... A7"},
so that we have

(10) {A71, A72, F3, ..., A7'1} =  ~
tíxk

The product of ß into such a functional determinant will be denoted by

(11) (A1, A72, ■■■,Fn) = ß{F1,F2, ■■-, A7"}.

The quantities we have almost exclusively to deal with in the sequel are not

the functional determinants themselves, but their products into ß, and for this

reason we use for the latter quantities the simpler symbol ( ) instead of { }. f

Even this notation is in most cases too cumbersome.    We write then simply

(12) (F\F2,-..,F") = (F).

If it should be necessary to indicate the first, or the first two, three, etc., quan-

tities of such a parenthesis distinctly, we write them in their proper places and

let the last letter run out.    For instance

* a in my previous paper.

tl therefore withdraw the suggestion made in my previous paper, loc. cit., p. 190, footnote,

where the two parentheses ( ) and { } were used in the reversed sense.
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(a) means (a1, a2, • • -, a"),

(13) (5, a) means (ô, a2, a3, • ■-, a"),

(b, c, a) means (6, c, a3, a4, • • -, a").

It is understood that the letter q, occurring in the coefficients aik of A has no

connection whatever with the letter a occurring, for instance, in (o, c, a).

The quantities in a parenthesis ( ) should be separated by commas. If, how-

ever, no misrepresentation can occur, the commas may be omitted :

(bca) = (b, c, a), etc.

In our new notation the last theorem of § 1 is now this : " If Fl, F2, • • •, Fa

are invariant expressions of A , then (F) is also an invariant expression of

A ; " we shall call it an invariantive constituent.

§ 3.   The symbolic method.
If we define

(14) /</* = «,*»
we have

(15) A = £ aikdx{dxk = [Z/A,]2-
ik i

The expression ^.ifidxi appears, if we think of the notation fi = df/dx{ agreed

upon in (8) as the complete differential of a (symbolic) function of the n vari-

ables x.

If expressions of higher than the first dimensions in the coefficients aik are

to be formed symbolically, we have to use different symbols ,/",</>,

For instance

«12 = fifi ^ 02 ' «11 «22 = fifi 02 02 ' etC-

The symbolic functions f,<j>, ■ • ■ (we shall simply call them symbols) appear

now, as every arbitrary function u, v, • • • of the variables x does, as invariant

expressions of A.

If now we form invariantive constituents containing the symbols f,<f>, • • • or

f1 ,f2, . ■ ■ and any number of arbitrary functions u,v, ■ ■■, then every product

of these constituents will represent an expression which, according to the funda-

mental theorem of § 1, will represent an expression which is formally invariant.

But from the same reasoning as in algebra it follows that these products will at

once represent actual invariant expressions, as soon as the symbols f, cp,

occur in such connections as to permit actual meaning, e. g., in the connection

ffk, $i<pk, etc.    The connections of this type, however, are not the only ones.
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Some of the elements of the different invariantive constituents may be constitu-

ents themselves, as for instance in the examples

{(fa),b)(fc)        or        ((fa),(fb),c),

where f denotes a symbol. In such cases also the higher derivatives of the

symbol f will occur, and it is then the question, whether or not these combina-

tions have actual meaning (they do in the above examples). Thus we have the

following theorem :

Every product of invariantive constituents, the elements of which are sym-

bols or arbitrary functions or both, or again invariantive constituents of the

same character, represents an invariant expression of A, provided that every

symbol occurs precisely twice and in such a connection as to permit actual

interpretation in terms of the aik and their derivatives.

With regard to these symbolic invariant expressions the following two the-

orems are evidently true :

The value of an invariant expression in symbolic form is not changed if

two equivalent symbols are interchanged, and :

An invariant expression in symbolic form vanishes if by the interchange of

two equivalent symbols its sign is changed.

Covariants can now also be formed easily. In the first place, the complete

differential of every invariant expression represents immediately a linear covari-

ant of A .    Let us denote for simplicity

(16) Fx dxx + F2dx2+... Fndxn = Fx.

A single symbol and also any invariantive constituent with the subscript x repre-

sents then, at least formally, a linear covariant — let us call it a covariantive

constituent. We therefore obtain covariants of any degree by forming products

of these covariantive and invariantive constituents. Thus we have the

theorem :

Every product of covariantive and invariantive constituents represents an

actual covariant of A, provided that every symbol occurs precisely twice and

in such a connection as to permit actual interpretation in terms of the coeffici-

ents aik and their derivatives. The degree of the covariant is determined by

the number of the covariantive constituents as factors in the product.

§ 4.   Some important invariant expressions.

The simplest possible invariant proper is (f)2, with/"1,/2, • • -f* as equivalent

symbols. But this invariant reduces to a constant. To show it we compute

first the product

P=f\f\---PÁf\f\ •■-,/"}•
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If we multiply the first row of the functional determinant by f\, the second by

f\, etc., we find at once

P = K,| = /3-2.

If, on the other hand, we permute in P the equivalent symbols f' in all possible

ways, and add the products so obtained, which are all equal, together, we have

n\P={f\f2, •••,/"}2.
Since now

(/)2 = /32{/1-/2'---'/"}2'

we have the important formula

(17) (f)2 = n\.

Let us next compute the invariant expression (uf)2, where u denotes an arbi-

trary function and f2, f%, •••,/"" as before, equivalent symbols. For this pur-

pose, and also for the following, we need a proper notation for the minors of

some of our determinants.    We denote

(18) by Aik* the minor of the element aik in the determinant [ aik\,

and further

(19) by Fi'k the minor of the element f'k, in the determinant {_/"', f2, ■ ■ ■, f }.

In this notation we have

(uf)2 = ß2^F1-i-F1-ku,uk.
ik

But

F>.*F^ = (n-l)!fxf2...fi_xfi+x...f

f2     fl                 f2          j?2 S2
J 1 './ 2' ' ' '1J k- XI J fc+1' ' ' ' iJ n

y»,t     fn                 fu          fu J*n
1'7 2' "'Vi-lVi+l' "'iJn

or

Fl'iF^k=(n-l)\Aik,

and also

(20) F^iF^k=(n- \)\Aik.

Hence

which is the well-known first differential parameter A,«.    Thus we have

(22) (uf)2 =(n- 1)! A,«.

* Bianchi's quantities An, (cf. loe. cit., p. 37) have a slightly different signification.    His

An, is in our notation = ßtAn,.

fBlANCHI, loc. cit., p. 4L
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In the same way we obtain

7jèi)^f^f) = ^^^/
or

(23) (uf)(vf) = (n-1)1 A(u,v).

Numerous other differential parameters can be formed: e. g. (uvf)2, etc.

In all these examples of invariant expressions only the coefficients aik them-

selves occur, not their derivatives. In order to derive invariant expressions

involving also derivatives of the aik, we have to express these in terms of our

symbols.

We deduce from (14) by differentiation

Sa.k
Qx    =JiJkl    'JkJin

(24) -fa1 =-fkfu +fufki 5

^ = ff  +ff

which gives at once

(25) fif^=^y~dxi~l+^xL~k~fhci\-

The expression on the right side is precisely Christoffel's f so-called triple

index symbol denoted briefly by     .     . J

We have thus the important theorem : The symbolic product f fkl has

actual meaning for every system of values i, k, I; it is equal to the triple

index symbol

(26) /«/.,-[?]•

We see, then, further, that the following combinations permit actual interpreta-

tion in the second derivatives of the a., :

JimJu t/ ifum  Li\j

* Bianchi, loe. cit., p. 41.

f Christoffel, Ueber die Transformation der homogenen Differentialausdriicke des zweiten Grades,

Cr elle's Journal, vol. 70, p. 48.

} Biakchi, loc. cit., p. 43.

Trans. Am. Math. Soc. 30
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(27) firfk, —fkrfis "" i   jfe   j     — i    jfe j    '

The simplest symbolic invariant expression involving the second derivatives of

the symbols y is y(uf),f). The computation, which will be given at the

end of § 6, leads to the result

du

dx_^((«/»■/»-^•C^-^E/,.^]
This expression is the second differential parameter A2w.*    Hence we have

(28) ((uf),f) = (n-l)\A2u.

§ 5. Relations between symbolic expressions.

For our further computation with symbolic expressions it is necessary to

deduce a number of fundamental relations. As a matter of convenience (not of

definition) we shall as a rule denote symbols by the letters a,b,c, ■ ■ ■, f, <f>, ■ ■ ■,

and any functions of the x (not necessarily symbols) by the letters u, v, • • ■ and

x, y, ■■■■

Differentiating formula (17) with regard to x., we have the fundamental

formula

(29) (/)(/)< = 0.
Let now

(30) [/"] stand for any alternating function of fl, f2, ■ ■ -, f,

e. g., for (f) or for (f)¡ or any higher ordinary or covariantive (see § 7) deriv-

ative of (f), and let us form the symbolic product

We find
/{(«/)[/]■

/! {«/}[/] =

/i"i>

/•i fi    ft fi
J lJ  1 ' J 2'   ' ' *' J n

/I fn       fn fa
lJ 1» J 2'   * "' J n

[/]   =

/{«I»    M2'   -

o,  fl,-

-, u
'        n

''  / n

o» /;, •••,/:

[/]

because the product f} f[ \_f~\ changes its sign if the equivalent symbols f1 and

/"' are interchanged, and must therefore vanish ; i. e.,

*Bianchi, loc. cit., p. 47.
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It now follows further that

453

f[{^f}[n = (n-iy.uxf\f22.-.f:[n = {^-^ux{f}[n,
and

AW) [/]-i «.(/)[/]•

The same method can be applied when we operate with f\ instead of f\, so

that we also have

or, changing the notation

(31) /¿(^)[/«]=^¿(/«)[/«]-

If now we specify the symbol [f\ according to (30) we obtain the two equations

(32) fk(fa)(ua) = (n-l)\uk,

(33) fk(fa)i(ua)=0.

, vn as arbitrary functions these formulas can at once be ex-

(fa)(fv)(ua) = (n-l)\(uv),

(35) (fa\(fv)(ua) = 0.

A similar method serves to reduce the expression

fxVU^lfh

Withij2,«3

tended to

(34)

We find

/l/22{™/}[/]   =

flWl>f!UH   M3> •••'   Mn

fx1 vx 5 /22 ^2 ' »a» •••' «„

fl /-3      /*2 /-3      /"3 /"3
JxJ X 5 J2J2 » «/3 » "'■»•/•i

/'l  ^n       ¿*2 /*n       ¿"n ^*n
1^1 >^2./!V3 '    '"'/•

/lMl ' .A'W2 5 «3 '

fî9»/»*t*   «3'

o,    o,//,

°5     0, /;, ..-,/;

[/]

-, «

•' «„

• f3
5 ./,. [/]•
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Further

fif22{^f}[f]=(n-2)l(uxv2-u2vl)f¡f2fy--f:[n

(n-2)\

and changing notation

(36) /¿0*(M»«) [70«] = n(n_i) (uivk - ukvi)(f4>a) [/0a] •

Specifying again the symbol [/<£a] we deduce

(37) fi4>k(uva)(f^a)=(n-2)\(uivh-ukvi),

(38) f<Pk(uva)(fcPa)l = 0.

From the formulas thus obtained a great number of others can be deduced. A

number partly to be applied in the following articles are here listed. They

involve e, 7i as abbreviations:

<39) e = (n7~ijv    9-(^T2yr

(40) (fu)(xa) [fa] = \(xu)(fa) {fa] . From (31).

(41) \_fik(xa) +f(xa)k-\ {fa] = \ [x^fa) + xt(fa)k] {fa] .

From (31) by differentiation, and the observation that also

fi(xa)[fa]k = -xi(fa)[fa]k.

(42) {f(xa)k -fk(xa\] [fa] = \ [xt(fa)k - xk(fa\] [fa] .    From (41).

(43) {(xa), f, u) [fa] = \ ((fa), x, u) [fa] . From (42).

(44) [(xa)i(fu) + (xa)(fu)i][fa]

= \ [(««)«(/«) + (*»)(»<] [/«] •     From (40).

(45) [f(xa)k-fk(xa)i](fa) = 0. From (42).

(46) e[(xa\(fu) + (xa)(fu\](fa) = (xu\ . From (44).

(47) [(xayfu) + (xa)(fu)i] (fa)k = I (xu)(fa\(fa)k. From (44).
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(48) f((fa),u)(xa) = 0. From (33).

(49) (fu)((fa),v)(xa) = 0. From (48).

(50) ((fa),f, u)(xa) = 0. From (33).

(51) ((fa), u)(fa) = 0. From (29).

(52) ((xa),f, u)(fa) = 0. From (43) and (51).

(53) xik = efi (fa)(xa)k + efk(fa)(xa). From (41).

(54) f(xa)k(fa) =fk(xa)i(fa). From (53).

(55) MfaU™)t-l*Af*Uf«)t-MfaU™). From (41).

(56) ((fa), (xa), f, u) = 0. From (55).

(57) /.(<¿M)(xya)[/<H=^n^ From (36).

(58) (f<pu)(xya)[f<pa] =:>-^^-(Xyu)(f<Pa)[f<pa]. From (36).

(59) (fu)(<pv)(xya)[/</»«]

= %/n-1\ [(xu)(yv)-(xv)(yu)](fcpa)[fcpa].    From (36).

(60) nfi(/</>«)(4>u){xya) = xi(yu) — yi(xu). From (57).

(61) n(f(pu)(fpa)(xya) = 2(xyu). From (58).

(62) v(fu)(<pv)(fipa)(xya) = (xu)(yv) — (xv)(yu). From (59).

(63) f(<pu)(f<pa)k(xya)=0. From (57).

(64) (f<Pu)(f<pa)i(xya) = 0. From (58).

(65) (fu)(4>v)(fcpa\(xya) = 0. From (59).

We notice that some of these equations contain in every term connections of the

form flkf , e. g., equation (55). Indeed the different terms of this and similar

equations have no actual meaning. Nevertheless the formulas are formally cor-

rect and can be used with safety for reduction work.

§ 6.   The quadratic covariant expression and the triple index symbols of

the second kind.

The quantity f(ua)k(fa) which according to (54) remains unchanged when

the two indices i and k are interchanged gives rise to the quadratic covariant

expression
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(66) (/o)/,(«o), - z (/«)y;(««)*<M*»>
ik

whose coefficients can be shown to be equal to the " covariant second derivatives

of the function u" in Bianchi's terminology.*

For this purpose we have first to compute the triple index symbol of the

second kind, f

From (20) and (26) we have

(n-l)\^=ß2flkF^.^fmF^ = ßflkF^-(f),

(68) {^-«fl^'-CO.

which is the required symbolic representation.

We derive from this equation

Ç««{f}-^/?*(/)Ç«*^,w'
which gives, with a slight change of notation,

ik
(69) X>. = efk(ua)(fa)-

Now Bianchi's covariant second derivatives of u are defined as follows : J

(70) ^-srsr-E
Hence

(71) u™ = u,k-efik(ua)(fa),

and by means of (53)

(72) u™ = ef(ua)k(fa),

which formula verifies the above statement concerning the coefficients of the

quadratic covariant expression (66).

This formula leads now also to the proof of (28).

Bianchi defines §

*Loc. cit., p. 46.

t Christoffel, loc. cit., p. 49, and Bianchi, loc. cit., p. 43.

X Loc. cit., p. 46.

? Loc. cit., p. 47, formula (24).



which gives

But from (21)

and from (34)

therefore
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(73) A2u = ß22ZAk »(tt>»
ik

(n-l)\\u = ß2(fa)2ZAkfi(ua)k.
ik-'

ß*2ZAiJA™)k = <f<p)((™).<p).
ik

(fa)(fcp)((ua), <p) = (ft-1)! ((ua), a),

(ft— l)!A2ft= ((ua), a).

§ 7.   Covariantive differentiation.

For the formation of invariants and covariants, which involve explicitly de-

rivatives higher than the first, it turns out to be of the greatest advantage to use

instead of ordinary differentiation another process which might be called covari-

antive differentiation.* We shall use for its notation upper indices in paren-

theses.

Let x stand for any quantity not involving derivatives, then the first covari-

antive derivative is the same as the first ordinary derivative :

(74) xw = xÁ.

The second covariantive derivative, suggested  by formula (71) is defined as

follows

(75) of» = *W = xik - efik(fa)(xa).

On account of (53) the following definition might also be used

(76) x™ = ef(xa)k(fa).

We have then from (70)
ik

= X„. — X
M   X  Í

(ik)(76a) 2>

It further follows from (54) that

(77) x<m = »<*>.

If a product is to be differentiated covariantively we apply the same rule as in

ordinary differentiation, i. e.,

(78) !><y*](J° = xiym) + y^-

*See the remark on Cheistoffel's process at the introduction to §9. The same process

has been called by Ricci " dérivation covariante ;" Bulletin des Sciences Mathéma-

tiques, ser. 2, vol. 16 (1892), p. 175.
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We now have to determine the covariantive derivative of an invariant con-

stituent (f). In order to avoid however too lengthy formulas we carry the

work through at first for the case n = 3.

To the terms of the equation

i/0tr= {/»#} + {/0(a)^} + {m™}

we apply (75) so that

{/(AW = {AH }-*(%«)(/«) {x.0^}-
Hence

{f<pir}M= {fW},-e [(fa) {xA+} +(4>a){fX.t } + (+<*) U<l>Xy](X«)-

Using now the identity

a1

79)

ax,       bx,       c,

a2,       o2,       c2, d2

a3,       b3,       c3, d3

(au), (bu), (cu), (du)

= 0,

and setting a =/, b = cp, c = ^, <^ = %A., u = a we reduce the quantity in the

bracket to

{/W(Xx«).
But

{x«HxAa} X«}{%«}a'

because % and every one of the a's are equivalent symbols.    With reference to

(29) and (17) we find now

(%.«)(%«)=-(»-i)i |a,

and therefore

ß {fW }W = ß {fcpf }A + & {/W },

/3{/0^r=(/0t)A.

For ?i variables the proof is quite analogous by using the identity

(80)
a\ a'i.

(alu)    (a2u)    (a3u)    ■■■    (a"u)

= 0.
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Thus we have also for the general case of n variables the result

(81) /3{/}w = (/)„•
In order to determine

(/)W-/8W{/}+/S{/}«

we have to find the value of ßk).

The covariantive differentiation of the equation

ft!/3"2= {a}2

leads to
-2n\ß-3^=2{a}{ayK\

This reduces by means of (79) to

2
ß2{a)(a\K)=0,\. e.,

(82) ff» = 0.

With respect. to covariantive differentiation the quantity ß represents a con-

stant.

Now we have from (81) and (82) the important result

(83) (/)<*> = (/),.

By means of this and the preceding theorems and definitions the third and

higher covariantive derivatives can now be formed without any further difficulty.

One of the advantages of computing with covariantive derivatives lies in the

fact that the product of a first and a second covariantive derivative of a symbol

vanishes.

Indeed from

fkfm = efMfa)Á<Pu)

it follows by means of (33) that

(84) /*/w-0,
and also

(85) (fu)f^ = 0.

The following formulas can now easily be established :

(86) (/)(/)<*> = (/)(/)„= -(/)<(/)»•

(87) [rk\xa)+ffxa)k][fa]=1n[x^(fa) + xi(fa)k-][fa-].    From (31).

(88) ((aw),/, u)u) [fa] = \ ((fa), x, u),a) [fa]. From (43),
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where  the   suffix (d)  indicates ordinary or covariantive differentiation with

respect to any number of variables.

(89) [/;(*«)*-/*(*«),]<,) [/«] = l [^Ä-**(>)<]«[>]•   From (42).

($0) f^(faUxa)=fik(fa\(xa).

(91) (farfl(xa) = (fa)ikf(xa).

(92) ft<Já)t{f*\-\ xt(fa)k{fa\ -f™ (fa ),(«. ). From (55).

(93) f(fa\(xa)k = - [/*> (fa\ +/,(/« )<*"] (xa). From (33).

(94) f(fa)™(xa) - - \ *,(/«),(/«),. From (92) and (93).

(95) fi{(fa)l(xa)k-(fa)k(xa)l]=[f^(fa)-f^(fa)l](xa).   From(92).

(96) A{(fa), (xa),u)=(xa)k((fa),f,u)-\(fa)k{(fa),x,u).   From (92).

(97) fk{(fa),(xa),u)=(xa)k{(fa),f,u)-(fa)k{(xa),f,u).    From (96).

(98) /»((/«), (xa), u) = (xa)(f(fa), u)k + (fa)k{f, (xa),u).

(99) (f<pu)((fa), (cpa), v) = (f<pv)((fa), (cpa), u). From (97).

(100) n(n-l)[(f<pk-fkcPiy'\xya)-T-(fi<Pk-fk<pi)(xya)l][fcPa]

= 2 [(«y,, - xky^(f<^) + (xiVk - xkyi)(fcf>a)!] [fcpa].  From (36).

(101) V(f4>k -/40i)(/0«)(^«X= 2(xiVk-xkyr- From (100).

(102) n(ri-l)[(/i^-/,<p¡f)(xy«) + (/i^-/^,.)(^a)A](/^)íl

= 2(xiVk - xky.)<J$a\{f$a\.    From (100).

(103) [(f<Pk -fk<Pir(xya) + (/^, -»,)(«*»)*]

= - («*»)(/A -.A0;)(a)(/0«)m •    From (38).

(104) »(„ -1)(/A-/»*i)WC/»«)m(«V«)

= -2(xiy4-a!,2/i)(/<pa),(/^»a)H.    From (102) ahd (103).

The following formulas involving third covariantive derivatives are of special

importance for the next article.

(105) íc^') = e[<Pi(4>a)t(xa)r+ <p.(<pa)(xa)^]. From (76).

(106) «<*> - «(«■» = etf.. [(^i)», - (tf>a)r(:ca)J .
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We notice that in third covariantive derivatives the order of differentiation is

not arbitrary.

(107) ar«"> - xW = e[(p^(<pa)r - oV<r> (<pa)i] (xa).       From (106) and (92).

(108) »<*»> - x^ = e(oVirs) - <f>íiír))((pa)(xa). From (107) and (84).

(109) así*"' _ ¿i*) = e2[(<pa)r((pb)- (<pal(<t>b)r]^i(fb)(xa).   From (107).

(110) x^ - x^ = e2[ylrs(<pa)r-ylrr(<pa)s](y¡rb)(<f>b)i(xa).      From (107).

(111) [»<**> - x(i,r)] (fa) [fa] = ft(/(ir" -f^)(xa)[fa].

(112) (/(<r*> — /<*r>)(aw)(/«)» — 0. From (111).

(113) /; (/<«"•> _/(•") ) =/(">/(-*> _f<M)f(rk). From (84) _

(114) /'**> (/«*•> _/(-) ) = 0. From (76) and (112).

§ 8.   The quadrilinear covariant.

In § 6 we found a quadratic covariant expressipn. It can be shown that the

lowest covariant proper, i. e. one which does not .contain any arbitrary function

u, is quadrilinear and of the second order. This covariant occurs in Riemann's

paper: Comm.entatio mathematica, etc., whose second part is devoted practi-

cally to the analytic deduction of the propositions established in the famous

paper : Beber die Hypothesen welche der Geometrie zu Grunde liegen. The

quadrilinear covariant constitutes- the numerator of a fraction which Riemann

defines as the general measure of curvature.*

Christoffel arrived quite independently f at the same covariant ; it forms

the basis of his deductions of the conditions for the equivalence of two quadratic

differential quantics.

The covariant is defined in the four sets of differentials, d'l)x, d(2)x, d^3)x,

dwx as

(115) Gi=Yi(ikrs)d^xid^xkd^xrd^xs,%
ikrs

where (ikrs) is the quadruple index symbol:

™ ^»-a#-a#^s^{[:][t]-[:][f]l -i
* Riemann's gesammelte Werke, herausgegeben von H. Weber, 2d ed. (Leipzig, 1892), pp. 403,

412.

f In 1869. Riemann's paper Commentalio mathematica was written in 1861, but not published

until 1876, ten years after his death, by Weber-Dedekind.

t Christoffel, loc. cit., p. 58 ; Bianchi, loe. cit., p. 50.

I Riemann, loc. cit., pp. 402, 411 ; Christoffel, loc. cit., p. 54 ; Bianchi, loc. cit., p. 51.
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If now we introduce symbols, we have

(ikrs) =fjks -fjkr + (ro5l){ ¿¿^"•^''I/JIM* -fJM,k] >

which expression, considering that

ß^^F^'= (cjff) and ß2Zfm*"'m = (/)»
m

is transformed into

(ikrs) =fjk, - fjkr + e(fk<pkr -fr<f>kt)(d,a)(fa)

-/•>[/*. - «U</>«)(/«)] -fuUkr - ^(*«)(/«)]

=firru)-fuf{kr)-

This on account of (76) and (85) finally leads to

(117) (ikrs) =ßiyw^ßi>Ykr),

or also from (113),

(118) (ih-s)=fk(f^-f^).

This is the simple symbolic representation qí the quadruple index symbol

(ikrs). By means of the formulas (105)-(110) we deduce from it the following

expressions :

(119) (ikrs) = efi<Pk[(fa)r(<pa\-(fay(<pa)r].

(120) (ikrs) = e(fa)r(<pal(f<pk-fk<pi).

(121) 2(ikrs) = e(fi<Pk -fk<Pi) [(fa),(<pa).-(/«).(cpa),].

(122) (ikrs) = e2[(4,b)X<pa\-(<pa)X<pb),](ylrb)(fa)^ifk.

(123) 2(ikrs) = e2(fa)(fb)(fjk-fji)[(4?b)r(4>a\-(cpa)r(cpb)i].

(124) (ikrs)=f(irb)(fa)[^d>a)a-tA<pa)r]fk(<pb)i.

(125) 2(ikrs) = e2(^b)(fa)[fr(cpal-^(^al][fk(<Pb)i-f(<pb)k].

To each of the parentheses appearing on the right sides of these expressions

(119)-(125) we now apply formula (37), and thus we find seven expressions for

the coefficients (ikrs) of (r4, which lead at once to as many symbolic representa-

tions of Gt, furnishing at the same time the proof that Gi is a covariant of A .

It will be sufficient to write one of these seven formulas down. From (119)

we deduce

(126) (ikrs) = en((fa)(<pa)b)(f'<p'b)fi<pkf;<p's,

and

(127) (n-l)l(n-2)l Gt= ((fa)(4,a)b)(f'cp'b)fA^f:^-
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§ 9. Higher covariants.

For the general theory and for Christoffel's algebraic theory in particular

there are of paramount importance besides G4 certain covariants G5, G6,

which are linear in 5, 6, • • • sets of differentials. The process by which Chris-

toffel deduces the coefficients of G^^ from those of G appears rather compli-

cated. We shall see, however, that this process consists simply in one single

covariantive differentiation.

Christoffel denotes the coefficients of G^ by

(v* •••*»)
and defines the coefficient of G^+i by

(HV..w-!fi^_c[{M}(H„.y
(128)

Let us suppose now that (»„ i2 • • • i ) is representable as a sum of terms of the

form

(129) r-jf«...«f-,

where 31 denotes any quantity for which the law

jtfw = 3IK

holds and where
.       du1

< = ^-etc.

Applying now to every T formula (128) we obtain

Ti-M[uy..u^<{X} + <<---^ï.<{ï2 } + •••]»

which reduces by means of (76a) to

T¡ — MÏuliU2 ---ut + u]u2. . ■ ■ ■ u*t  +-(«1(ili)M2„•••«?   +■■•)!'
* L      *I*      *2 * ft     ■ *1      »21 %fL     ' \ *2 lfi     ' ZJ *

i. e., to Tw since 31w = 31..

We have then

(130) («À-••<„)-(•¿•••O10-

When we apply to the second covariantive derivatives of the «'s formula (76) it

becomes evident that T(l) consists also of terms of the type (129).    The same

*Loo. oit., p. 57.
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is therefore true for (iixi2 ■ ••*„). Finally, as (126) shows, (ixi2i3i4), i- e., our

(ikrs) is directly given considering equation (83) in the form (129). Conse-

quently equation (130) is proved for every p, > 3 .

For our purpose it is necessary to represent Gß as a single product of invari-

antive and covariantive constituents—like G4 in (127) — i. e., we have to rep-

resent the coefficients of G^ as single products of the form (129) where the

factor 31 consists of a product of invariantive constituents.*

For p. = 5 this representation can be effected as follows: From (130), (118)

and (114) we deduce at once for coefficients of G5 the simple symbolic form

(Xikrs) =fk(f^-f^).

We obtain by differentiating (119) covariantively

(Xikrs) = efcpk [(fa)r(<pa). - (>X(0«)JW

+ ^(/i0i)W[(/«)r(0«).+ (/«).(0«)J-

The second term on the right side vanishes because, for instance,

/w (/«),= -/c*r)(/«) from (84),

and
0i(0«X(/«) = Ofrom(33).

From (101) we find

[(fa)r(<pal-(fa)X<pa)r]^ = vf :<!>:( f'4>'b){( fa) (<f>a)b)K,

and from (32)

{(fa)(<f>a)b)K=2f:(f"c)(((fa)(tpa)b)c),

hence

(131) (Xikrs) = e2v(((fa)(<pa)b)c)(f'<p'b)(f''c)fi<pkf'r<p'j:,

and

(132) (n-l)\(n-l)\(n-2)\ Gb

= ({(fa)(cpa)b) c) (f't'bXf'c^cpsf'^fs.

§ 10.     The three invariants of the second order for n = 3.

In the case n = 2 there exists only one invariant (proper) of the second order,

viz., the Gaussian curvature ; for n = 3 there are three invariants, f viz.,

* I have not yet been able to overcome this difficulty in a satisfactory manner for u > 5.

fCompare Haskins, On the invariants of quadratic differential forms, Transactions of the

American Mathematical Society, vol. 3 (1902), p. 86, footnote.



1903] H.   MASCHKE :    INVARIANTS   OF   DIFFERENTIAL   QUANTICS 465

#11 ^-22 ̂ 33J+!j4l1 ^22 ^33 I + I ̂ 11 ^22 #33 IH,=

H =

I A    A    A
I       11      22      33 I

I AXX ^22 #33 I + I A. ^22 #33 I + I #11 #22 A

I 7?   7?   7?   Irr _  I -°nx^22x^33 I

A    A    A
.11      22      33 1

11      22      33 1

where the Aih are the quantities (18) and the Bik the quadruple index symbols,

viz. :

Z?n = (2323),        I?12 = (2331),        513 = (2312),

i?22 = (3131),        ¿?23 = (3112),        ¿?33=(1212).

We want to find the symbolic representation of Hx, H2, H3.

From
A A

22 23

A A■"-¡2 -^33
= ß-2axxl^uA2^33l = ^"4 and

we obtain for the first term of Hx

^2Z«1,#1,5

which by means of (120) becomes equal to

J x      J2      Ji

\ß2(fa)2(<pa)3 <px     <p2     4>3

and by replacing the a.k by the symbolic products b. bk, equal to

lßbl(fa)2(4,a)3(f<Pb).
Thus we have

2Hx = ß[bx (fa )2 (<f>a)3 + b2 (fa )3 (<j>a)x + b3 (fa )x ( <f>a)2 ] (f<j>+ ),

which leads at once to the required representation

(133) áHl=((fa)(<Pa)b)(fcpb).

For the computation of H2 and H3 we need the following theorem on

determinants. The notations Pjk, etc., denoting the minors of the elements^.,

etc., in the determinants

\pik\, k.-J, \r.f
the relation holds

P    P    P
XX 12 13

(134)   Qn  Ql2  Q1S

HIX MX2 Ml3

P2X P22 P23

S21  I22 Ï23

§31    Î32   §33

Pu Pu P33 P2I  P22 1}23 Psx Pi2 P%3

§21 §22 §23

§31    §32    §33
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In H2 = ß'{\AxxB22B33\ + \BnA22B33\ + \BuBnAa\}

we now replace b7 f% 03 (/, 03 —ft 02 ) '  etC->

and the Bik by the quantities given above where, however, we have here to use

two different sets of symbols: /', <j>', a' and/", <f>", a".

Using the abbreviation

(/a)' = (/V),etc,
we find

i\AnBaBa\ = ß\j2<p3 -/302) [(fa)'3(<pa)'x - (fa)'x(4>a)'3]

/2 03 5 /3 0, 5 / 0;

x [(fa)"x(<?a)'2-(fa)'2\à>a)'l]-

and from this

SH2 = ß*

/' 03 • /a 0Í » f'x 02

jÇ^s » fü<K> fi'4>t

/203-/302» /a 01 —fx 03' /l 02-/01

(/«)2(0«)3-(/«)3(0«)25

O )ï (0« )'2' - (/« )3' (0« )"i '

/ 03 ' /a 0i ' /i 02

/'03 ' /3  0! 5 /'02

/'0¡'/3'0í'ÍI'02

which can be transformed by proper permutation of equivalent symbols into

another expression where the elements/<£3, etc., of the second determinant are

replaced by/^>3 —/02, etc.    Applying now (134) we have

(J4H2=[((fa)'(<Pa)'f)((fa)"(<pa)"cp)

- ((fa)'(<pa)'<p) ((fa)"(<pa)"f) ] [(/0'/)(/"0"0)

and permuting/ and <p in the last term

32H2=[((fa)'(<pa)'f)((fa)"(<pa)"<p)

(135) - ((fa)'(<pa)'<p) ((fa)"(<pa)"/)] (f'<p'f)(f"<p"<p).

By using (62) for the transformation of the bracket we obtain the final form :

(136) 32H2 = ((fa)'(cpa)'b') ((fa)"(cpa)"b") (bb'b")(bf<p)(ff'<£')(&"<}>").

To compute the third invariant

#3=/34|#ii#22#33|

-(/0'0)(/'0"/)],
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we take formula (126) for the Rik.    On setting, temporarily

( fXh) ( t'x'V )( t"X"i") = ( fxb)oi2

and using the notation

in a similar sense, we find

8ZZ3=^((/a)(<i»a)è)ul2-(^ô)012

A 03 —A 02 '  ft 0i —A 03 ' A 02 —At 0i

/20¡—/¡02» •••» •••»

/103 — /a 02' '■■' ••■'

467

((/a)(<^a)5)0

(137)
■^XÍfíXifíX^

In this expression we can replace

( ̂ X6 )oi2 ■ ̂2 Xb f3 Xl f "lX

^2X3'       V'sXi»       ̂ iX

|(f%&)<(138)

But

^2X3»    ^¡XÍ»    ^1X2

^2X3'    "f'sXÏ'    ^'1X2

f2x3(fx^) = ^(Mi, + M12 + M«)'

hence (138) becomes equal to

^\Aik\.^(bb'b") = ^2(bb'b").

We find now by applying theorem (134) to the determinant in (137)

48ZZ3=((/a)(<í,a)6)ol2(66'6")[(yr<í»')(0/'>")-(#"f')(^/'0')],

and finally by permuting f and <f> in the last term

(139) 24^=((/aX0a)6)((/a)X^)'ô')((/ay'(*a)''6'')(jtr>')(*/"f')(*6'ô")-

In (133), (136) and (139) we have now the symbolic representation of the three

ternary invariants Hx, H2, H3.

§ 11.   The three simplest general invariants of the second order.

The formula for the ternary invariant Hx can at once be generalized for n

variables by letting the letter b stand for the n — 2 symbols 53, b4, • • ■ 6".

I denote this invariant by Rt, for a reason which will appear presently.

(140) R1=((fa)(<pa)b)(f<pb).
Trans. Am. Math. Soc. 31
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We have then

ZZt = 4Z?1        for        n = 3,

and 2ZT = Rx for n = 2(b= 0), where AT denotes the Gaussian curvature. To

transformH2 first, we start from (135) and multiply through by (f'<p'f) (f"4,"4>)•

The first term is then simply equal to J22 and with a slight change of notation

in the second term we have

32ZZ2 = R\ - ((fa)(<pa)b)((fa)'(<pa)'b' )(fipb')(f'cp'b).

The invariant representing the second term can now be generalized at once by

letting the letters 6' and 6" run out.    We denote it by R2.

(141) R2=((fa)(cpa)b){(fa)'(<t>a)'b')(f<pb')(f'<p'b).

We have then
%2H2=R\-R2        for        n=3.

For the transformation of H3 we deduce from the identity (79) the equation

(142) (bb'b")(ff'cp')=(bb'f)(b"f'cp') + (b'b"f)(bf'<P') + (b"bf)(b'f<p'),

and also

(143) (bbf)(<f>f"<p") = (b'f4>)(bf"<p")-(bfcp)(bf"<p") + (bb'4,)(ff'<p").

Multiplying now (142) by (<f>f"<p") and applying formula (143) to the first term

of the product, we can, after substitution into (139), permute/" and <f> in the term

arising from the last term of (143). By this permutation the last term of (143)

becomes equal to the negative term on the left side, so that in the complete

expression of H3 we can use instead of (143) the equation

2(bbf )(4f''<?■') = (Vf<p)(¥T)-(bf4>)(b'f'<p''),

and two others obtained from it by cyclical permutations of 6,6', 6". Com-

bining, we can now in H3 use the equation

2 ( 66'6" ) (ff'cp' ) (<f¡f" <f>" ) = ( bf" </>") ( bf4> ) ( b"f 'cp' )

+ (&/'0')(&'/"W'/0) + (bf<p)(bf(p')(b"f"<p")

- [(bf4>)(b'f'<p'')(b''f'cp') + (bf'cp')(b'f<p)(b''f''cp'')

+ (bf"4>")(bf'<p')(b"f<p)].
This leads to

48ZZ3=((/a)(^,a)6)012[(/<#,6')(/>'6")(/"<p"6)

+ (fW)(A<p'b)(f"<p"b')] +R\- 3RXR2.
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The second term becomes equal to the first by the interchange of the quantities

with one an¿i two accents. This gives rise to the introduction of the following

invariant B3 which now also holds for every n if we again let the letters 6,6', 6",

run out.

(144) Äs = ((/a)(^)6)((/«)'(*o)'6')((/a)"(*a)"6")(/^'X/'0'6")(/'0"o)-

We have now

48/73 =2B3 + B\- 3BX R2        for        n = 3.

In Bx, B2, R3, given by (140), (141) and (144) we have then the three

simplest invariants of n variables.

The University of Chicago,

June, 1903.


