GROUPS OF ORDER p^{m}, WHICH CONTAIN CYCLIC SUBGROUPS OF ORDER $p^{m-\vec{s} *}$

By

LEWIS IRVING NEIKIRK

Introduction.

The groups of order μ^{m}, which contain self-conjugate cyclic subgroups of orders p^{m-1}, and p^{m-2} respectively, have been determined by Burnside, \dagger and the number of groups of order p^{m}, which contain cyclic non-self-conjugate subgroups of order p^{m-2} has been given by Mililer. \ddagger

Although in the present state of the theory, the actual tabulation of all groups of order p^{m} is impracticable, it is of importance to carry the tabulation as far as may be possible. In this paper all groups of order $p^{\prime \prime \prime}$ (p being an odd prime) which contain cyclic subgroups of order p^{m-3} and none of hiyher order are determined. The method of treatment used is entirely abstract in character and, in virtue of its nature, it is possible in each case to give explicitly the generational equations of these groups. They are divided into three classes, and it will be shown that these classes correspond to the three partitions: $(m-3,3)$, $(m-3,2,1)$ and $(m-3,1,1,1)$, of m.

We denote by G an abstract group G of order $p^{\prime \prime \prime}$ containing operators of order p^{m-3} and no operator of order greater than p^{m+3}. Let P denote one of these operators of G of order p^{m-3}. The p^{3} power of every operator in G is contained in the cyclic subgroup $\{\boldsymbol{P}\}$, otherwise \boldsymbol{G} would be of order greater than p^{m}. The complete division into classes is effected by the following assumptions :
I. There is in G at least one operator Q_{1}, such that $Q_{1}^{\prime \prime \prime}$ is not contained in $\{\boldsymbol{P}\}$.
II. The p^{2} power of every operator in G is contained in $\left\{P_{\{ }\right.$, and there is at least one operator Q_{1}, such that $Q_{1}^{\prime \prime}$ is not contained in $\left\{P^{\prime}\right\}$.
III. The p th power of every operator in G is contained in $\left\{I^{\prime}\right\}$.

The number of groups for Class I, Class II, and Class III, together with the total number, are given in the table kelow:

[^0]I.

	II_{1}	II_{2}	II_{3}	II	III	Total	
$p>3$ $m>8$	9	$20+p$	$6+2 p$	$6+2 p$	$32+5 p$	23	$64+5 p$
$p>3$ $m=8$	8	$20+p$	$6+2 p$	$6+2 p$	$32+5 p$	23	$63+5 p$
$p>3$ $m=7$	6	$20+p$	$6+2 p$	$6+2 p$	$32+5 p$	23	$61+5 p$
$p=3$ $m>8$	9	23	12	12	47	16	72
$p=3$ $m=8$	8	23	12	12	47	16	71
$p=3$ $m=7$	6	23	12	12	47	16	69

The number of groups of order $p^{\prime \prime \prime}$, with cyclic subgroups of orders ν^{m}, p^{m-1}, and p^{m-2}, are given in Table II :
II.

p^{m}	p^{m-1}	p^{m-2}	
$p>2$ $m>5$	1	$2 *$	$11 \dagger$

The number of groups of order $p^{a}, \alpha=1,2,3,4,5$ are given in Table III :
III.

	$\alpha=1$	$\alpha=2 \ddagger$	$\alpha=3 \ddagger$	$\alpha=4 \ddagger$	$\alpha=5 \S$
$p=2$	1	2	5	14	51
$p=3$	1	2	5	15	66
$p=12 k-1$	1	2	5	15	$65+2 p$
$p=12 k+5$	1	2	5	15	$67+2 p$
$p=12 k-5$	1	2	5	15	$69+2 p$
$p=12 k+1$	1	2	5	15	$71+2 p$

[^1]I give in this paper the whole investigation of Class I, but only the results of Classes II, and III. The investigation as a whole will appear in the Publications of the University of Pennsylvania, Mathematics, no. 3.

Class I.

1. General notations and relutions. - The group G is generated by the two operators P and Q_{1}. For brevity we set*

$$
Q_{1}^{n} P^{\prime \prime} Q_{1}^{c} P^{\prime \prime} \ldots=[a, b, c, d, \ldots] .
$$

Then the operators of G are given each uniquely in the form

We have the relation

$$
[y, x]
$$

$$
\binom{y=0,1,2, \ldots, p^{3}-1}{x=0,1,2, \ldots, p^{m-3}-1} .
$$

$$
\begin{equation*}
Q_{1}^{p^{3}}=P^{h p^{3}} \tag{1}
\end{equation*}
$$

There is in G, a subgroup H_{1} of order p^{m+2}, which contains $\{P\}$ self-conjugately. \dagger The subgroup H_{1} is generated by P and some operator $Q_{1}^{\prime \prime} P^{c}$ of G; it then contains Q_{1}^{y} and is therefore generated by P and $Q_{1}^{1,2}$; it is also self-conjugate in $H_{2}=\left\{Q_{1}^{\prime \prime}, P\right\}$ of order p^{m-1}, and H_{2} is self-conjugate in G.

From these considerations we have the equations

$$
\begin{align*}
Q_{1}^{-\mu^{2}} P Q_{1}^{\mu_{1}^{2}} & =P^{p_{1}+k_{\mu} m^{-4}}, \tag{2}\\
Q_{1}^{-\mu} P Q_{1}^{\prime \prime} & =Q_{1}^{\beta,{ }^{2}} P^{a_{1}}, \\
Q_{1}^{-1} P Q_{1} & =Q_{1}^{\mu \mu} P^{u_{1}} .
\end{align*}
$$

2. Determination of H_{1}. Derivation of a formula for $\left[y p^{2}, x\right]^{*}$. - From (2), by repeated multiplication we obtain

$$
\left[-p^{2}, x, p^{2}\right]=\left[0, x\left(1+k p^{m+t}\right)\right] ;
$$

and by a continued use of this equation we have

$$
\left[-y p^{2}, x, y p^{2}\right]=\left[0, x\left(1+k p^{m-4}\right)^{y}\right]=\left[0, x\left(1+k y p^{m-4}\right)\right](m>4),
$$

and from this last equation,

$$
\begin{equation*}
\left[y p^{2}, x\right]^{n}=\left[s y p^{2}, x\left\{s+k\binom{s}{2} y p^{w^{\prime \prime-}}\right\}\right] . \tag{5}
\end{equation*}
$$

3. Determination of H_{2}. Derivation of a formula for $[y p, x]^{\circ}$. - It follows from (3) and (5) that

[^2]$$
\left[-p^{\prime \prime}, 1, p^{2}\right]=\left[\beta \frac{\alpha_{1}^{\prime \prime}-1}{\alpha_{1}-1} p^{2}, \alpha_{1}^{\prime \prime}\left\{1+\frac{\beta k}{2} \frac{\alpha_{1}^{\prime \prime}-1}{\alpha_{1}-1} p^{\prime \prime-4}\right\}\right] \quad(m>4)
$$

Hence, by (2),

$$
\begin{gathered}
\beta \frac{x_{1}^{\prime \prime}-1}{x_{1}-1} p^{2} \equiv 9\left(\bmod p^{3}\right), \\
\left.1+\frac{\beta k}{2} \frac{x_{1}^{\prime \prime}-1}{2 x_{1}-1} p^{\prime \prime \prime-4}\right\}+\beta \frac{x_{1}^{\prime \prime}-1}{\alpha_{1}-1} h p^{\prime \prime} \equiv 1+k p^{\prime \prime \prime-4}\left(\bmod p^{m-3}\right)
\end{gathered}
$$

From these congruences, we have for $m>6$

$$
\alpha_{1}^{\prime \prime} \equiv 1\left(\bmod p^{3}\right), \quad \alpha_{1} \equiv 1\left(\bmod p^{2}\right)
$$

and obtain, by setting

$$
\alpha_{1}=1+\alpha_{2} p^{2}
$$

the congruence
and so

$$
\frac{\left(1+\alpha_{2} p^{2}\right)^{n}-1}{x_{2} p^{3}}\left(\alpha_{2}+h \beta\right) p^{3} \equiv k \cdot p^{m-4}\left(\bmod p^{m-3}\right) ;
$$

since

$$
\left(\alpha_{2}+h \beta\right) p^{3} \equiv 0\left(\bmod p^{m-4}\right)
$$

$$
\frac{\left(1+a_{2} p^{2}\right)^{p}-1}{a_{2} p^{3}} \equiv 1\left(\bmod p^{2}\right)
$$

From the last congruences

$$
\begin{equation*}
\left(\alpha_{2}+h \beta\right) p^{3} \equiv k p^{m-4}\left(\bmod p^{m-3}\right) \tag{6}
\end{equation*}
$$

Equation (3) is now replaced by

$$
\begin{equation*}
Q_{1}^{-1} P Q_{1}^{\prime \prime}=Q_{1}^{\beta \nu^{2}} P^{1+a_{2} \mu^{2}} \tag{7}
\end{equation*}
$$

From (7), (5), and (6)

$$
\left[-y p, x, y p^{\prime}\right]=\left[\beta x y p^{2}, x\left\{1+\alpha_{2} y p^{2}\right\}+\beta k\binom{\dot{x}}{2} y p^{m+-t}\right] .
$$

A continued use of this equation gives

$$
[y p, x]^{s}=\left[s y p+\beta\binom{s}{2} x y p^{2}\right.
$$

$$
\begin{equation*}
\left.x s+\binom{s}{2}\left\{\alpha_{2} x y p^{2}+\beta k\binom{x}{2} y p^{m-4}\right\}+\beta k\binom{s}{3} x^{2} y p^{m-4}\right] \tag{8}
\end{equation*}
$$

4. Determination of G.-From (4) and (8),

$$
[-p, 1, p]=\left[N p, a_{1}^{\prime \prime}+M p^{2}\right]
$$

Fro: the above equation and (7),

Set

$$
a_{1}^{\prime \prime} \equiv 1\left(\bmod p^{2}\right), \quad a_{1} \equiv 1(\bmod p)
$$

$$
a_{1}=1+a_{2} p
$$

and equation (4) becomes

$$
\begin{equation*}
Q_{1}^{-1} P Q_{1}=Q_{1}^{\iota_{1}^{\prime \prime}} P^{1+\sigma_{2} l^{\prime}} . \tag{9}
\end{equation*}
$$

From (9), (8) and (6),

$$
\left[-p^{2}, 1, p^{2}\right]=\left[\frac{\left(1+a_{2} p\right)^{p^{2}}-1}{a_{2} p} \iota_{p},\left(1+a_{2} p\right)^{\mu^{2}}\right]
$$

and from (1) and (2),

$$
\begin{gathered}
\frac{\left(1+a_{2} p\right)^{p^{2}}-1}{a_{2} p} b p \equiv 0\left(\bmod p^{3}\right), \\
\left(1+a_{2} p\right)^{p^{2}}+b h \frac{\left(1+a_{2} p\right)^{n^{2}}-1}{a_{2} p} p \equiv 1+k p^{m-4}\left(\bmod p^{m-3}\right) .
\end{gathered}
$$

By a reduction similar to that used before,

$$
\begin{equation*}
\left(a_{2}+b h\right) p^{3} \equiv k p^{m-4}\left(\bmod p^{m-3}\right) \tag{10}
\end{equation*}
$$

The groups in this class are completely defined by (9), (1) and (10).
These defining relations may be presented in simpler form by a suitable choice of the second generator Q_{1}. From (9), (6), (8) and (10),

$$
[1, x]^{p^{3}}=\left[p^{3}, x p^{3}\right]=\left[0,(x+h) p^{3}\right] \quad(m>6)
$$

and, if x be so chosen that

$$
x+h \equiv 0\left(\bmod p^{m-6}\right),
$$

$Q_{1} P^{x}$ is an operator of order p^{3} whose p^{2} power is not contained in $\{P\}$. Let $Q_{1} P^{x}=Q$. The group G is generated by Q and P, where

$$
Q^{p s}=1, \quad P^{m-s}=1
$$

Placing $h=0$ in (6) and (10) we find

$$
\alpha_{2} p^{3} \equiv a_{2} p^{3} \equiv k p^{m-4}\left(\bmod p^{m-3}\right)
$$

Let $\alpha_{2}=\alpha p^{m-7}$, and $a_{2}=a p^{m-7}$. Equations (7) and (9) are now replaced by

$$
\begin{align*}
& Q^{-p} P Q^{p}=Q^{\beta p^{2}} P^{1+a p m-5}, \\
& Q^{-1} P Q=Q^{\langle p} P^{1+a p m-6} \tag{11}
\end{align*}
$$

As a direct result of the foregoing relations, the groups in this class correspond to the partition ($m-3,3$). From (11) we find

$$
[-y, 1, y]=\left[b y p, 1+a y p^{m-6}\right] \quad(m>8) . *
$$

[^3]It is important to notice that by placing $y=p$ and p^{2} in the preceding equation we find that

$$
b \equiv \beta(\bmod p), a \equiv \alpha \equiv k\left(\bmod p^{3}\right)(m>7) .^{*}
$$

A combination of the last equation with (8) yields

From (12) we get

$$
\begin{align*}
& {[y, x]^{\prime}=} {\left[y s+b y\left\{\left(x+b\binom{x}{2} p\right)\binom{8}{2}+x\binom{8}{3} p\right\} p,\right.} \\
& x s+a y\left\{\left(x+b\binom{x}{2} p+b^{2}\binom{x}{3} p^{2}\right)\binom{8}{2}\right. \tag{13}\\
&\left.\left.+\left(b x^{2} p+2 b^{2} x\binom{x}{2} p^{2}\right)\binom{8}{3}+b x^{2}\binom{4}{4} p^{2}\right\} p^{m-6}\right] \quad(m>8) \cdot \ddagger
\end{align*}
$$

5. Transformation of the Groups. - The general group G of Class I is specified, in accordance with the relations (2) (11) by two integers a, b which (see (11)) are to be taken $\bmod p^{3}, \bmod p^{2}$, respectively. Accordingly setting

$$
a=a_{1} p^{\lambda}, b=b_{1} p^{\prime \lambda}
$$

where

$$
d v\left[a_{1}, p\right]=1, d v\left[b_{1}, p\right]=1 \quad(\lambda=0,1,2,3 ; \mu=0,1,2)
$$

we have for the group $G=G(a, b)=G(a, b)(P, Q)$ the generational determination :

$$
G(a, b):\left\{\begin{array}{l}
Q^{-1} P Q=Q^{h_{1} p^{\mu+1}} P^{1+a_{1} p^{m+\lambda-6}} \\
Q^{\mu^{3}}=1, P^{p^{m-3}}=1
\end{array}\right.
$$

[^4]with the extra terms
\[

27 a b x y\left\{$$
\begin{array}{l}
\left.\frac{b k}{3!}\left[\binom{4}{2} y^{2}-(2 s-1) y+2\right]\binom{4}{2}+x\left(b^{2} k+a^{2}\right)\left(2 y^{2}+1\right)\binom{8}{s}\right\}, ~
\end{array}
$$\right.
\]

for $p=3$, to the exponent of P, and the terms

$$
\frac{a b}{2}\left\{\frac{2 s-1}{3} y-1\right\}(i) x y p^{2}
$$

to the exponent of Q.

Not all of these groups, however, are distinct. Suppose that

$$
G(a, b)(P, Q) \sim G\left(a^{\prime}, b^{\prime}\right)\left(P^{\prime}, Q^{\prime}\right),
$$

by the correspondence

$$
C=\left[\begin{array}{l}
Q, P \\
Q_{1}^{\prime}, P_{1}^{\prime}
\end{array}\right],
$$

where

$$
Q_{1}^{\prime}=Q^{\prime y^{\prime}} P^{r^{\prime}, p^{m-6}}, \text { and } P_{1}^{\prime}=Q^{\prime y} P^{\prime \prime},
$$

with y^{\prime} and x prime to p.
Since

$$
Q^{-1} P Q=Q^{a_{1}} P^{P^{1+\mu_{2}, m-i}},
$$

then

$$
Q_{1}^{\prime-1} P_{1}^{\prime} Q_{1}^{\prime}=Q_{1}^{\prime n_{p} p} P_{1}^{\prime}+\mu_{1}^{\prime m-6-6},
$$

or in terms of Q^{\prime}, and P^{\prime}
$\left[y+b^{\prime} x y^{\prime} p+b^{\prime 2}\binom{x}{2} y^{\prime} p^{2}, x\left(1+a^{\prime} y^{\prime} p^{m-6}\right)+a^{\prime} b^{\prime}\binom{f}{2} y^{\prime} p^{m-s}\right.$

$$
\left.+a^{\prime} b^{\prime 2}\binom{x}{3} y^{\prime} p^{m-1}\right]=\left[y+b y^{\prime} p, x+\left(a x+b x^{\prime} p\right) p^{m-6}\right] \quad(m>8)
$$

and

$$
\begin{gather*}
b y^{\prime} \equiv b^{\prime} x y^{\prime}+b^{\prime 2}\binom{x}{2} y^{\prime} p\left(\bmod p^{2}\right), \tag{14}\\
a x+b x^{\prime} p \equiv a^{\prime} y^{\prime} x+a^{\prime} b^{\prime}\binom{x}{2} y^{\prime} p+a^{\prime} b^{\prime 2}\binom{x}{3} y^{\prime} p^{2}\left(\bmod p^{3}\right) . \tag{15}
\end{gather*}
$$

The necessary and sufficient condition for the simple isomorphism of these two groups $G(a, b)$ and $G\left(a^{\prime}, b^{\prime}\right)$ is, that the above congruences shall be consistent and admit of solution for x, y, x^{\prime} and y^{\prime}. The congruences may be written

$$
b_{1} p^{\mu} \equiv b_{1}^{\prime} x p^{\mu^{\prime}}+b_{1}^{\prime 2}\binom{r}{2} p^{2 \mu^{\prime}+1}\left(\bmod p^{2}\right),
$$

$a_{1} x p^{\lambda}+b_{1} x^{\prime} p^{\mu+1} \equiv y^{\prime}\left\{a_{1}^{\prime} x p^{\lambda^{\prime}}+a_{1}^{\prime} b_{1}^{\prime}\binom{x}{2} p^{\lambda^{\prime}+\mu^{\prime}+1}+a_{1}^{\prime} b_{1}^{\prime 2}\binom{{ }_{3}^{\prime}}{3} p^{\lambda^{\prime}+2 \mu^{\prime}+2}\right\}\left(\bmod p^{3}\right)$.
Since $d v[x, p]=1$ the first congruence gives $\mu=\mu^{\prime}$ and x may always be so chosen that $b_{1}=1$.

We may choose y^{\prime} in the second congruence so that $\lambda=\lambda^{\prime}$ and $a_{1}=1$ except for the cases $\lambda^{\prime} \geqq \mu+1=\mu^{\prime}+1$ when we will so choose x^{\prime} that $\lambda=3$.

The type groups of Class I for $m>8^{*}$ are then given by

$$
\begin{align*}
G\left(p^{\lambda}, p^{\mu}\right): Q^{-1} P Q=Q^{r^{1+\mu}} P^{1+p^{m-6+\lambda}}, & Q^{r^{3}}=1, P^{p^{m-3}}=1 \tag{I}\\
& \left(\begin{array}{l}
\mu=0,1,2 ; \lambda=0,1,2, \lambda \leqq \mu ; \\
u=0,1,2 ; \lambda=3 .
\end{array}\right.
\end{align*}
$$

Of the above groups $\mathrm{G}\left(p^{\lambda}, p^{\mu}\right)$ the groups for $\mu=2$ have the cyclic sub-

[^5]group $\{P\}$ self-conjugate, while the group $G\left(p^{3}, p^{2}\right)$ is the abelian group of type ($m-3,3$).

Class II.

1. Sections. - Class II is divided into three sections.
2. Types. - The types of Section $I(m>5)$ are defined by

$$
\left(\mathrm{II}_{1}\right)\left\{\begin{array}{l}
Q^{-1} P Q=Q^{\beta h} P^{1+a p^{m-s}} \\
R^{-1} P R=Q^{t_{p}} P^{1+a \nu^{m-4}} \\
R^{-1} Q R=Q^{1+d p} P^{c^{\prime \prime m-4}} \\
R^{j}=Q^{p^{2}}=P^{p^{m-3}}=1
\end{array}\right.
$$

where the constants have the values given in the table below,
(II_{1})

	a	b		β				a	b	a	β	c	d
1	0	0	1	0	0	1	10	1	0	p	0	0	0
2		0	1	0	0	0	11	0	0	p	1	0	0
3	0	0	1	1	0	0	12	0	0	p	0	1	0
4	0	0	1	0	1	0	13	1	0	p	1	0	0
5	0	1	1	0	κ	0	14	0	1	p	0	$\boldsymbol{\kappa}$	0
6	0	0	1	1	1	0	15	0	0	p	1	1	0
7	ω	0	p	0	0	1	16	0	0	0	0	0	0
8	0	0	0	0	0	1	17	0	1	0	0	0	0
9	0	0	p	0	0	0							

The types of Section 2 are defined by

$$
\left(\mathrm{II}_{2}\right)\left\{\begin{array}{l}
R^{-1} P R=P^{1+k p^{m-1}} \\
Q^{-1} P Q=R P^{1+\epsilon p^{m-5}} \\
Q^{-1} R Q=Q^{c p} R P^{\epsilon p^{m-1}} \\
R^{p}=Q^{p^{2}}=P^{p^{m-3}}=1
\end{array}\right.
$$

where the values of the constants are given in the following table :
(II_{2})

	k			
1	1	1	0	0
2	0	1		10
3	0	1	0	ω
4	0	p		
5		p		10

$$
\begin{aligned}
& \kappa=0,1, \text { and a non-residue }(\bmod p), \\
& \omega=0,1,2, \cdots, p-1 .
\end{aligned}
$$

The groups of Section 3 are defined by

$$
\left(\mathrm{II}_{3}\right)\left\{\begin{array}{l}
Q^{-1} P Q=P R^{\gamma^{1}+\ell p m-5} \\
Q^{-1} R Q=R P^{e p m-1} \\
R^{-1} P R=Q^{p} P \\
R^{p}=Q^{p^{2}}=P^{p m-3}=1
\end{array}\right.
$$

with the values $\gamma=1$ and a non-residue $(\bmod p) ; \epsilon=1, e=0,1,2, \cdots, p-1$, and $\epsilon=p, e=0,1$, and a non-residue $(\bmod p), 2 p+6$ groups in all.

Class III.

Types. - The types of Class III are defined by

$$
\text { (III) }\left\{\begin{array}{l}
Q^{-1} P Q=P^{1+k j m-1}, \\
R^{-1} P R=Q^{\beta} P, \\
R^{-1} Q R=Q P^{a p m-1}, \\
S^{-1} P S=R^{\gamma} Q^{\delta} P^{1+e p m-1}, \\
S^{-1} Q S=R^{c} Q, \\
S^{-1} R S=R P^{j p^{m-1}},
\end{array}\right.
$$

where the constants have the values given in the table :
(III)

	a	β	c	γ	d	k		j		a	β	c	γ	δ	\boldsymbol{k}	ε	j	j
1	0	0	0	0	0	0	0	0	10	0	0	0	0	1	1	0	0	0
2	1	0	0	0	0	0	0	0	11	1	0	0	0	0	0	1	0	0
3	$\boldsymbol{\kappa}$	1	0	0	0	0	0	0	12	κ	1	0	0	0	0	1	0	0
4*	0	1	0	1	0	0	0	0	13	0	1	0	0	0	0	0	1	1
5	0	0	1	0	0	0	0	0	14*	0	1	0	1	0	0	0	1	1
6	0	0	0	0	0	1	0	0	15	0	0	1	0	0	0	0	1	1
7*	0	1	0	1	0	1	0	0	16*	0	0	1	0	1	0	0	1	1
8	0	0	1	0	0	1	0	0	17*	0	1	0	$\boldsymbol{\kappa}$	0	1	0	1	1
9^{*}	0	0	1	0	1	1	0	0										

* These groups for $p-3(k \neq 0)$ are simply isomorphic with groups in Class II.

University of Pennsylvania,
February 23, 1905.

[^0]: * Presented to the Society April, 25, 1903. Received for publication August 16, 1904, and February 25, 1905.
 \dagger Theory of (iroups of a Finite Order, pp. 75-81.
 \ddagger Transactions, vol. 2 (1901), p. 259, and vol. 3 (1902), p. 383.

[^1]: * Burnside, T'heory of Groups, Art. 65, p. 75.
 \dagger Ibid., Art. 66, p. 77 ; Miller, Transactions, vol. 2 (1901), p. 259, and vol. 3 (1902), p. 383.
 \ddagger Young, On the determination of groups whose order is a power of a prime, American Journal of Mathematics, vol. 15 (1893), pp. 124-178. Cole aud Glover, On groups uhose orders are t^{t} he product of three prime fuctors, American Journal of Mathematics, vol. 15 (1893), pp. 191-220. Hölder, Die Gruppen der Ordnunyen, $p^{3}, p q^{3}, p q r, p{ }^{4}$, Mathematische Andalen, vol. 43 (1893), pp. 301-412.
 § Bagnean, La composizione dei gruppi finiti il cui grado è lu quintu potenza di un numero primo, Annali di Matematica, vol. 3 (1898), pp. 137-228.

[^2]: * With J. W. Young, On a certain group of isomorphisms, American Journal of Mathematics, vol. 25 (1903), p. 206.
 \dagger Burnside : Theory of Groups, art. 54, p. 64.
 \ddagger Burnside : Theory of Groups, art. 56, p. 66.

[^3]: * For $m=8$ it is necessary to add $a^{2}(y) p^{4}$ to the expouents of P and for $m=7$ the terms $a(a+a b p / 2)(y) p^{2}+a^{3}\left(\frac{y}{y}\right) p^{3}$ to the exponent of P, and the term $a b(y) p^{2}$ to the exponent of Q. The extra term $27 a b^{2} k\binom{y}{y}$ is to be added to the exponent of P for $m=7$ and $p=3$.

[^4]: ${ }^{*}$ For $m=7, a p^{2}-a^{2} p^{3} / 2 \equiv a p^{2}\left(\bmod p^{4}\right), a p^{3} \equiv k p^{3}\left(\bmod p^{4}\right) . \quad$ For $m=7$ and $p=3$ the first of the above congruences has the extra terms 27 ($a^{3}+a b \beta k$) on the left side.
 \dagger For $m=8$ it is necessary to add the term $a\left(\frac{y}{z}\right) x p^{4}$ to the exponent of P, and for $m=7$ the terms $x\left\{a(a+a b p / 2)\left(\frac{y}{z}\right) p^{2}+a^{3}\left(\frac{y}{3}\right) p^{3}\right\}$ to the exponent of P, with the extra term $27 a b^{2} k\left(\begin{array}{l}\frac{y}{3}\end{array}\right) x$ for $p=3$, and the term $a b\binom{y}{y} x p^{2}$ to the exponent of Q.
 \ddagger For $m=8$ it is necessary to add the term $\frac{1}{2} \operatorname{axy}\binom{6}{2}\left[\frac{1}{3} y(28-1)-1\right] p^{4}$ to the exponent of P, and for $n=7$ the terms

 $$
 \begin{aligned}
 x\left\{\frac{a}{2}\left(a+\frac{a b}{2} p\right)\right. & \left(\frac{2 s-1}{3} y-1\right)\binom{8}{2} y p^{2}+\frac{a^{3}}{3!}\left(\binom{8}{2} y^{2}-(2 s-1) y+2\right)\binom{8}{2} y p^{3} \\
 & \left.+\frac{a^{2} b x y^{2}}{2}\binom{8}{3} \frac{3 s-1}{2} p^{3}+\frac{a^{2} b}{2}\left(\frac{s(s-1)^{2}(s-4)}{4!} y-\binom{f}{3}\right) y p^{3}\right\},
 \end{aligned}
 $$

[^5]: * For $m=8$ the additional term ayp appears on the left side of congruence (14) and $G\left(1, p^{2}\right)$ and $G(1, p)$ becomes simply isomerphic. The extra terms appearing in congruence (15) do not effect the result. For $m=7$ the additional term ay appears on the left side of (14) aud $G(1,1), G(1, p)$, and $G\left(1, p^{2}\right)$ become simply isomorphic, also $G(p, p)$ and $G\left(p, p^{2}\right)$.

