
ON  HYPERCOMPLEX  NUMBER  SYSTEMS*

BY

L. E. DICKSON

Generalization of the concept number system.

1. The usual theory relates to systems of numbers ^fi=xaiei in which the

coordinates a. range independently over all real numbers or else over all ordinary

complex numbers ; for example, the real quaternion system, or the complex qua-

ternion system. As an obvious generalization^ the coordinates may range inde-

pendently over all the marks of any field F; for example, the rational quater-

nion system.

As a further generalization, the sets of coordinates a,, ■ • •, an in the various

numbers of a system may include only a part of the sets ö,, • ■ ■, bn, each bi

ranging independently over F; for example, the integral quaternion system.

The various coordinates a,, • ■ ■, an need no< have the same range ; for example,

the numbers

(a + 2b\/2)ex + (c + 4d«/2)e2     (a, 6, c, ¿arbitrary integers)

form a closed system under addition, subtraction, and multiplication, subject to

the associative law, if we set

e\ = 2V2ex—2e2,        exe2 = e2ex = e,,       .e\ = e2.

If we make these generalizations on the coordinates, but retain the usual con-

ception of the units e., we obtain only subsystems of the usual number systems,

the case of modular fields being an exception. It is otherwise if we generalize

our conception of the units themselves, freeing them from the restriction J of

linear independence with respect to the set of all ordinary complex numbers, and

assuming merely their linear independence with respect to the given field F.

* Presented to the Society (Chicago), April 22, 1905. Received for publication February 6,

1905.
t Dickson, Definitions of a linear associative algebra by independent postulates, Transactions,

vol. 4 (1903), pp. 21-26.
% Retained implicitly by Taber, Transactions, vol. 5 (1904), p. 509.
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By this generalization we may regard an algebraic field * as a number system ;

in particular, all ordinary complex numbers form a number system * with respect

to the set of all real numbers, the units being 1, i.

The question of further generalization is considered in § 5.

Closed system of n-tuple elements with respect to afield F.

2. A set of n ordered marks a,, • ■ ■, an of F will be called an n-tuple ele-

ment a. The symbol a = ( a,, • • •, aH ) employed is purely positional, without

functional connotation. Its definition implies that a = b if and only if

a, = 0,, • • •, aH = bu.

A system of «-tuple elements a in connection with n3 fixed marks yik of F

will be called a closed system if the following five postulates hold :

Postulate I. If a and 6 are any two elements of the system, then

s = ( a, + 6,, • • •, an + bn ) is an element of the system.

Definition.    Addition of elements is defined by a © 6 = s.

Postulate II.    The element 0 = ( 0, • • •, 0 ) occurs in the system.

Postulate III. If 0 occurs, then to any element a of the system corresponds

an element a' of the system such that a © a' = 0.

Theorem.    The system is a commutative group under © .

Postulate IV. If a and 6 are any two elements of the system, then

p = (px, • • •, pn) is an element of the system, where

1, ..., n

ft=   Z   a.bkyJki (i = l, ••-,«).
j, *

Definition.    Multiplication of elements is defined by a ® 6 = p .

Postulate V.    The fixed marks 7 satisfy the relations

n n

Ç IrqliH = Z 7*7* ( r, Í, fc, t = 1, • ■ -, n ).

Theorem.    Multiplication is associative and distributive.

To make the system n dimensional, we add a sixth postulate :

Postulate VI.    If t, , • ••, r  are marks of F such that t, a, + ■ ■ ■ + t a =0
1 ' '     n 11' '       n    n

for every element ( a,, • • •, af) of the system, then t, = 0, • ■ •, rn = 0.

Theorem. The system contains n elements et = (aiX, ■ ■ ■, ain), i = 1, ■ ■ -, n,

such that \a..\ =4= 0.

Indeed, by postulate VI there occurs an element 4= 0. Hence if the theorem

is false, we may assume that the system contains v elements e,, • • •, e„,

1 5= v < n, such that not every determinant of order v in the matrix

* For these, Pkikce's theorem that all but one of the units of the first group.can be assumed

nilpotent evidently fails.    My conception of number systems is therefore wider than Taber's.
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vanishes, while all of order v + 1 in -¿W„+, vanish, (a„+u, • • -, a„+i„) being an

arbitrary element of the system.    To fix the notations, let

2>-|aJ*0 (i,j = l,--,v).

The expansion of | cy. | = 0 ( i, j = 1, ■ ■ ■, v + 1 ) gives a relation

IX«++11 = 0,        d„+x = D + 0,
i=l

in contradiction with postulate VI.

Every n dimensional closed system a complex number system.

3. This identification may be made formally by establishing a one-to-one cor-

respondence between a and 51^ e¿, where the e's have the multiplication table

e,e4« T,yJiiet.

The following method seems preferable. We define the product* pa of a

mark p of F and an element a = ( a,, • • ■, an ) to be ( pa,, • • ■, pan ). In terms

of the e{ (end of § 2) any element a is expressible uniquely :

n n

1 = 1 ¡=1

the p's belonging to F.    We introduce new units ei obtained from the e. by

applying the inverse of the transformation (a..):

e( — l£iaijej (»=i. ■ ■•. »).

so that e, = (1, 0, ■   -, 0);  •••; en = (0, 0, • • -, 0, 1).    Then

a = 5~! a.e..
J=x

We note that the ei are not in general elements of the system ; likewise for

(Px. ■ -"i/O-

On the independence of the postulates.

4. If F has a modulus <?, postulates II and III are derivable from the others ;

in postulate III we may take a'i = (q —l)ai.    If A7 is the field of integers

* The associative law a ( pa ) = ( ap ) a, and the distributive law p ( a ffi 4 ) = pa © pb then follow

from these laws for marks and from I.    We would give the same definition for ap if needed.
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modulo q, also postulate IV is redundant, since postulates I and VI insure

the presence in the system of every element a, each ai an integer ( § 2 ). In

fact, there exist integers p{ such that

n

Y^PfOy = a. (modq) 0'=1,    :, »0
i=l

Ifn=l,g = 2or3, postulate I is likewise redundant. If n = 1, postulate V

is redundant. Aside from these special cases, postulates I-VI are independent,

as shown by the following systems :

(I) Elements 0, (±1, 0, •••, 0), •••, (0, •••, 0, ± 1); each 7I>4 = °-

(II) F non-modular ; elements a, with each or an arbitrary positive integer ;

each y..k = 1.

(III) Set (II) with element 0 added ; each yrk = 0.

(IV) F +- GF[q~\; elements a, with each ai an arbitrary integral mark;

each y..k = 0 except 7.,,, while 7,,, 4= integer.*

(V) Elements a with each ai arbitrary in F; n > 1: 7„2 = ynx = 1, the

remaining y.jk all zero.     [Postulate V fails for r — t = i = 1, £ = 2. ]

(VI) Elements a with a2 = ■ • ■ = an = 0, a, arbitrary ; n > 1 ; each y..k = 0.

An example for n = 1 is the system with the single element 0 ; each 7 = 0.

Further generalization of the concept number system.

5. The simplest example of a number system the coordinates of whose ele-

ments do not all belong to a field is furnished by a reducible system, the coordi-

nates of the numbers of one subsystem belonging to a field of modulus p, those

of a second subsystem to a field either without modulus or with modulus =}= p.

To extend the definition (§2) to include this case, we take as elements

(«i»- » «J» where «i» • • » «n, belong to a field Fx; a„1+1, • -, a„1+n2 to F2;

etc. A similar change is to be made in postulate VI. Further, a y.ki vanishes

unless j, k, i belong to a single set of subscripts 1, • ••,«,; etc.

Inversely, if in all the numbers a, e, + - - • + au en of a given system,

ax, ■ -, a„x are marks of a field Fx of modulus jj; a„i+1, • • -, a„1+n2 are marks of

a field F2, ■ ■ ■, where each Fi (i > 1 ) is either without modulus or with modu-

lus +. p, then the given system is reducible, the units of the subsystems being

e,, • ■ -, eBl; e„)+1, • • -, e„1+„a; etc. Proof will be given here only for the special

case t in which each of the fields F{ (i>l) has a modulus qr Let

lij = »,, »,+ l=£ = rc, +n,.    Then

P(ejek) = (Pej)ex=0^        ?2(eJ«*)=eJ(e*?2)=0-

*For n = 2 we may use the elements Ax + A.J; Ar = aT + a,i, i2=j2 = — \,ji = — ij; viz.

the real quaternion system expressed in two units 1, j, but without y'B satisfying IV.

t Noted by Mr. Wedderbukn, who gave a different proof.
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Since p and q2 are distinct primes, there exist integers F and Q such that

Bp + Qq2 = 1.    Hence e.ek = 0.

It remains to examine the restriction that the coordinates of the numbers of

a system (or of a subsystem of a reducible system) shall belong to a field. One

would surely retain the assumption that the aggregate of these coordinates can

be extended by adjunction to an aggregate A forming a commutative group

under an operation called addition and such that a second operation called multi-

plication, obeying the associative and distributive laws, can be performed within

A. We retain the commutative law for multiplication and assume that a

product vanishes only when one factor vanishes, as otherwise in either case the

aggregate of coordinates would be fully as complicated as a number system.

Under these assumptions the aggregate forms part of a field. *

The University of Chicago,

February 5, 1905.

* See König, Algebraischen Gröszen, 1903, pp. 8-9.


