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Introduction.

In the year 1886, in the Philosophical Transactions of the Royal

Society, Mr. A. B. Kempe published A Memoir on the Theory of Mathe-

matical Form, in which, amongst other matters, he discussed the fundamental

conceptions both of symbolic logic and of geometry. The ideas there indicated

were further developed, by Mr. Kempe, in an extended paper On the Relation

between the Logical Theory of Classes and the Geometrical Theory of Points,

in the Proceedings of the London Mathematical Society for 1890.

Despite the close attention that has since then been devoted to the study of the

foundations of geometry, Mr. Kempe's views have remained almost unnoticed.

They concern, however, certain matters which recent research enables us to

regard with increasing interest. I have been led, therefore, to attempt a restate-

ment of Kempe's logical-geometrical theory. The restatement has led me to

conceptions which, although implied in those which Mr. Kempe emphasizes, pre-

sent a number of aspects which I believe to be novel, so that a considerable part

of the present research follows a path of its own. My introductory words will

indicate the nature of Kempe's contribution to the problem of the foundations

of geometry, the kind of task which his work has set before me, and my own

main interest in preparing this paper.

The fundamental ordinal relation of geometry is the relation which can be, at

pleasure, described as the triadic relation " between," or as an asymmetrical,

transitive dyadic relation, such as " before," or " antecedent to," or " sequent to."

Essentially the same relation is at the root of all serial order, and on this basis

the logic of such order has lately been elaborately discussed by Mr. Bertrand

Russell, in his Principles of Mathematics.

The axioms of geometry, as Dr. Veblen has stated them (Transactions

of the American Mathematical Society, July, 1904), consist (1) of
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assertions characterizing the •' between " relation, and duly restricting the appli-

cation of this relation so far as the "lines" of geometry are concerned, and (2)

of existential propositions defining certain entities that shall possess the rela-

tion. A similar prominence of asymmetrical transitive relations appears in Dr.

Huntington's various Sets of Postulates for numbers, groups, etc. (Ibid.,

January and April, 1905).

The algebra of logic may be viewed (as Dr. Huntington, following Mr.

Peirce and Schroeder, has lately afresh shown in detail), as depending upon

the relation of inclusion or subsumption, sometimes symbolized by —<. This

relation is dyadic and transitive, and may be either symmetrical or unsym-

metrical. Upon the basis of this one relation we can define the various opera-

tions of formal logic, such as logical multiplication and addition. If the relation

—< is in a given instance symmetrical, it ensures what is commonly viewed as

the " uniqueness " of an entity. That is : a —< a ; and if a —< 6, while b —< a,

than b= a (see Dr. Huntington's paper of July, 1904, in these Transac-

tions, for a fuller statement of the various results of these considerations).

The relation a —< b, in so far as it obtains between non-equivalent elements,

may serve to define linear series : a —< 6 —< c —< d, etc. ; where a —< c,

and a —< d. In such a series c may obviously be said to lie "between" b and

d, and the analogy to the geometrical relation "between" is in so far plain.

" Dense," and in fact, continuous linear series of the subsumption type can be

eonceived after the analogy of point series. But on the other hand, a system of

logical classes differs, with respect to linear relations, from a system of points on

a line in two very notable ways : —

(1) If a —< b —< d, and if it is also true that a —< c —< d, any one of the

three relations b —< c, c —< b, c = b, is indeed 2>ossible ; but, in case of the

logical entities, it is also possible that ô and c are such that no one of these rela-

tions actually holds between these two. Thus, Siberia is included within the Rus-

sian Empire, which itself may be viewed as included within the " Eurasian " con-

tinent. And Siberia is also included in Asia, which may also be regarded as

included within the " Eurasian " continent. These subsumptions are transitive,

and in so far linear in their type. Yet the Russian Empire and Asia do not

form a pair possessing the relation —<, read in either sense.

(2) If a —< 6 —< c —< d, and if, also, i —< 6 —< c —< j, the relations of i

and a,olj and d are similarly left indeterminate. These relations need not be

directly expressible in terms of —< at all. That is, nothing in the logical rela-

tions forbids linear series (whether dense, or continuous or not) to have two or

more "points," i. e., elements, in common, while any number of the other elements

of the series remain entirely distinct. The logical lines, as Mr. Kempe observes,

may intersect any number of times.

For this very reason, however, the system of logical entities may be viewed
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simply as much more general and inclusive than the system of the points of

space. And thus it becomes possible to regard a given space-form as a selec-

tion from amongst the entities present in a system that exemplifies the logical

relation —<. That is : One may view the points of a space as a select set of

logical elements, chosen, for instance, from a given " universe of discourse."

This thought, whose possible fruitfulness for the logical development of the

foundations of geometry I regard as highly notable, is the essential thought at

the basis of Mr. Kempe's paper of 1890, cited at the outset of this introduction.

The reason why such a thought seems promising is this : The relations

amongst logical entities are, in any case, the most fundamental relations that we

know. Experience shows us in the outer world those ordinal space-relations

which geometry generalizes in the concept of " between." But our own

thinking processes show us the meaning of the logical relation —<. The

latter relation, then, is more suited to be the basis for a theory of the logic of

an exact science, in case we can only so define and restrict its application that

our ideal geometrical relations can come to be viewed as special instances of

those forms which we can develop by the use of pure logic.

Mr. Kempe's procedure, in the paper of 1890, is, in bare outline, as follows:

He sets out, not by assuming the ordinary algebra of logic, but by defining,

through postulates, a purely abstract set of entities called by him the " base-

system," and a relation which may be viewed as a generalized " between." The

latter is the relation which, in its most general form, is characteristic of what

Kempe himself calls, later in his paper, " flat collections " of any number the

elements of the " base-system." But the relation first appears as a triadic rela-

tion, and is so characterized in the postulates. Kempe uses the notation : ac-b,

to mean the assertion : " a, b, and c, form a ' linear triad,' with b between a

and c." So far the expressions used resemble those for Dr. Veblen's general-

ized relation "in the order abc." But Kempe's linear triad has these funda-

mental properties : (1) "If abc, and a = o, then c = a = 6." (2) " If a=b,

then ac■ b and be a, whatever entity of the system c may be."* In other

words, Kempe permits the " between " relation to hold where the related ele-

ments are, for all the purposes of the operations of the system, identical ; and

then he defines the distinctness of elements by means of a restriction of the

relations that are permitted to hold in triads of distinct elements. The result

is that the " between " relation becomes Dr. Veblen's " in the order," whenever

the elements are all distinct.

The other properties of the " between " relation which are in question for

*'I vary a little the order of Mr. Kempe's statement of his principles. The relation = is

defined hy Mr. Kempe only in a very highly'abstract form which I need not here attempt to

discuss. Geometrically interpreted, if this relation holds between points, these become iden-

tical points.
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Mr. Kempe, are obtained by him through assuming two forms of triadic "trans-

versal" propositions as fundamental postulates, viz. : *

I. If two linear triads, ap b and cp-d, exist, such that (as indicated by the

notation), b is between a and p, and d is between c and p, then there exists an

entity, q, which lies, in a linear triad, between a and d, and, in another linear

triad, between b and c.

II. If, in the linear triads ab p and cp-d (as indicated by the notation),p

lies between a and b, and d between c and p, then q exists such that q lies, in

a linear triad, so that d is between a and q, while, in another linear triad, q is

between o and c.

If one interprets these assertions as relating to points in space, they become

assertions obviously relating, respectively, to the diagrams following.    But, as

I. II.

they are stated at the outset of Mr. Kempe's paper, these principles have no

specification beyond what the general properties of the linear triad, as just

defined, predetermine.

One other existential proposition Mr. Kempe uses as his fifth fundamental

principle. This is simply the proposition that any entity belongs to the base-

system whose presence there is not inconsistent with the four other principles,

—a proposition which of course formally renders the two existential principles,

here numbered I and II, superfluous ; and which leaves the account of the

" base system " inevitably somewhat unsatisfactory.

Mr. Kempe now proceeds upon this basis, to show, by a decidedly original,

although necessarily intricate procedure, that the elements of the base system, as

thus defined, possess the properties and relations of a system of logical classes,

or of other entities subject to the algebra of logic. In other words, he develops

the entire algebra of logic, including the definitions and properties of the opera-

tions of logical multiplication and logical addition, without any other assump-

tions than those simple properties of the " between " relation which have just

been stated. The proofs given are such as to apply to any finite number of the

elements.    Mr. Kempe leaves, however, some doubt as to infinite collections.

* I vary slightly Mr. Kempe's mode of enunciating these existential propositions at the outset

of his paper.
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Highly instructive observations are incidental to this development. The system

of logical entities appears as possessing a thoroughly symmetrical structure.

The " zero "-element and the " universe "-element have no essential distinction

from any other similarly related pair of " obverse " elements. Negatives, in

general appear as " obverses," because of the symmetrical contrast of their

respective relations to the remainder of the system. All the fundamental rela-

tions of logic appear as triadic rather than as dyadic. But upon this triadic

basis, polyadic relations also develop — the relations of Kempe's " Flat-collec-

tions." These collections, thus named by reason of their resemblance to the

various possible configurations of points in an n-dimensional space — "on a

line," " on a plane," " in a three dimensional space," etc. — are Mr. Kempe's

means of relating the purely logical to the geometrical entities.

The junction of his principles with the regular algebra of logic once com-

pleted, although leaving certain doubts as to the application of his proof to

infinite sets, Kempe proceeds to the geometrical application. By (1) selecting

certain " linear sets " of the elements of the base system ; and (2) selecting from

these sets those which conform to a new principle (here for the first time intro-

duced into the essay), namely, to the principle that any two of the elements of

a selected linear set shall determine the whole linear set to be selected, Kempe

is in possession of a system of foundations for a geometry of a " flat space " of

n dimensions. The further development of such a geometry is indeed merely

sketched in the paper in question. But since the " triangle-transversal " axiom

is provided for by the initial principles of the system, and since, by the selection

of the linear sets of elements, the ordinary properties of the geometrical

" between," and the axiom as to the determination of a line by any two of its

points are now also secure, Kempe's result, although only indicated in his text,

is in the main clear. A space of n dimensions is a select class or set of ele-

ments which themselves are entities in a logical "field." The selection of the

entities of a given space is arbitrary ; and so the space-forms whose entities are

selected may be varied in any way whatever which is consistent with the triangle-

transversal-axiom, and with the properties of the generalized between-relation.

The problem of the continuity of the geometric sets is only very generally

treated, and is not solved.

The wide outlook thus suggested into the theory of space-forms certainly

deserves to be better considered than Kempe's treatment of the subject has so

far been considered by mathematicians. For me, however, as a student of

philosophy, a still further interest attaches to those results which I have thus

suggested, an interest which my mathematical colleagues may also share.

The problem of the foundations of geometry is only a part of that general

problem regarding the fundamental concepts of the exact sciences which is now

so widely studied.    Kempe's research suggests that, since metrical relations, and
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therefore (as Kempe himself briefly indicated in his Theory of Mathematical

Form, § 309), the whole algebra of ordinary quantity, can be reduced, in any

system of three or more dimensions, to a series of propositions based upon purely

ordinal relations, — the entire system of the relationships of the exact sciences

stands in a much closer connection with the simple principles of symbolic logic

than has thus far been generally recognized.

Mr. Bertrand Russell, using very different methods, insists, indeed, in gen-

eral, upon the closeness of such a connection. But the distinction between the

"logic of relations," and the older "logic of classes," and of "propositions," —

a distinction which Mr. Bertrand Russell in his Principles of Mathematics

regards as something quite fundamental, seems to me to become, in the light of

Kempe's research, a distinction probably quite superficial. Hence to my mind,

Mr. Kempe's theory goes far deeper than Mr. Russell's. Give us a system of

entities of the types of logical classes, and we shall find that their relations (all

statable in terms of Kempe's "between"), are already (quite apart from a

separate " logic of relations "), certainly as rich as the totality of the relations

studied in geometry, and are, for reasons upon which Kempe has dwelt, prob-

ably as rich as the totality of the relations known to the exact sciences, at least

so far as the latter have yet been developed. The bare prospect of such a

result deserves a careful consideration, in case one takes interest in the unifica-

tion of the categories of science.    Kempe's theory promises such an unification.

The present memoir proposes to contribute towards a more precise statement

of the theory thus outlined. At the basis of my own discussion, I place, how-

ever not Kempe's " between " relation, but another fundamental relation of sym-

bolic logic which has the interest of being absolutely symmetrical, while, when

it obtains amongst n entities, it permits (upon the basis of certain simple exis-

tential propositions), the definition of the properties of Kempe's " flat collec-

tions," and so the definition of asymmetrical relations of a very high degree of

complexity. This change of starting point is the prime novelty of the present

discussion, as contrasted with Kempe's.

The contrast between symmetrical and unsymmetrical relations seems, to the

ordinary view, absolute. Mr. Russell, in his late volume, so treats it. Geom-

etry, and the ordinary algebra of quantity (as these subjects are usually treated),

seem to depend on regarding the distinction as quite fundamental. In symbolic

logic, however, as Mrs. Ladd-Franklin long ago pointed out (in her paper on

the algebra of logic in the volume called '•'■Studies in Bogie by members of the

Johns Hopkins University," Boston, 1883), a " symmetrical copula," namely

that of " inconsistency," or of " opposition," can be made to accomplish all the

work of the ordinary unsymmetrical copula —<. In other words, if I have

otherwise defined the meaning of "not," the statement "a; is inconsistent with

not-y," means the same as " x implies y."    The copula in the former case is
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symmetrical, in the latter unsymmetrical. The former expression makes explicit

the " relative product " (as it is called by Peirce and Russell) of two sym-

metrical relations (viz., "opposes" and "not"). This "relative product" is,

itself, indeed an unsymmetrical relation. But the constituents of this product

are symmetrical. This already suggests how asymmetry may be definable in

terms of symmetry.

Using as my suggestion some brief observations of Kempe (in §§ 75-82,

of his paper in the Proceedings of the London Mathematical

Society), I have therefore chosen to define, by postulates, at the outset of my

discussion, a symmetrical relation which I may call "the O-relation." This

relation is essentially polyadic, and applies at once to any number of terms

greater than one. In logical terms, this is the relation in which (if we were

talking of the possible chances open to one who had to decide upon a course of

action) any set of exhaustive but, in their entirety, inconsistent choices would

stand to one another. It is also the relation in which the members of any set

of areas stand to one another when there is no area (except the " zero "-area)

which is common to all the areas of the set at once, while together these areas

exhaust some larger surface (which therefore resembles, in its relation to them, a

logical " universe " ). Thus if> in the annexed diagram, the surface s contains

three circles, a, b, and c, and if we then agree to disregard, or to view as

stricken out or destroyed, the here shaded portions of the diagram, the circles

a,b, and c have then only the stricken-out or "zero" area in common, while

together they exhaust what we thus permit to remain of the surface s. In con-

sequence, a,b, and c here form what Kempe calls "an obverse collection," and

what I call, in this paper, an "O-collection."
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If two objects stand in the O-relation each to the other, then these two are

related as a pair of " negative " or contradictory classes, or statements, are

related to one another. But any number or multitude of objects, in case such

are otherwise permitted to exist in a given system, may stand, not in pairs, but

as a whole collection, in this relation, and will then constitute what I call an

" O-collection." The name that I give to the relation is derived from the close

analogy of such collections, even when they contain more than two elements, to

Kempe's pairs of " obverse elements." But I do not myself wish to call the

O-collections, with Kempe " obverse collections," because, as will be seen, I find

it convenient to use an expression in my text (where I speak of " mutually

obverse" collections), in a way that would make such usage confusing. Hence

I read the expression "O-collection," simply as written.

In my text the O-relation is entirely freed from dependence upon all such

examples as the ones just used, and is defined solely by postulates, and is to be

taken solely as it is there defined. The fact however that it is, in its relational

properties, identical with the "yes-no" relation — the earliest exact relation

defined by the human mind — is, in this introduction, important. For what I

am in the end to show is that all the serial and other ordinal relations known

to logic and to geometry, and all the opierations known to both, so far as they

are 2>ure exact sciences, are ultimately reducible to assertions that certain enti-

ties do, while certain entities do not stand to one another in the 2>crfectly sym-

metrical O-relation.

My procedure differs from Kempe's, not only in making this wholly symmet-

rical relation, instead of Kempe's " between," fundamental, but also in the

existential principles which I assume. Kempe's "transversal" axioms form

with me a theorem, proved late in the discussion. My own existential princi-

ples have to be wide enough to provide for the " continuity " of the system,

Or, rather, for its inclusion of infinitely numerous continuous systems, and

definite enough to make the system of the entities to which the logical calculus

is applicable a determinate manifold, inclusive of the points of a space of

n-dimensions. The usual treatment of the algebra of logic provides only for

arbitrarily determined sets of 2" or of 22" entities in a given logical system.

Kempe calls any such selected set a " full set." Kempe's further postulate, how-

ever, calling for "all entities" consistent with the formal laws, is itself indefi-

nite. In seeking adequate postulates I have been led to two observations

which, although in themselves fairly obvious, seem to me to be new, viz., (1)

a relation is here shown between the existence of logical sums and products

and the general theory of limits and of continuity ; and (2) a general defi-

nition  of the pairs of elements which  I   have called " conjugate resultants"*

* This concept of " oonjngate resultants " is generalized from Kempe's own generalization of

his " unsymmetrical resultants" in § 28 of the essay of 1890. My use of the concept differs in

many ways from his.



1905] TO   THE   FOUNDATIONS   OF   GEOMETRY 361

is made centrally important. The algebra of logic, so far as I know, has not

hitherto been brought into definite relations with the problem of the contin-

uum. This is one of the things that I here accomplish. This undertaking

involves proving all the principles of logic so as to make them applicable to

infinite sets of entities at once.    This also I have here done.

Kempe's " linear triad " of elements is represented, in any logical system of

classes, by the classes, or areas a, b, and c, which stand in the relation which is

represented in the adjoining diagram by the closed figures so lettered. Any

area c which includes the common part of a and b, and which is included within

their logical sum, is, in Kempe's phrase, such that " c is between a and 6." I

hereafter symbolize this relation, in my own way, as F(c\ab). The relation

in question is called by me the /'-relation, because it is that characteristic of

Kempe's " flat collections." The /'-relation, so long as " obverses " or " nega-

tives " exist, follows immediately from, and is equivalent to, an O-relation.

For, in the diagram if s is the total surface in which a, b, and c are included,

then when " c is between a and 6," " a, b, and c (c being the obverse of c) con-

stitute an O-collection," or " are in the O-relation."

The outcome of our discussion will show that, while logical relations can be

indifferently stated as O-relations, or stated as /'-relations, or (when once

addition, multiplication, and negation have been defined) can be stated in terms

of equivalence, the /'-relations are the only natural means of expressing the

geometrical ordinal relations. This difference, however, between the logical and

the geometrical entities, is due to the simple fact that (as Kempe points out),

when geometrical sets are considered, the obverses of the elements of any set

are excluded from that set, so that the obverses may be viewed as ideal elements

of the geometry in question. In fundamental meaning all these relations spring

from a common root.

If "m is between b and c," I sometimes call m "mediator" or again, on

occasion, " resultant " of 6 and c.    I extend the term " resultant " to include
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the case where a single element stands in an i^-relation to any collection of

elements.

The axioms or principles assumed at the outset of my discussion, in § 19, are

verifiable for a collection of areas all of which are included within a given area,

if the O-relation is interpreted as, for the sake of illustration, I have just done.

The consistency of these axioms is thus secured from the start. For the verifi-

cation of "Principle VI" of my set of principles, see §118 of my text. For

Kempe's term " base-system," I substitute " the system 2."

The considerable length of the discussion may be justified by the importance,

(1) Of a development of the principles of logic solely in terms of a symmetrical

polyadic relation ; and (2) Of the need of supplementing Kempe's results by a

theory of the continuity of the " base-system."

THE  SYSTEM  2,  AND  THE   O-COLLECTIONS.

Chapter I.    Definitions and Principles.

1. The system 2, whose structure we are to consider in what follows, consists

of certain " elements," which we shall regard, in the present discussion, as simple

and homogeneous. As symbols for these elements, we shall employ the small

letters of the alphabet: a, b, ■ ■ -, i,j, • • -, x, y, etc. In many cases, for the

sake of distinguishing one element of a set from others, we shall need subscript

marks ; and for these too we shall nearly always employ small letters, or if that

be convenient, numbers, thus: ak, bt, ■ • -, xx, x2, pv, etc. It is to be noted

however, that, unless the contrary is especially indicated, these subscripts are

merely convenient distinguishing marks ; so that the numbers when used as sub-

scripts will, in general, not possess any ordinal meaning, but will be used merely

as tags.    The few exceptions to this rule will explain themselves.

2. The elements thus symbolized may be viewed either singly, or in their col-

lections. A collection of elements will usually be in question, in what follows,

as a sort of complex or secondary unit. We shall apply predicates to collec-

tions when they are viewed as such complex units, shall compare collections,

combine them into larger collections, make partitions of them into the partial

collections of which larger collections are composed, classify collections, etc. A

collection may consist of a single element of 2, and is then called a monad, or a

monad-collection. A collection of two elements is called a pair, of three a triad,

of four a tetrad, of n elements an ra-ad. But a collection may consist of an

infinite multitude of elements. And, in fact, whenever our statements, and

whenever the conditions imposed in the course of a given investigation, do not

set definite limits to the multitude of the elements that belong to such collections

as are at any time in question, it is always to be understood that the collections
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of which we then speak are actually permitted to consist not only of any finite

number, but of any multitude whatever of elements.

3. Collections in which a single element, such as b, or x, is viewed as occur-

ring repeatedly, are to be regarded as permissible objects for our consideration ;

and if we define the number or the multitude of elements in such a collection, or

if, for any other reason, we have to treat all the various elements of a given col-

lection in various ways, then, for the purposes of the count, or of the other indi-

vidual treatment of the elements of any collection, the various repetitions of a

given element are to be treated as, in so far, distinct members of the collection

in question. Empty, or "zero " collections will not be considered in the present

discussion.

4. In order to symbolize a collection without indicating, by the mere symbol,

any assertion except the assertion that the collection consists of certain elements,

we shall write the symbols for the elements in question, separated by commas,

and in a parenthesis. Thus the symbol ( a, b ) denotes " the pair which con-

sists of the elements a and 6. " The symbol (x, x) denotes "the pair consist-

ing of x and of x repeated." The symbol (x, x, y, y, r), denotes " the collec-

tion consisting of x and of x repeated, and of y and of y repeated, and of r. "

The symbol ( xx, x2, ■ ■ ■, xr, • ■ • ) denotes " the collection consisting of xx, of x2,

and of an unspecified multitude of other elements, each of which is symbolized

by x written with some subscript." In such a case, if no restriction of the

multitude of the elements is stated, this multitude of the elements of the collec-

tion need not be limited to that of the whole numbers ; and the use of whole

numbers as subscripts is then of no special significance, beyond that of the con-

venience of such subscript-symbols. Other subscript-symbols would be equally

possible, and may, upon occasion, be used.

5. In many cases, we shall need to symbolize a collection without at the

moment designating any of the single elements of which it consists. In such

case we shall use Greek letters, a, ß, y, B, etc. (and, in a few cases, the capital

Greek letters also), as symbols for entire collections. Thus, the symbol a means

" the collection designated as a, consisting of elements which are not hereby

further specified." In such a case, the collection a may be, in fact, a perfectly

determinate collection, and the symbol a will then be merely a convenient abbre-

viation. In other cases, a may stand for an unspecified instance of some class

of collections ; the members of the collection at any time in question being left,

by the conditions of the discussion, to be otherwise determined. A collection

a or ß or B may be unrestricted as to the multitude of its elements, or may be a

monad, a pair, a triad, etc., according as the conditions of a given statement

permit or determine.

6. A frequent operation, in our discussion, will be the adjunction of elements

to an already given collection, or to elements already under consideration.    The
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symbol ( a, x ) will mean " the collection consisting of the collection a of ele-

ments together with the element x, adjoined thereto." The symbol (a, ß, y)

will mean " the collection formed by adjoining to the collection a all the elements

of the collections ß and 7." Greek letters, as symbols for whole collections,

and small letters a, x, to, etc., as symbols for elements, may thus be combined

in the same expression in order to indicate what adjunctions are at any time in

question.

7. When we speak simply of " a collection " of the elements of 2, without fur-

ther specification of the character of this collection, the order in which the ele-

ments of the collection are named, or otherwise indicated, or in which they

stand in the collection, is wholly indifferent. A collection, in such a general

case, is determined wholly by the fact that certain elements do, while certain

elements do not belong to it. The arrangement of the elements within the

collection will concern us only in case the definition of a given type of collec-

tions, or the conditions of a given problem, expressly require us to take note of

such arrangement.

8. Fundamental, in our discussion of the properties of the system 2, is a

classification of the collections of elements into those which are, and those which

are not what we shall call " O-collections." The O-collections form a class of

collections whose fundamental properties we define by the laws hereafter stated.

The symbol O ( xyz • •• ) is to be read as the statement : " The elements x, y, z,

etc., taken together, constitute an O-collection." The symbol 0(a) is to be

read as the statement : " The collection a is an O-collection." The symbol

O(ßy) is to be read as the assertion that "The total collection formed out of

the collections ß and 7 is an O-collection." At pleasure we shall also use the

abbreviated form of expression: "the collection O (xyz ■■■)," meaning "the

collection such that the assertion O (xyz- ■ •) is true." The symbol O (ax)

means that " the collection formed by adjoining the element x to the collection

a is an O-collection." The symbols O(aßyS), O(xyapqßjrS), etc., are to be

read so as to assert that whatever total collection of elements and collections is

indicated by the letters enclosed in the parentheses, is an O-collection.

9. If a collection is not an O-collection, the fact may have to be separately

asserted. We propose in the cases where, for the sake of conciseness such

usage is advisable, to call the class of all those collections which are not O-col-

lections, A"-collections. The symbol E(a) may be read at pleasure as the asser-

tion : " The collection a is not an O-collection," or again " is an A'-collection."

Correspondingly we read the symbols: E(xy) (where we also assert that"x

and y form an A'-pair," or "do not form an O-pair"); E(xa); E(xy8y),

etc.    If a is not an A'-collection, then 0(a).

In general, we shall speak of "O-pairs," "O-triads," "O-tetrads," "0-?i-ads,"

and of "A'-pairs," "A'-triads," etc., wherever our collections, whether A-col-



1905] TO   THE   FOUNDATIONS   OF  GEOMETRY 365

lections or O-collections, are restricted as to the number of elements in a way

to which we wish to call attention.

10. When we simply assert 0(a) or E(ß) of any collection, the order in

which the elements of an O-collection or of an E-collection are named or con-

sidered is indifferent. The elements in question in such cases, simply do or

do not belong to the collections in question without regard to the order in

which the elements stand.

Equivalent elements.

11. In case two elements are such that each of them can be substituted for

the other in every O-collection in which that other occurs, while leaving the

collection in question still an O-collection, then these two elements are said to be

equivalent each to the other or to be mutually equivalent elements* But if

there exists an O-collection into which either of these elements enters, while the

other cannot be substituted for the first, in that collection, without altering it

into an /'-collection, then the two elements are not equivalent. The equation

x — y means, therefore, in the present discussion not that x and y are identical,

but simply that " either x or y may be substituted for the other in any O-collec-

tion wherein that other occurs, while the substitution leaves the collection in

question still an O-collection." In case it were possible that neither x nor y

formed a member of any O-collection, this definition would imply that they

were then also equivalent. The usual properties of the relation of equivalence

obviously follow from this definition : viz., x = x ; if x = y, then y = x ; if x,

y, and z are such that x = y, and y = z, then x=z. It is plain that, if

x = y, either x or y can be substituted for the other in any /'-collection in

which that other occurs. For if x = y, it is, by definition, impossible that

E(xa) while O(ya); hence, if E(xa), E(ya) follows; and the converse is

also obvious from the definition of equivalence.

12. As just pointed out, equivalent elements need not be identical. Hence,

although the assertion : "ais not equivalent to 6," obviously implies the asser-

tion : " a is not the same element as 6," — these two assertions must still be

carefully distinguished, since the second of them does not imply the first. For

the assertion " a is not equivalent to 6," we shall use the symbol a 4= b. This

means that " there exists at least one O-collection into which one of these ele-

ments enters, while, if the other is substituted for the first in that collection, the

collection in question becomes an ^-collection."

Mutually obverse elements and collections.

13. If two elements of 2, say p and q, are such that O(pq), then p and q

are said to be mutually obverse elements, or obverses, each of the other. Mutu-

ally obverse elements are then such elements as together form an O-pair. If

the assertion O ( xx ) were true of any element, that element would be an obverse

of itself.    A given element may possess various obverses.
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14. If a set of O-pairs exists, such that, for certain existent elements of 2,

O (ab), O (cd), O(ef), 0(¡)q),etc. (this set possessing either finite or infinite

multitude), and if we suppose a collection a made up by the selection of one

member, and of one member only, from each of these pairs, and if a collection

ß is supposed to be made up out of all the remaining members of the pairs, the

collections a and ß are said to be mutually obverse collections.

15. In consequence of the formation of the collections a and ß just defined,

certain repetitions of elements may occur in a, or in ß, or in both. In such a

case, just as in the cases mentioned above, in 3, the various repetitions of any

given element are to be regarded as distinct members of the collections a and ß

in question. Thus, if the O-pair O (ab) is repeated, then, out of the two pairs

O (ab) and O (ab), treated, for the purpose in hand, as distinct pairs, we can

form, according to the procedure defined in 14, the collections (a, a), and

( 6, b ). These collections are hereupon to be regarded, by virtue of our defini-

tion, as mutually obverse collections. Again, if the pairs O(pq), O(xy),

O(mn), O(xk), and O(m.q), are given, then the collections (p, x, in,x,m),

and (q, y, n, k, q), are mutually obverse collections, as are also any two col-

lections that can be formed out of these same pairs by any permissible variation

of the procedure defined in 14. The order in which the members of each of the

mutually obverse collections are written, is again indifferent.

16. Suppose a collection S is first given Let each element of this collection

be such that it can be made to form an clement of a pair of elements which

(whether the elements of this pair are, or are not, repetitions of those present

in other pairs), is distinct from the pair of which any other element of S is a

member. If each of the pairs thus formed is an O-pair, then the collection e,

consisting of all the remaining elements of the pairs in question, is an obverse

of the collection S, while S is an obverse of e. Thus, if S is the collection

(a;, to, k, I, I), and if 0(xy), O(mj), O(kn), 0(lr) and O (Is); and if e

is the collection (y,j, n, r, s), then the collections S and e are mutually

obverse collections.

Complements and resultants.

17. In case an element q exists such that, for a given collection ß, O(ßq)

is true, the element q is called a complement of ß. In case q and r exist such

that, for a given collection ß, O(ßq) is true, while, at the same time O(qr),

then r is called a resultant of ß.

18. The properties of those collections which may be formed of the elements

of 2 are, in the main, properties determined by the existence of equivalent and

of non-equivalent elements, of obverses and of resultants, together with the exist-

ence of certain laws and principles which hold valid for the system.

19. To the statement of these principles or "postulates" we now proceed.

They may be classified under two heads.    They are : (1) General laws to which
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all O-collections, in case such exist, are to conform ; and (2) Principles requir-

ing, either conditionally or unconditionally, the existence of certain elements,

and of certain collections.

(1) Laxvs to which all O-collections conform.

I. If 0(a), then O (ay), whatever collection y may be.

II. If, whatever element bn of ß be considered, 0(Bbn), and if O(ß) is also

true, then 0(B).

(2) Principles requiring the existence of elements of 2.

III. There exists at least one element of 2.

IV. If an element x of 2 exists, then y exists such that x =+- y.

V. Whatever pair (p, q) exists, such that p =j= q, r also exists such that,

while both O(rp) and O(rq) are false, O(pqr) is true.

VI. If w exists such that O ( âw ), then v also exists such that O ( dv ), and

such, too, that, whatever element tn of & be considered, O ( vwtn ).

20. These principles may be restated, with less use of symbols, thus :

I. An O-collection remains an O-collection, whatever elements or collections

may be adjoined to it.

II. If a collection ß, consisting wholly of elements which are complements

of a collection B, is an O-collection, then S itself is an O-collection.

Ill and IV (in combination). The system 2 contains at least one pair of

mutually non-equivalent elements.

V. If any pair of mutually non-equivalent elements is given, a third element

of 2 exists which forms an O-pair with neither of the elements of this pair, but

which is such that the three elements in question together constitute an O-triad.

VI. If there exists any complement of a given collection ir, then, if to be such

a complement, there exists a complement of &, viz. v, such that every element

of ä is a complement of the pair (v, w).

At the close of the introduction a system 2 which conforms to all the fore-

going principles, has been already pointed out.

Chapter II.    Elementary Consequences of 'the Principles.

21. The elimination of obverses. If any collection a is such that x and y

exist such that O (eta;) and O (ay), while O(xy), then 0(a). This follows

directly from principle II, if the pair (x, y) be viewed as the collection ß of

that principle.

22. The correspondence of mutually obverse O-colleçtions. If any collection

7T is such that 0(tt), and if a collection p is a collection which is an obverse

collection of the collection it, then O(p). For let pn be any element of tr.

Then in p there exists (by the definition of mutually obverse collections, as given
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in 14, 15, 16), some element r such that O(pr). By principle I, we may

adjoin to the O-pair, O(pr), all the remaining elements of p besides r, and

the thus enlarged collection will still remain an O-collection; so that 0(pnp).

As an analogous result holds of every other element, pr, of tt, without exception,

it appears that it consists entirely of elements each of which is a complement of

the collection p.    Since, however, 0(7r), by principle II, O(p).

23. The elimination of common elements. If v and d are mutually obverse

collections; and if x exists such that O(ßx) and O(dx), while y exists such

that O(xy), then O(ßn). For, by 22, from O(dx) follows O(r)y), since, by

adjoining x to d, and y to 17, we form the two mutually obverse collections

(x, d) and (17, y). By adjunction, in accordance with principle I, from O(ßx)

follows O(ßr/x) and from O(rjy) follows O(ßryy). Since 0(xy), there follows,

from O(ßrjx) and O(ßrxy), by principle II, as explained in 21, O(ßn).

24. The elimination of 2)artial collections. If e consists solely of elements

which are complements of a collection X, if S and 7 are mutually obverse collec-

tions, and if O (Se), then 0(7X). For e by hypothesis consists of elements

which are complements of X. Let e be, then, an element of e. Then O(eX),

and hence, by adjunction (principle I), 0(e7\). Furthermore, S consists

wholly of elements which are complements of 7. Hence if d is an element of

S, O(dy) and hence, by adjunction (principle I), O(dyX). Any element of

e, and also any element of S, is thus a complement of (yX). Hence the O-col-

lection O(Se) consists entirely of elements which are complements of the collec-

tion (7, X). Hence the collection'(7, X) is itself an O-collection, by principle

II. If e reduces to a single element, e, then the hypotheses above stated reduce

to O (Se) and O(Xe), while S and 7 are mutually obverse collections, and the

result then becomes identical with that of 23. But if S reduces to a single ele-

ment d and 7 to an obverse element c such that O (cd), then the result is that

if e consists solely of elements which are complements of a collection X, and if

d is such that c exists such that O (cd), while O (de), then O(cX).

25. The operations of the reduction of collections through the elimination of

elements and of partial collections as explained in the foregoing, will be found

to be of fundamental significance throughout our procedure in what follows.

26. The existence of obverse elements. By virtue of principles III and IV,

there exists (x, y) such that x + y . Since x + y, it follows from the defini-

tion of equivalence (11) that there exists at least one O-collection into which

one of these elements, say x, enters ; while in that collection (whether y is also

a member of the collection in question or not), y cannot be substituted for x

without changing the collection into an A^-collection. Let a he the collection

thus characterized.    Then, by hypothesis, 0(a).

If a contains all the elements of 2, occurring either once each, or in any

multitude of repetitions, then a collection exists which contains all of the ele-
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menta of 2, and which is an O-collection. If a does not contain all of the ele-

ments of 2, nevertheless, by principle I, since 0(a), all of the elements of 2,

which do not appear in a may be adjoined to a, and the resulting collection, say

#, will be an O-collection.

Hence, in any case, there exists a collection which contains every element of

2 (each element occurring in that collection either once only, or else repeatedly),

while this collection, say &, is an O-collection.

27. Since & is such that 0(ir), every element of 2 is a complement of i?, by

principle I. Let w be any element of 2. Since io isa complement of â, it

follows by principle VI, that v exists, such that, whatever element x of 2, or of

#, be chosen, O(xvw). Since every element of & is thus a complement of the

pair (v, w), while 0(#), it follows by principle II, that O(vw) is true. By

adjoining to the pair (v, w) all the elements of 2 which do not belong to this

pair, we now have 0(2), an assertion according to which each element of 2 is

supposed to appear once, and without repetition, in the O-collection in question.

Since 0(vw)., v and w are mutually obverse elements.

Since any element whatever of 2 may be taken instead of w, while, each

time, an element would be found to take the place here occupied by v, we have

so far two results :

(1) The system 2, taken in its entirety, is an O-collection.

(2) Every element of 2 possesses at least one obverse.

28. A fundamental property of all pairs of mutually obverse elements here-

upon comes to our notice, and is as follows : Let b be any element. Let q and

r be two obverses of 6, so that O(qb) and 0(rb). Hereupon let y be any

collection such that 0(yq); that is, let the collection O(yq) be any O-collection

into which q, one of the obverses of b, enters. Then, by adjunction (principle

I), we have, since 0(br), O(bry); and, since 0(yq), O(qry) (wherein we

may of course change, as we here do, at pleasure, the order in which the mem-

bers of the O-collection are written). The collection (r, y) is thus such that,

if either of the members of the O-pair O(bq) be separately adjoined to it, the

resulting enlarged collection is each time an O-collection. Hence, by principle

II, O(ry). It thus appears that, whatever the collection y may be, if 0(qy),

O(ry) follows. By a precisely analogous reasoning we could show that if 7 is

such that O(ry), O(qy) follows. Hence the two obverses of 6 here in ques-

tion, viz., q and r, are such that either of them may be substituted for the other

in any O-collection in which that other occurs, while still leaving that collection

an O-collection. Hence by the definition of equivalence 0 = r. As the reason-

ing thus used applies to any two obverses of the same element b, whatever b is,

we have, as a result, the proposition that any two obverses of the same element

are mutually equivalent elements. That is, again, if q is an obverse of b, and

b is an obverse of r, then q = r.

Trans. Am. Melh. Soc. »S
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29. If x = y, while O (ça;) and O(ry), then, by the definition of equiva-

lence, O(rx), and from O(qx) and O(rx) follows, by 28, the proposition

q = r.    Hence all the obverses of equivalent elements are equivalent.

30. If u 4= v, while O(nu) and O(mv), then m ^ n. For if m = n, then,

by 29, u = v. Hence the obverses of non-equivalent elements are themselves

non-equivalent.

31. It thus appears that all the obverses of the same element, or of equivalent

elements, are mutually equivalent, and that non-equivalent elements cannot pos-

sess mutually equivalent obverses, still less the same obverse. Accordingly,

since equivalence here means capacity for mutual substitution in O-collections,

we may henceforth let a single one of the obverses of a given element represent

the whole class of these obverses, for all the purposes involved in the present

discussion of O-collections. This uniquely selected representative of all the

obverses of any element x, we shall henceforth regard, therefore, as the obverse

of », and as equivalent to the obverse of any element equivalent to x. We

shall symbolize this single representative of all these obverses by x, or, in gen-

eral, by writing a bar above the symbol of the element of which at any time we

define the obverse, x cannot be equivalent to the obverse of any element which

is not equivalent to x. As the unique representative of the obverses of x we

may hereupon take an element symbolized by x.

32. By definition, and by 31, x = x ; and x will henceforth be so chosen as

to be identically the same element as x. The operation of obversion (that is, of

finding, for any element x, the unique representative, x, of the class of elements

any one of which forms, with x, an O-pair), hereupon becomes an entirely univ-

ocal operation. This operation, if once repeated, is so defined as to be an

operation which restores to us the original element.

33. When one collection, B, is an obverse of another collection, e (see 14,15,

16), each of these collections, by the substitution of the equivalent elements (in

case such substitution is required for the purpose), may be made into a collec-

tion consisting wholly of the unique representatives of the obverses of the

various members of the other collection. An obverse of the collection B, thus

reduced to the form of a collection of the unique representative obverses of the

elements of B, shall henceforth be symbolized, in our discussion, by B~. By the

symbol 3 we mean, therefore, a certain chosen unique representative of all those

collections any one of which is an obverse of the collection B. The collection B

may then be so chosen as to be identical with S.

34. If a = 6, then O(al) and O(bä). For O(aa) by definition (13, 31).
Hence, since a = 6, and since, by the definition of equivalence, we can accord-

ingly substitute 6 for a in O(aä), we have O(bä). And since O(bb), we

have, by the substitution of a for b, O (ab). On the other hand, if either

O (ab), or 0(6â), is known to be true, then, by the definition of obverses, a is
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an obverse of 5, or 6 is an obverse of a, as the case may be. But in either

case, since obverses of the same element or equivalent elements are equivalent,

ä = b, and a = b.

35. A fundamental characteristic of the system 2 is, further, the fact that :

No monad is an O-collection. For if 0(x), then, by adjunction (principle I),

O(xx). By the same principle, if O(x), O(xq), whatever element q may be.

Hence any monad q is such that whether x, or an obverse of x (namely x itself),

be adjoined to a, always O(xq). Hence, by principle II, O(q). Therefore

if a single element x exists such that O(x), every element of 2, as for instance

q, is such that O(q). Hence, by principle I, whatever collection of elements

be adjoined to any element q of 2, the resulting collection is an O-collection.

Hence (by 11), since all possible collections are thus O-collections, all the ele-

ments of 2 are mutually equivalent. But this contradicts principle IV. Hence

it is impossible that any monad x should exist such that O(x). Every monad,

therefore, is an A"-collection.

36. It will be convenient, at this point, to restate the theorems of 21-24 in

the notation for obverse elements which has now been adopted :

(1) If 0(aa;) and O(dx), then 0(a) (see 21).

(2) If 0(\r), then 0(ñ) (see 22).

(3) If O(ßx) and O(dx), then O(ßd) (see 23).

(4) If O (Se), while X exists such that 0(Xen) for every element en of e, then

0(S~X) (see 24).

(5) If O (de), while X exists such that 0(Xen) for every element en of e, then

O(dX) (see 24).

37. Any repetitions of an element which occur in an O-collection may be

stricken out, so that the element in question occurs but a single time ; and the

resulting collection will still be an O-collection. For suppose a to be a collec-

tion consisting wholly of the element a, repeated any multitude of times. And

suppose ß to be such that O (aß). From O (aß) follows by 36 (2), 0(äß).

If any element, either of 5, or of ß, be adjoined to the collection (a, ß) (which

consists of a, occurring only once, with ß adjoined), it is plain that the result-

ing collection will be enlarged so as to constitute an O-collection. For 0(aäß);

and, if 6n be any element of ß, and 5n the obverse of this element 0(aß7>n).

The collection (5/3), consisting entirely of complements of (a, ß), is thus an

O-collection.    Hence O (aß), by principle II.

38. It further follows that, if ß itself is also a collection consisting solely of

a repeated, and if O (aß) then the collection O (aß) which now consists solely

of a repeated, can be reduced to O(aa), and hence to 0(a). But 0(a) is

impossible by 35. Hence no collection consisting solely of repetition?, of a

single element can be an O-collection. Every such collection must be an F-

collection.
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It still further follows that, no element is equivalent to its own obverse. For

since O(xx), it follows, by the definition of equivalence, that, if x = x, O(xx),

Hence by 37, O(x).    But this, by 35, is impossible.

39. If a and b are such that the mutually obverse pairs (ä,b) and (a,b) are

such that O(äbx) and O(abx), then by 21 and 22, O (ab). Hence, by 34,

a = b.

40. If any collection B is such that 0(B) is false, so that E(B) is true, it

follows, from principle I, that if e is any collection such that e consists wholly

of elements which belong to the collection 8, while e does not include all of

these elements, then 0(e) is false. Fot if 0(e), then, since B may be formed

from e by adjoining to e certain elements, principle I would require that 0(B)

should be true. Whatever elements, therefore, we omit from an /'-collection,

S, the remaining elements form an /^-collection. Or, in other words, if a col-

lection is an ¿^-collection, all possible partial collections that can be formed by

selecting some of its elements, and omitting others, are also /'-collections, so that

if 6 is any such partial collection, 0(e) is false.

41. If E(ab~), then a 4= b. For if a = 5, then, by 34, O (ab), which con-

tradicts the hypothesis E(ab). And, on the other hand, if a and b are such

that a 4= 0, then E( ab), for if not, then O (ab), and, therefore, by 34, a = b,

which contradicts the hypothesis a 4= b. Thus then, if two elements, x and y,

form an E pair, the obverse of either of these elements is not equivalent to the

other element; i. e., x 4= y; and x 4= y- Plainly, furthermore, if E(xy), then

E(xy), and conversely, again, if x exists such that either E(abx) or E(abx)

is true, then, by 40, either E(ab), or else E(ab) is true. But as we have just

seen each of the assertions: E(ab) and E(ab), implies the other, and also

implies a 4= b. In the same way, if E(xyz), then E(xy), E(yz) and E(xz).

Hence x 4= y-> y 4= ¡s» etc. In general, if E(a), and if x and y are any two of

the elements of a, then, by 40, E(xy), and hence x 4= y- This is also imme-

diately evident from principle I, and from the definition of obverses. For

if x = y, then O(xy), and then any collection into which both x and y enter

is, by principle I, an O-collection.

42. If i?(fx),and if x be any element whatever, then either E(ax) or

E(dx) must be true. For if neither of these assertions is true, then O (ax)

and O (ax); and then, by principle II, 0(a).

43. By 35 every monad is an ^-collection. Let xand y be any two elements

of the system 2. Each of these elements possesses an obverse. Since E(x),

by 42 either E(xy) or E(xy) is true; and since E(y), either E(xy) or

E(xy) is true.

Chapter III.    The /'-Collections.

44. If two collections, ß and v, are such that O(ßrj), then the collections

ß and v stand to each other in a relation which we shall also, at pleasure, express
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by the symbol F(ß | r¡), wherein the symbols ß and v appear with a short verti-

cal line between them. This symbol then, in the first place, expresses precisely

the same facts that are expressed by the symbol O(ßrj). That is the symbol

F(ß\r)) may at pleasure be read as the assertion : "The collection consisting

of ß taken together with the collection n (the collection which is the obverse of

7?), constitutes in its totality, an O-collection." Since, by 22 and 33, O(ßn)

implies O(ßn), and conversely, the symbol F(ß\v) could equally well be

read: — "The collection (ß, rj) is an O-collection." But the symbol F(ß\-n)

is especially intended to emphasize the fact that, when O(ßrj), and conse-

quently when O(ßrj), the collections ß and n stand to each other in a relation

which is mediated by the existence of their respective obverse collections, ß

and n are then collections such that each, if adjoined to the obverse of the other

collection, unites with that obverse, to constitute a total collection that is an

O-collection. Expressing this fact with a primary reference to ß and v, instead

of to ß and rj, or to ß and v, the symbol F(ß\n) may now be read as the

assertion : " The collection ß forms, with the collection n, a determinate F-col-

lection." The special significance of the adjective determinate will appear

below. The vertical line is intended as a sort of punctuation mark, to indicate

the distinction between the two collections in question.

45. If O(y), and if hereupon 7 be in any way exhaustively divided into two

" partitions," that is, into two mutually exclusive collections of elements S and e,

such that 0(S, e) is the same collection as 7, it is plain from the foregoing that

F(S\e). So the same O-collection makes possible various different assertions

in terms of determinate A"-collections. If 7 is a collection of unrestricted multi-

tude, the multitude of the possible assertions in terms of A"-collections becomes

also unrestricted.

46. The rule for transforming our assertions so that what are explicitly

defined as O-collections shall appear in the form of explicitly designated and

determinate i^-collections, is consequently as follows: If the assertion 0(7) is

given, and if we are to express this as an assertion regarding some determinate

A^-collection, then we choose at random any partial collection S of the elements

of 7. Let e he the collection which is the obverse of the collection e, where e

consists of all the remaining members of 7, not included in S. Write F( S\e),

or, at pleasure, F(ë\S). That is, put S on one side and e on the other side of

the vertical. The way in which the partial collections included in the paren-

thesis are placed, in so far as these two collections are merely considered with

respect to their succeeding or preceding the vertical, is then capable of trans-

position at pleasure. The resulting expression is to be read, as above defined,

and as an assertion in ,. is of a determinate i^-collection. Instead of F(ë\ S),

we can equally well write F(e\S), or F(S\e).

47. The rule for the inverse operations transforming an assertion regard-
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ing a determinate A^-collection into an assertion regarding an O-collection is

now obvious. If the assertion F(a\ß) is given, then we first take the col-

lection 5, or, at pleasure ß; that is, we take the obverse collection correspond-

ing that collection which stands on one chosen side of the vertical ; and then we

combine this obverse collection with that collection which stands on the other

side of the vertical. Hereupon we write O(äß) or O(ßä), or O(ßa) or

O (aß), at pleasure.

48. In case expressions such as F(aßx\ySyz), or similarly complex symbols

appear, we read in this way : " The collections a and ß, together with the ele-

ment x, constitute a collection which, taken as a whole, forms an A"-collection

with a collection consisting of the partial collections 7 and S, and of the elements

y and a." The expression just set down asserts the same as is asserted by the

symbol O ( aßxySyz ), or as is asserted by the symbol O ( äßxySyz ).

49. If a collection, X, consists of some finite number, n, of elements, it is one

of a set or group of 2" collections which can be formed from the given collection

by first leaving that collection unchanged, and by then transforming, in every

possible way, one, two, three, • • • and finally all of the n elements of X into their

respective obverses. If one of these 2" collections is an O-collection, e. g., if the

original collection X is an O-collection ; then the collection X, which is one of

the set of 2" collections, is also an O-collection. All of the other collections of

the set are hereby required to be determinate .^-collections. But in symbolizing

these determinate .^-collections, the arrangement of the elements is no longer

wholly indifferent. One must, in each case, set upon one side of the vertical

all of those elements which, in any one of the transformed collections, are

obverses of elements of X ; upon the other side one must place all those elements

which are identical with elements of X. One is then to set the rearranged col-

lection within a parenthesis, and is to write F before this parenthesis. In each

case one thus asserts the same fact as is asserted by O ( X ) ; but does so, each

time, with a different stress upon the partial collections whose relations to one

another are thus pointed out. By means of the determinate A^-collections, one

thus analyzes, in a particular way, the various aspects of the meaning of the

assertion O(X). Yet each one of the determinate A"-collections points back,

infallibly, to the same pair of O-collections ; and also predetermines the consti-

tution of all the other determinate A"-collections of the same set; so that, in

thus emphasizing various aspects of the meaning of the assertion O(X), one

still never loses the power to return from one aspect, thus emphasized, to any or

to all the other aspects of the same assertion. The determinate A"-collections

thus defined may be grouped in ( 2" — 2 )/2 pairs ; since, in general, if F( a | ß),

F(a\ß) is true. When we enumerate the set of determinate .^-collections,

it is sufficient to name one of each pair.

50. Indeterminate F-collections.    It is, however, occasionally convenient to
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express simply the assertion that there exists some O-collection O(kX), such

that the collection (k, X) is precisely the same collection as a given collection v,

that is, such that (k, X) stands for a partition of v ; while we nevertheless leave

it entirely undetermined what one of the possible partitions of the collection 77

it is with regard to which this assertion holds true. In this case we may write

simply F(v), a symbol which we read as the assertion : "The collection v is an

(indeterminate) /'-collection." An indeterminate /'-collection may prove, when

its determination is specified, to be any one of the determinate /'-collections

which correspond to the possible partitions of v. Thus, if v is the same collec-

tion as ( k , X) and if F( k\X) is true, F( n ) is true ; while if we merely know

that F( v) is true, we know that some one of the assertions F(k\X), F(k |X'),

etc., is true—where (k, X)(k', X'), etc., are various possible partitions of the

single collection v. In the same way, if F(v), some one of the assertions

O(icX), O(ic'X'), etc., is true.

If, setting out from the assertion O(y), we consider some possible partition

of the collection 7, say (B, e), and then, instead of writing, as above (45),

F(B\ë) we write simply F(Be), we surrender some of the information conveyed

in the original assertion 0(7), as well as in the assertion F(B\ 1). For it now

no longer appears what determinate /'-collection corresponds to the indetermi-

nate /'-collection F (Sé) ; and the latter assertion tells us only that some one of

the possible partitions of the collection ( B, ë) is such that, if it is made (e. g.,

the partition (Bx, B2, ë,, ë2), wherein (Bx, B2) is the same collection as B, and

(i,, e2) the same collection as e~) — then F(Bxex | B2e~2), so that 0(o",ë, 2>2e2). It

is plain that the indeterminate /'-collections occur in pairs.   If F (a), then F (a).

51. An example will serve to distinguish more clearly the kinds of informa-

tion conveyed by the assertion that a collection is a determinate and by the

assertion that this collection is an indeterminate /'-collection. Let F(abIcd)

be true. This is equivalent to asserting O (abed). Any one of the possible

collections which can be formed by transforming (a, 0, c, d) through the sub-

stitution of the obverse of one or of more of its elements, is then also a deter-

minate /'-collection.    Thus the assertion F (ab \ cd) requires:

For the collection (a, b, c, 3) the assertion F(abcl\c);

For the collection (a, b, c, d) the assertion F(abc\d);

For the collection (a, b, c, d) the assertion F(ad\cb~);

For the collection (a, 3, c, d) the assertion F(acd\b);

and so on; while each of these assertions implies, and is implied by O (abed).

The assertion F (abed) does not necessarily imply any one of the foregoing

determinate assertions. It indicates that, of the 2" — 1 or 15 possible collec.

tions other than (a, b, c, d)in the set of collections producible from (a, b, c, d)

through the substitution of obverses, some one, and consequently (since 0(a)

implies 0(5)), some pair  of  collections, must  be  O-collections.    It would
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depend upon this pair to determine how the vertical lines which define the

•determinate A"-collections ought to be distributed in each of the various cases

which hereupon arise. Some one of these possible distributions express the

truth in each case; but the assertion F (abed) does not tell us which one this

is. Thus, if F (abed), and if we then consider the collection (a, b, c, 3), it

is possible that :

F(a\bc3), i. e., O(aot-d),and O(ahcd); or F(übe\d<), i. e., O(oocd), and

O (abed); or A"(a¿7|oc), i. e., O (abed) and O(abcd), and so on for all the

other cases.

The assertion F (abed) requires some pair of these alternative O-assertions

or some corresponding pair of the A"-assertions, to be true, but does not specify

what pair in any of the cases in question.

The indeterminate A"-collections, like the O-collections, are perfectly sym-

metrical.    In case of a pair (a, b), the alternative pairs of assertions :—

f 0(ab)\        O (ab)}
](1)        __   (2)       _     [
I        0(ab)\K      0(ab)j

are such that if the pair (1) of assertions are both true, the assertions (2) are

both of them false. Hence F( ab ) can mean only that O (ab) and O (ab) are

both of them true; while F (ab) means that both O (ab) and O (ah) are true.

Hence, in case of pairs of elements, the distinction between determinate and inde-

terminate A"-collections vanishes : and the assertion F( ab ) is perfectly deter

mínate.

Elementary properties of the F-collections : operations and transformations.

52. A number of elementary properties of A"-collections, and a survey of cer-

tain ways in which they may be transformed, may now be readily obtained froni

the already established properties of the O-collections.

(1) If F(xy) then, since 0(xy),x = y.    See 34.

(2) If F(ax\b) and A"(6:e|a), then a=b. For O(abx) and 0(abx).

See 39.

(3) If F(rx), then F(-ny) where y is any collection whatever (Principle I).

(4) If F( v ), then F( rj ), as was already observed in connection with the

definition of the i^-collections.    If F(ß|v), then F(ß\v)-

(5) If F(v\x) and F(v\x), then 0(17), since 0(rjx) and 0(r¡x). The

question may then arise whether F(r¡) is in a given case, also true. It is here

first obvious that F(v) does not follow from F(v|x) and F(v\x). For

instance, if F(ab\x) and A"(a6|x), then O(ab). But, if O(ab), a = b;

while if F(db), a = b (by (1) of the present paragraph). By 38, however, if

O (ab), it is impossible  that   a = b.     Hence, if  F( ab\x) and   F( ab\x),
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F (ab) is false. On the other hand, if 0(a), then by adjunction, O(axy) and

O(axy). Hence, in this case, F(ax\y) and F (ax \y). But in this case also

since 0(a), O(ax). And so F(a\x), i. e. F(ax), is likewise true. If

F(n\x) and F(v\x), F(n) is accordingly possible; but does not follow here-

from.

53. Any determinate /'-collection remains such when transformed according

to the following rule : Substitute for any element, or for any collection, which

stands upon one side of the vertical, the obverse of that element or collection,

transfer the obverse in question to the other side of the vertical, being careful

to retain, as the result of the transfer, at least one element on each side of the

vertical. Thus, if F(xß\yB), then F(ß\xyB), F(yßx\B), F(x\ßyB),

F(ßyB\x), etc., are all of them true. This is obvious, because all these expres-

sions mean the same as O(xßyB) or as O(xßyB).

This is called transformation by transfer. If the elements are transferred by

this rule except that all the elements are permitted at the end to stand upon

one side of the vertical, the vertical can then be omitted ; but the resulting col-

lection must be regarded as thus transformed into an O-collection.

54. If F(xß\xy) then F(ß\xy) and F(xß\y). If F(xß\ßy), then

F( xß 17 ) and F ( x \ ß~y ). That is, if the obverse of an element or of a collection,

which stands on one side of the vertical, itself stands on the other side of the

vertical, then either of the two mutually obverse collections or elements may be

stricken out (by 37). For if F(xß\xy), then O(xßxy), and so O(ßxy).

Hence F(ßx\y) and F(ß\xy). This is called a transformation by means of

the omission of superfluous obverses ; and the procedure obviously applies to

collections as well as to elements.

55. If F(a\ß), and if all the elements of a are mutually equivalent, and

all the elements of ß are mutually equivalent, then all the elements of the col-

lection are mutually equivalent.

For O (aß). Let a be one of the elements of a and b of ß. Then, by 36,

O (aß) reduces to O (ab), whence follows, by 34, a = b.

It is now obvious that any repetitions of an element which occur upon one

side of the vertical in a determinate /'-collection may be stricken out ; and also

that, by virtue of principle I, any element may be added to that collection which

stands upon either side of the vertical, so that, if F(a\ß), F(ay\ß) and

F(a\ßy), where y is any element.

Elimination-theorems for F-collections.

56. If two collections ß and B are such that there exists a collection it such

that F(8\ir), while, for every member yr of the collection it, F(yr\ß), then

F(ß\B).
For, if F(B\ v), then O (Bit).    And if F(yr\ß), then, for every member
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yr of the collection 7? it is true that 0(yrß). Substituting for the symbol 7r

the symbol e, and for yr (the representative symbol for any member of 7r), the

symbol xr (as the representative symbol for any member of the collection now

called e), we have S and ß such that there exists a collection e such that O (Se),

while, for every member xr of e, 0(xrß). Hence, by 36, and by virtue of the

properties of O-collections pointed out in 24, O(Sß). Hence F(S\ß) or

F(ß\S).
57. In case the collection S reduces to the single element d, the theorem

assumes the following form :

If any collection ß forms a determinate A"-collection with every member of ir,

separately considered, while the collection ir taken as an entirety, is such as to

form a determinate A^-collection with an element d, then ß forms a determinate

A"-collection with d.

This theorem permits the elimination of ir, in case F( d \ tt ), and in case the

set of determinate A"-collections F(yr\ß) is given, where yr is a variable for

which every element of it may separately be substituted.

58. If it reduces to a single member y, we have the result of 56 reduced to

the form :

If two collections ß and S are such that there exists an element y such that

F(y\ß) and F(y\S), then F(ß\S).

This last result furnishes a means for the direct elimination of an element y

common to two determinate A"-collections, in case y stands alone, on one side of

the vertical, in each collection. Here too we deal with a type of transitivity

whose consequences are of great importance.

59. If F(xß\yy), and F(yß\zy), then F(xß\zy). For, by transfer (53),

from F(xß\yy) follows F(xßy \y). And from F(yß\zy) follows F(ßzy \y).

Hence, by 58, we can eliminate y, and thus we obtain F(xßy\ßzy). By 54,

we may hereupon transform this .P-collection by striking out ß from the right

side of the vertical (since ß occurs on the left side), and 7 from the left side

(since 7 occurs on the right side). We thus obtain F(xß\zy), which was to

be proved.

The transformations and the type of elimination here used are typical of the

methods which are to be employed in considering and in combining A"-collec-

tions. These methods correspond to the adjunctions and eliminations already

used in case of O-collections.

60. The result of 59 is the principal theorem relating to the transitivity of

the relations involved in .^-collections. Its importance justifies a proof directly

in terms of the properties of O-collections.

If, namely, F(xß\yy), then O(xßyy). From this follows, by adjunction,

O ( xßyyz ). If F( yß\zy), then O ( y ßzy ) ■ From this follows, by adjunction,

O(xßyyz). From the two O-pentads, thus formed through adjunction, follows,

by principle II, O(xßyz).    Hence F(xß\yz).
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61. The hypothesis F(xß\yy) sets x in a determinate dyadic relation R to

y ; and this relation is unsymmetrical, since y does not stand in this relation to

x. The hypothesis F(yß\zy) sets y in this same relation R to z. The con-

clusion sets x in the relation R to z. The relation in question is therefore

transitive. But the unsymmetrical transitive dyadic relation in question has

been entirely derived from the wholly symmetrical relations defined by the

O-collections.

62. If ß, y, and B are given collections, and if y and e are given elements.

such that F(yß\B) and F(eB\ß), while F(e\yy), then F(yB\ß).

For by transfer (53), from F(yß\B) and F(e\yy) follow the two assertions

F(y\Bß) and F(y\ey). By 58, it follows that F(Bß| ey) ; whence follows

again by transfer F(ßyB\e). From F(eB\ß) follows, by transfer, F(e\ßB).

From this and F(Bßy\e) follows, by 58, F(ßB\yBß). By omission of super-

fluous obverses (54), we obtain F(ßB\y) and F(ß\yB).

63. lî F(x\ß) and F(y\ß), while F(xy\B) then F(S\ß).

This follows directly from 56, in case the collection it of that theorem reduces

to the pair (x, y).

64. If a, B, e are collections, and 6 and c are elements, such that (1) F(ba | B)

and (2) F(ca\B), while (3) F(bc\e), then F(B\ae).

For by (1) F(ba\B) while by (2), F(a\Be). Let b = y,and c = e. Then

F(ya\B), while F(a\8e); and, by (S), F(y\ee), i. e., F(e\yë).

Hence, by 62, F(eB \ a). Whence follows F(ae\B). That is, if two collec-

tions a and S are such that if either b or c be separately adjoined to a, the

resulting collection forms an /'-collection with B, and if the pair (b, c ) forms an

/'-collection with e, then if e itself be adjoined to a, the resulting collection

forms an /'-collection with B.

Chapter IV.    /'-triads, mediators and antecedents.

65. What elements exist in the system 2 we have as yet but very imperfectly

investigated. Yet before we proceed to this investigation, it will prove conveni-

ent to outline the general character of the order which is possible in the system

2, so far as we have yet developed this order. The fact that given elements

do or do not belong to a certain O-collection, or do or do not constitute an O-

collection, is one which appears directly to establish no sort of order amongst

the elements of 2. The relation in which various elements stand to one another

when they belong to the same O-collection, is so far absolutely symmetrical,

and nothing can be said of one member of such a collection which is not asserted

of everyone of the others, so far as this collection is concerned.

But the fact that every element of 2 possesses an obverse, enables one to estab-

lish relations between certain elements, or sets of elements, relations which are

due to the further fact that given elements may enter into O-collections with the
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obverses of certain other elements. The consequence of this is that A"-collections

are definable. Let us provisionally assume that a large variety of A"-collections

exist in 2.

66. i^-collections, if indeterminate, are, like O-collections, of a wholly sym-

metrical structure, and their members are so far undistinguished from one

another. But the members of a determinate A^-collection are no longer so sym-

metrically disposed. It is indeed true that the order in which the elements in

the set of an A"-collection on each side of the vertical are considered, is indiffer-

ent. Nor does it make any difference which set is written before or after the

vertical. But if F(ß\ y), then, in general, any element x of ß is related to any

element y of 7 in a way which is not reciprocated. For x is related to y as that

element which, in combination with some collection ß' of companion elements,

forms an A"-collection with y, when y is combined with a collection 7' of ele-

ments (ß' being the collection of the other elements of ß besides x, 7' being the

collection of the other elements of 7 besides y). This relation, if read in the

other direction, changes, in general, its character, and so is an unsymmetrical

relation.

But, as 59 has shown us, this unsymmetrical dyadic relationship is transitive.

In terms of this relation certain sets of the elements may be ordered and so

arranged in series like points on a line.

67. The fundamental form of such series becomes manifest if we pay atten-

tion to those cases of the much more general theorems regarding i^-collections,

which appear as special results if we consider only triads of elements.

In this case if, for example, A"(ac|o) or A"(ca|o), that is, if O(acb), we

shall call b " the mediator between a and c," or, where that is more convenient,

the " mediator of the pair (a, c)." The " mediator " of a pair is accordingly

an element whose obverse forms an O-triad when adjoined to that pair. If

O(pqr), then F(jiq\r), so that the obverse of any member of an O-triad is

the mediator of the pair formed by the other elements of that triad.

The relation of the mediator to the elements which it mediates may be treated

at pleasure either as a triadic or as a dyadic relation. In order to treat it as a

dyadic relation we may take account of the fact that, if F( ac \ b ), b is in a cer-

tain relation to a with respect to c, and is in a certain relation to c with respect

to a. This aspect of the matter may become especially important in case we

deal with a number of triads in which the mediators are any elements whatever,

while all the pairs mediated have a common element y. Such pairs appear if

F( ym I q ), F( y n \ r ), F( y o \ s ), etc. In all such cases q has the same relati on

to to that r has to n, and that s has to o, etc., since q is in a given relation to

m with respect to y ; and the same holds true in the other instances in question.

68. If F( yq\p), we may, whenever that is convenient, first select one element

of the pair (q, y), say the element y, and thereupon say that p is in a relation
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to q which we shall call the relation: "antecedent of q with respect to y." The

element y we may hereupon call the "origin" from which the relation is defined

or reckoned. Equally, if we choose the element q as our origin, we can say that p

is in the relation to y of being "an antecedent of y with respect to q". We

shall symbolize the assertion "p is antecedent of q with respect to y," by the

expression p —< q or q >— p ; and we can also at pleasure read either of these

expressions thus : " q is a consequent of p with respect to y." This expression

means precisely the same as the expression F(yq\p), or as the expression

0 ( yqp ). Expressing the facts in the new way, as involving the relation of

an antecedent to a consequent, has merely the advantage of bringing out certain

aspects of the situation which will be conveniently expressible in terms of a

dyadic relation — a relation which, as already pointed out, will prove to be

unsymmetrical and transitive and, therefore, useful for the definition of serial

order amongst certain specially selected elements of 2. The equivalence of

meaning of the three expressions : O ( qyp ), F(qy \p), and p —< q, enables us

at once to see how superficial is the difference between symmetrical and unsym-

metrical relations. All that any one of these three expressions asserts is that

the two perfectly symmetrical O-collections O(qyx) and 0(xp) (where x=p),

both exist as collections of the elements of 2.

69. It is of course expressly true that the relation of antecedent to consequent,

or of consequent to antecedent, has meaning only with reference to a given

origin. It is this origin which gives " sense " to the pair (pq) in the expression

p —< q. On the other hand, if a question arises as to whether the " sense," or

asymmetry, of the dyadic relation here in question, is a fundamental fact, or is

unanalyzable — this question is answered in advance by our derivation of the

whole asymmetry from the perfectly symmetrical properties which characterize

the various members of any O-collection.

The system 2, as we shall hereafter see, includes elements whose relations are

precisely the ones which are of the most fundamental importance in all the exact

sciences. The customary procedure of these sciences may be said, in the main,

to involve the definition of these relations in terms of the relation of antecedent

and consequent. Wherever a linear series is in question, wherever an origin of

coordinates is employed, wherever " cause and effect," " ground and conse-

quence," orientation in space or direction of tendency in time are in question,

the dyadic asymmetrical relations involved are essentially the same as the rela-

tion here symbolized by p —<  q.

This expression, then, is due to certain of our best established practical

instincts and to some of our best fixed intellectual habits. Yet it is not the

only expression for the relations involved. It is in several respects inferior to

the more direct expression in terms of O-relations. The range of its efficacy as

an expression will become clearer hereafter.    When, in fact, we attempt to
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describe the relations of the system 2 merely in terms of the antecedent-conse-

quent relation, we not only limit ourselves to an arbitrary choice of origin, but

miss the power to survey at a glance relations of more than a dyadic, or triadic

character.

Properties of the relation of mediator, antecedent, and consequent.

70. If A"(ao|c), and a = b, then c = a = 6. For this is a special case of

the principle proved in 55.* Furthermore, Up —< q and q —< p, then^J = q,

since this is but another expression of 52 (2). Consequently, if p 4= q, and

p —< q, then q. —<, p is false. The relation of antecedent to consequent, if it

obtains at all between a pair of non-equivalent elements, is therefore in that case

inconvertible ; hence the relation becomes totally asymmetrical so soon as it is

confined to pairs of non-equivalent elements.

71. If A"(a|6y)and F(b\cy),then If a -<„ b and b —<u c, then

F( a I cy ) and F(b\ac).

^y
«-<„ c; and b -<C

The proof is as in 59. Thus from F(b\ay), and F(b\cy) follows F(ay \ cy)

and A"(a|cy). From F(y\ab) and F(y\bc) follows F(ab\be); and conse-

quently F( b I ac ). The form of the theorem stated On the right is simply a

direct translation into the symbolism of the relation of antecedent and conse-

quent.    The latter relation is thus shown to be transitive.

72. If F(x\ab) and A"(a;|6c), while A"(o|ac), then x = b. For since

F(x\bc) while A"(6|ea), we have F(c\xb~) and F(c\bä). Whence follows

F(x\bâ); thatis F( b \ ax). From F(x\ab) and F(b\ax) follows, by 52 (2)

x = 6.

In other words, if x 4= 6, and b is a mediator of the pair (a, c), it is impos-

sible that x should be at once a mediator of the two pairs (a, b) and (b, c).

73. If F(x\ab) and F(y\ab) and If x —<a b and y -<0 ô and also

F(d\xy), then A"(d|ao).                       d -<x y, then d -<a b.

This follows directly from 63 and expresses the fact that a mediator of two

elements which, with respect to a given origin, are antecedents of the same ele-

ment, is itself an antecedent of that element with respect to the same origin.

74. If   F(yb\d),    F(yc\e)    and

F(ed\b), then F(cd\b)

If   d —<  6    and    e —<  c,   while

b —<  e, then 6 —<  c.
y

This is a special case of the proposition proved in 62. If two pairs, (b, y)

and (c, y), have a common element y, and if each pair forms a determinate

A^-triad when a term d (in one case), or e (in the other case) is set on the oppo-

site side of the vertical, and if the member 6 of the one pair is a mediator of e

and d, while d is the third member of the A"-triad in which b occurs, then b is

•a mediator of d and of c, where c is the remaining member of the other pair

(c»y)-

*This theorem is used by Kempe as a fundamental principle in defining the relation here

cal ltd that of Mediator.
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Otherwise : If, with respect to a common origin y, the elements d and e are,

respectively, antecedents of the elements b and c, so that d is antecedent of 6

and e of c, then, if b is a mediator of d and e, o is also a mediator of c and d.

75. If F(ab\d), F(ac\d) and If d -<06 and d -<ac and e -<6c,

/'(6c|e), then Z'(aejd).                          then d —<oe.

This follows from 64.

That is, whatever element is mediator of two pairs which have an element in

common, is mediator of the pair composed of the common element and of any

mediator of the pair, formed by the elements which, belonging to the original

pairs are not common to them." Otherwise, whatever element is, with respect tp

a given origin, an antecedent of each of a pair of elements, is antecedent of any

mediator of this pair.

76. Any element a is a mediator between any element y and the obverse of

y ; and any element y is a mediator between itself and any other element a.

For O(Ctyy) and O(ayy).

77. For any origin y, it is true, that y is an antecedent of itself and of every

other element, including y ; while any element a is an antecedent of itself and

of y-

For, O(yya), O(yyy) and O(yyy), while O(aay) and O(äyy).

78. Ifa^  b, then 6 -<  ä.

For O(aby), and hence F(b\ay).

79. Whatever element is, with respect to a given origin y, an antecedent of

every member of an O-collection except one, is also an antecedent of the obverse

of this excepted element.

Let it be any collection, and e such an element that 0(7re). Then, by this

hypothesis F(Tr\e). Let q be an element such that F(q\xry) is true of every

element xr of -rr so that q —<, xr. Then, by transfer, F(qy\xr). Hence the

collection (q,y) forms a determinate /'-collection, when set on one side of the

vertical, with any element of the determinate /'-collection F(ir\e) on the other

side of the vertical, except the element e. Hence, by 57, it is also true that

■F(qy\ë)-    Hence F(q\ye).    Hence q —<y e.

80. If, with respect to y, q is an antecedent of every member of a given

O-collection, then q is equivalent to y. For q is in any case an antecedent,

with respect to the origin y, of every member of the collection except any mem-

ber e. Hence q —< e. But, by the present hypothesis, q —< e is also true.

Hence O(qye) and 0(qye).     Hence 0(qy).    Hence q==y.

81. Whatever element is, with respect to a given origin, a consequent of

every member of an O-collection except one, is also a consequent of the obverse

of this excepted element.

Suppose ir such that F(ir\ ë) as before. And suppose that, for every element

xr of 7T, xr —<_ q, so that F(xr \yq) ■ By the same reasoning as that of the last

theorem F( e \ qy ) ; and hence e —<y q.
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82. If a is a consequent of every member of the collection, then it is also true

that e —<„a; whence O (aye) and O(qyè).    Hence 0(yo),and consequently

9 = y-

Chapter V.    The existence of elements,    chains,    resultants.

CONJUGATE  PAIRS   OF   RESULTANTS.      THE   ALGEBRA   OF  LOGIC.

83. In discussing, in the foregoing, the most characteristic relations of the

elements of 2, we have tacitly and provisionally assumed that elements may

exist in sufficient variety to exemplify these relations. Our existential principles

have so far been used mainly to establish the existence of pairs of obverse and

of non-equivalent elements. We must now proceed to survey, more in detail,

the actual structure of the system 2.

84. By principles III and IV, the system 2 contains a pair of non-equivalent

elements, say (xy). By 26, the pair (x, y) also exists. It is however in so far

possible that x = y, and hence that y = x. In that case the members of the

pair (x, y) become respectively equivalent to the members of the pair (y, x),

or, again, to the members of the pair (x, x). Were the system 2 to consist

merely of the single pair of mutually non-equivalent and mutually obverse ele-

ments, (x, a;), principles I, II, III, IV, and VI would all of them be true of

the system as thus restricted. For O(xx); and if, to this collection, we add

any collection 7, consisting either of x, or of x, repeated any multitude of times,

or again consisting both of x and of x, in any combination, each occuring any

multitude of times—in any case O(xxy). Hence principle I is satisfied. On

the other hand since O(xx), while, by 35, 37, E(xx), and E(xx)—the non-

equivalence of a; and x can be readily established, without taking account of any

collections except those into which x and x either jointly or severally enter. In

order that a collection ß shall consist altogether of complements of S, while

O(ß) is true, it is necessary, in case 2 contains only x and x, that ß should

include both x and x ; while S (which, by hypothesis is 6uch that 0(Sbn) for

every element 0 , of ß), must then also include both x and x. Hence if

O(ß), O (S) follows. Hence principle II would hold true if the system 2

consisted only of the pair (x, x). Principles III and IV would obviously hold

true of the same system. And considered with reference to x, its obverse, x,

is an element satisfying the requirements of principle VI ; while the same holds

true of x when it is considered with reference to x. All the principles except V

would therefore be satisfied if the system 2 consisted of the single pair ( x, x).

Chains of elements, defined by recurrence.

85. Principle V, however, is not satisfied by the existence of a single pair of

elements, such as (x, x).    For, if the pair (x, x) exists, then (since x 4= x by
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38), it follows that principle V demands the existence of ?', such that E(rxx)

and E(rxx). These two assertions require that rx 4= x and r, 4= x (by 41).

Since r, 4= S, there exists an element which we will next symbolize by r2, and

which, by virtue of principle V, is such that E(rxr2), E(r„x), and 0(rxr2x).

The obverse of r2 also exists. Since E(rxr2) it follows by 41, that r. 4= rx;

and for the precisely analogous reason, r, 4= x. At the same time F(r2\rtx).

Since r., 4= x, there also exists, by principle V, an element r3, such that E(r3r2)

and E(r3x) while 0(j'2r3x). The obverse r3 of ?3, therefore, also exists; and

is such that r3 4= r2, r3+- x, and F(r,\r%x). The procedure whereby the ele-

ments »•,, r2, and r3 have been defined is obviously a recurrent one. Repeatedly

applied it defines a chain of elements : (rx, r2, ■ ■ -, rn, ■ ■ ■), whereof any finite

number n may be at pleasure defined in a determinate order. These elements,

together with their obverses (r,,r2, ■ ■ -, rn, ■ ■ ■), all exist in 2, and possess the

following properties :

(1) x 4= »', ; »', 4= »V rt + r3; • • ■ ; r,_, 4= ?•„ ; »-n 4= ï.

(2) ^(rJ»5),^(r,|rI5),JF(r,|r15), ■■■,F(rn \rn_xx).

(3) /'(T-Jxx), /-(T-2|r,x), F(r3\7yx), ■ ■-, F(7-frn_xx).

(4) S 4= 7-, ;   r, 4= r2;  ~2+ ly,  ■■■;   rM_, 4= r,;  7, 4= x.

The expressions (3) and (4) follow directly from the truth of (1) and of (2), by

the definitions of the /'-collections, and of the relations of equivalent and of

obverse elements, and by 30, 36(2), and 52(4).

From these conditions it further follows that, if m and n are (for the moment)

viewed, not as symbols for elements of 2, but as purely numerical marks or

indices, serving to distinguish the ordinal positions of different members of the

chain (>■,, r2, • ■ -, rm, ■ ■ -, r , • • •), and if m, in the series of natural numbers,

precedes n, then :

(5) F(rjrmx); and rn + rm.

(6) P(rJTmx); andr. + T..

For, by t'.:e laws^ of the construction of the chain, F(rm+X \ruix), and

F(rm+2\rm+xx). Hence F(r¡n+.,\rmJ:), by 71. In the same way, since

^'(>'m+s\rM+^'')' tnei'e follows F(rm+Jrux). And the same process of elimi-

nation can be repeated any number of times, so that, in fine, F(rn\rmx).

Meanwhile, by the principle proved in'72, rm^,2 4= >'m- In fact, if we suppose

r ,., = )' , we have F(r ,,\r x) by construction, as well as F(r..\r.t.,x).

By the substitution of equivalents we therefore obtain :

F(rm+X\rmx) and F(rjrm+fc).

Tran«. Am. Math. Soo. 9(i
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Whence follows, by 52 (2), »■ +1 = rm, which contradicts the conditions stated in

the expressions (1). Hence r +J + rm. In the same way we can prove that

rm+3 4= rm ; and in general, y 4= rm, where n is any ordinal number that fol-

lows in. Hence the expressions (5) are proved true; and the expressions (6)

follow therefrom by considering the obverses of the elements occurring in (5).

All the members of the chain (r,, r2, • • •, rn, • • • ) are such that F(rn\rxx).

To sum up : The requirements of principle V include the assertion that, since

the pair (x, x) exists there must also exist the two distinct chains of elements :

(rx,r2, ■■■,rn, ■■■) and (»•,, r2, ■ ■ -, y, • • •).

No two of the elements of either one of these chains are mutually equivalent.

If any element of the first chain, as ry, were equivalent to a member of the

second chain, say ?B, we should have, since, by the foregoing:

F(rjrxx)        and        F(7-Jrxx),

the consequence: F(rm\rfx) and F( »y | y x ). By elimination would follow

F(rxx\rlx) ; whence would follow 0(i\x) and so rx = x, a result which is ren-

dered impossible by the conditions that define rx. Hence no element of either

chain can be equivalent to any member either of the same chain, or of the other

chain ; and all the elements of both chains are non-equivalent both to x and to x.

Since, if any element r exists in the first chain, r .. also exists (while r ,. also

belongs to the other chain), the two chains contain each an infinite number of

non-equivalent elements. The system 2 consequently contains an infinite num-

ber of mutually non-equivalent elements.

86. Herewith, however, the requirements of principle V are by no means

exhausted. For since no two elements of either chain are mutually equivalent,

any two successive elements of each chain, as, for instance, rm and r +1, are

such that, by principle V, 5, exists such that A(»y5,) and E(rm+Xsx), while

0(rmrm.,s, ).    In this case F(s.\r r  ,,), while s. 4= r    and s. 4= r  ,,.    A
\   m   m+1    I / \    I I    »i    m-tl / ' 11       m 1    '       m-rl

new recurrent process is thus defined, a process which can be employed to define

a chain (sx, s2, ■ ■ -, s., ■ ■ ■ ) where the subscripts again have the significance of

the ordinal numbers.

By 72, no two elements of this chain can be mutually equivalent. Every

member s. of this new chain must be non-equivalent to any member of the chain

( rx, r2, • • •, ?y, • • • ), as well as to any member of any chain (s[, s2 ■ ■ -,s'k, ■ ■•), ov

( tx, t2, ■ ■ ■, th, ■ ■ ■), such as can be formed by taking account of those pairs : (y , v, ),

(r3, rf), etc., which are different from the pair (r-+1, ?*m), and by applying

principle V recurrently to them. In general, if F(e\rmrm+X), and F(g\rnrn+X),

where m and n are different subscript numbers, while m precedes n in the ordi-

nal series, we can express the relations already considered by taking, if we

choose, y as an origin, and by employing the relation of antecedent and conse-

quent.    In this case we can write, upon the basis of 85 (5),
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^(e\rmrm+l)', e * rm; e + rM+1.

Whence follows e —<,., rnl+x.

Furthermore: rw+, —<r, r„ by 85 (5),

And so, if e = jr, we have :

g -<r, »V+l -<r, »*. -C, # •

This, however, is impossible. Thus no member of any one of the new chains

is equivalent to any member of any other of these new chains, or of the original

chains. Since an infinite number of different pairs of non-equivalent members

exist in the chain (rx, r2, ■ ■ -, rn, ■ ■ •), it follows that an infinite number of new

chains can be constructed upon the basis of these various pairs. The process of

forming such chains is itself recurrent.

In addition to the chains thus far defined, other chains of elements exist in

2. For since, by 85, rx 4= x, it is possible to treat the pair (rx, x) as, in 85,

the pair ( r,, x ) was treated. The result would be to define a chain of elements

(rxi Pxi P2.1 " • » Pi,> " ')' suen *naf F(pk \rxx), while, as before, no two ele-

ments of the chain are mutually equivalent. If any element of 2, say v, is

such that F(v\rxx) and F(v\rxx), we have F(v\rxx) and F(rx\vx), and

hence t«r., See also 72. It follows that no element of the new chain

except r. itself is equivalent to any element of the chain (rx, r2, ■ ■ ■, rn, ■ ■ ■).

General properties of resultants.

87. A very little consideration serves to show that a new application of prin-

ciple VI, to the chains of elements now defined, will lead to still further results.

Before we are prepared to consider these results, we must however survey the

properties of a class of elements defined in 17. Of the infinitely numerous

non-equivalent elements now known to exist in 2, collections can be made com-

prising any number of elements. These may be either /'-collections or O-col-

lections. If of the former type, the collections so made can be enlarged to

O-collections by the adjunction of suitable elements. To what laws are such

adjunctions subject?    This we are next to see.

88. If ß be any collection, any element r such that F(r\ß), is a resultant

of the collection ß, by virtue of the definition stated in 17. Since r is thus

any element such that O(ßr), and since the obverse of any element of ß may

fill the place of r in this O-collection, it is obvious that every element of ß is

also a resultant of ß. Furthermore, if any element x forms an O-collection

with any partial collection of elements of ß, x is a resultant of ß. For if

O(Xx), then O(kXx), so that if (k, X) is the same collection as ß, F(ß\x).
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89. If F(r\ß), F(t\ß) and F(u\rt) are all true there follows, by 63,

F(u\ß). Hence any mediator of a pair of resultants of a given collection is

itself a resultant of the collection. By the reasoning used in 85-86, it can

therefore be shown that any collection containing at least two non-equivalent

elements must possess an infinite number of resultants.

90. If p be the collection consisting of all the resultants, r,, »'.,, etc., of a

given collection ß, then any resultant of p is also a resultant of ß.

Let q be such that F(q\p). Then O(pq), and hence 0(pq). By the defi-

nition of a resultant, ß is a collection which becomes an O-collection if any ele-

ment of p, that is, if the obverse of any one of the resultants of ß, be adjoined

to ß. Hence ß forms an O-collection in case any member of the O-collection

O(pq), except q, is adjoined to ß. By 36(5) it follows that O(ßq). Hence

P(0\q).
The collection p is consequently a collection which contains all of its own result-

ants. It also contains the resultants of all the partial collections which can be

found by selecting certain elements from the collection ß.

91. If y is an element of 2, selected at pleasure, and if ß is any collection,

and if a determinate element c exists such that, whatever element bu of ß is

chosen, c is a mediator of the pair (y, b:¡), then c"is also a mediator of any and

every pair that can be formed by combining y with any resultant whatever, say

r^oiß. For if rx he any resultant of ß, then 0(ßrj). And if c exists such

that F( c \ ybn ) is true, whatever element bn of ß may be chosen, then O ( cybn )

is true of every member bit of ß.    Hence, by  36(5), 0(cyrx).    And hence

P(c\yrJ.
The converse of this theorem is obvious. That is, if an element c is a medi-

ator of every pair (y, rx ) consisting of y and some resultant of ß, c is a media-

tor of (y, bn) where bn is any element chosen at pleasure from ß. For the ele-

ments of ß are themselves amongst the resultants of ß.

There always exists an element c having the properties here in question, since

y itself is such an element. For F(y\yx) is true of every element x. But,

as will soon appear, there are, in certain important classes of cases, elements

possessing this property which are not equivalent to the chosen element y.

92. If 7 be the collection of all those elements, y, which possess the property

discussed in 91, viz., if 7 be the collection of those elements c , such that

F(cB\yrx) is true for a determinate selected element y, and for every resultant,

r , of ß, then every resultant of 7 is itself a member of the collection 7.

For let t be such that A"(£|7), so that O(yt). Since (y, y) is such that

O(yrfcf) is true of every element y of 7, while 0(yt),it follows that O(yri),

by 36(5).    Hence F(t\yrJ.

If p be the collection of all the resultants of ß, and if 7 be the collection of

all those elements, such as c , which with reference to a selected element y,
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have the property of being, every one of them, such that F( cv | yrx ) is true of

every element r of p, then, as now appears, the collections 7 and p are collec-

tions each of which contains all of its own resultants.

Pairs of conjugate resultants.

93. We are now prepared to consider more minutely the consequences of

principle VI. By that principle, if a collection il possesses any complement w,

so that 0(0*10), a complement v also exists such that O (tie) while, whatever

element tn of & be selected, O(viotu). Stating this requirement in terms of

the /'-collections, we have, as the conditions set forth in the hypothesis of the

principle, the existence of an element w, such that F( w \ & ). The consequence

according to the principle is that v also exists such that F( v | & ), while, since

0(vwtu), 0(vwin), and therefore F(tn\vw) for every element tn of &. Let

w = q, and v = r. Then principle VI asserts that whatever resultant q of a

collection ¿r be selected, there always exists a resultant of â, namely r, such

that every element of â isa mediator (that is a resultant) of the pair ( q, r).

It readily follows that every resultant of & is a mediator of (q, r). For if pk

be any resultant of &, then 0(bpk). And since 0(vwtn) is true of every ele-

ment of ä, while 0(apk), it follows, by 36 (5), that 0(vwpk), that is 0(qrpk),

and hence F(pk\qr).

94. If q is any determinate resultant of â, and if r is an element related to q

in the way set forth in 93, then any element, r', such that F(qr' \pk) is true for

every resultant of d, i. e. any element r' such that F(qr' \tn) is true of every

element of ä, is also such that r = r. For, since r and r' are both of them

resultants of &, we have F(qr\r'), because of the definition of r; and also

F(qr' \r) because of the definition of r . Hence r = r by 52 (2). We may

consequently let r stand as the unique representative of the class of those result-

ants of <y which, when q is given, fulfil, with respect to q, the requirement of

principle VI. With this understanding, we shall henceforth characterize r as

the conjugate resultant of q in, or loith respect to the collection â. If r is

given instead of q, some equivalent of q is nevertheless predetermined as a

conjugate of r ; and if q be selected as the unique representative of the class of

elements which are equivalent to itself, we may regard the relation of q and r as

wholly symmetrical; and so we may henceforth speak of the pair (q, r) as a

pair of conjugate resultants of the collection &, or more briefly as a conjugate

pair in, or with respect to, &. We shall symbolize the relation in question thus :

J(qr; <1). This symbol is to be read as the assertion: "The pair (q, r) is a

pair of conjugate resultants of the collection â," or "is a conjugate pair in <?,"

or " with respect to #." Were Ö a pair, as for instance (x, y), we could write

J[qr; (x, y)].
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95. If the collection § is made to include all of the elements of 2, the pair

(q,r) becomes a pair of mutually obverse elements so that q=r. This appeared

already in 27, when the first use of principle VI was made. If d is an O-col-

lection, a conjugate pair (q, r) such that 0(qrtn) while 0(d) is true, is a pair

such, by principle II, that 0(qr). Hence, in this case, O(qr), and thus any

pair that is a pair of conjugates with respect to an O-collection is an O-pair.

If, in case of any collection d, a pair (q, r), conjugate with respect to d is such

that q = r, then, since F(tn\qr), every element tn of dis such that tn = a = r;

and therefore, in this case, a single element may be taken as the unique repre-

sentative both of the whole collection d, and of all of its possible pairs of conju-

gate resultants (see 52 (1), and 70).

96. In case of any pair of conjugate resultants of a system ß, i. e., in case of

(q, r) such that J(qr; ß), the resultants of the pair (q, r), and the resultants

of ß, form precisely identical collections. If ß is enlarged either to an O-col-

lection, or so as to include all of the elements of 2, the entire system 2 becomes

the collection of the resultants of any one of the possible pairs of obverse ele-

ments of 2, such, for instance as (x,x); any one of these pairs being, as we

now know, such that, if O(ß), J(xx; ß).

97. If ß is a given collection, and if (q, r) is a conjugate pair of its result-

ants, and if u is any third resultant of ß, not equivalent either to a or to r, then

the conjugate resultant v of u can be found by considering merely the triad

(a, r, u). According to principle VI there is, namely, a resultant v of this

triad* such that F(vu\q) and F(vu\r). Since v is a resultant of the triad,

F(qru\v). But meanwhile, since J(qr; ß), and F(ß \v), F(qr \v) by the

definition of a conjugate pair, so that from F(qru\v) the element u may be

stricken out. Since v, then, is such that F( qr\v), while F (vu \ a) and F (vu \ r),

it is easy to show that any resultant pk of ß is such that F(pk\vu). For

F(pk\qr), since (q, r) is a conjugate pair. But from F(pk\qr), F(q\uv)

and F(r\uv), follows, by 73, F(pk\uv).

If, then, a single conjugate pair of resultants of a collection ß is given,

viz., (q, r), the conjugate of any third resultant of ß, such as u, is equiv-

alent to the conjugate of u in the collection of the resultants of the triad

(q, r, u). If ß is an O-collection, or if ß includes all of the elements of 2,

the conjugate of x in the triad (x, z, z) is obviously x.

98. If (ß, x) be any collection that includes a given element, x, the conju-

gate resultant of x with respect to the collection (ß, x) is one of the resultants

of ß. For let q he such a resultant. F(q\qx) is in any case true of q. But

q has, in addition, to be such that F(q\ßx), while, whatever element bn, of ß,

•Identical with what Kempe calls the " unsymmetrical resultant" of the triad ( q, r, u).

Kempe does not directly define our conjugate resultants in general, hut huilds his theory upon

that of the resultants of triads.
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be selected, F( qx j bn ) ; i.e., 0(7/xbn). By the adjunction of all elements of

ß besides bn, we obtain, hereupon, 0(7fJ;ß). But since F(q\ßx), O(qxß).

Hence O(q'ß).    Hence F(ß\q).

99. If ß and a are such that F(ß\a), then ß and a possess at least one

common resultant. For let a be an element of a, chosen at pleasure. Adjoin

a to the collection ß, and consider the conjugate resultant of ft in the collection

(à, ß). Let this resultant be the element b. By 98, F(ß\ b). By the defi-

nition of a conjugate resultant F(ab\bn) is true of every element b of ß. By

hypothesis, however, F( ß\a). Hence by 56, F( a \ üb ). Since a is itself an

element of a, the superfluous obverse ä may be omitted, so that F(a\b).

Hence the element b is a resultant of ß and also of a.

The importance of this theorem for the geometrical application of our theory

(since the theorem may be called the theorem regarding intersections or trans-

versals) justifies a proof directly in terms of O-collections.

If, namely, O (Be), there exists x such that O ( Bx ) while O (ex). For let us

select at pleasure any element d of B. Consider the collections (d, i), and,

with respect to that collection, define the conjugate resultant of d in (d, ¿).

Let x be this resultant. By 98, O (ex) is true. Hence O (ex). By the defi-

nition of a conjugate resultant F(er\xd) is true of every element 5r of e.

Hence O(exd) is true of every element er of e, while O (Be). Hence, by

24 (4), 0(8.cd). d is a repetition of some element of 8, and may be stricken

out (by 37). Hence O(Bx). Hence O(Bx), while, as above shown, O (ex).

So the theorem is proved.

Since this process may be repeated for every element of S and also of e, the

variety of elements of the type x, in case the elements of S and of e include non-

equivalent pairs, is, in general, by principle V, and 89, infinite.

The relations of pairs of conjugate resultants in various collections.

100. It is frequently important to bring the various pairs of conjugate result-

ants which exist in different collections into relation with one another. The

procedure by which this is accomplished will lead us at once to the threshold of

the ordinary algebra of logic, which, as originally developed, was based upon

observing certain properties of the system 2, in cases where this system was

interpreted as a collection whose elements are either classes or propositions.

Let the conjugate resultant of y in the collection (y, ß) be x, so that

J(xy; (ß,y)). Then, by 98, F(x\ß) is true. Hereupon, if we select,

amongst the resultants of ß, that one, say z, which is the conjugate resultant,

with respect to ß, of the element x just determined, so that, while J(xy; (ß,y)),

it is also true that J(xz; ß), then it follows that F(ybfz) is true for every

element bu of ß. For z is such that F(xz\bn), and is also such that F(ß\z).

Since F(bfxy) is true (by the foregoing) for every element bn of ß, while
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F(ß\z), it follows, by 36 (5) and 57, that F(xy\z); and since F(bn\xz), that

is F(bnz \x), while F(x\zy), we have F(bnz\zy), whence follows F(z\bny).

We have, therefore, the result, that, if y he any element, and ß any collection,

then, in case x is such that J(xy; (ß,y)) and z is such that J(xz; ß), the

two elements x and z constitute a conjugate pair of the resultants of ß, while

just this pair stands in what we may regard as an unique relation to y. The

pair (x, z) is namely such that, for the first, z is a mediator between y and any

element bn of ß which may have been chosen for comparison with y and with z.

By 91, z is consequently also a mediator between y and any resultant, r., of ß,

so that, whatever resultant rc, of ß, we may select F(rry\z). Moreover, what-

ever resultant z of ß possesses the property just ascribed to z, must be equiv-

alent to z. For if z exists such that F(z'\ß), while F(z'\rvy) is true, what-

ever resultant rv of ß we choose to consider, then, since z itself is a resultant of

ß, F(z'\zy), while, by the definition of z, F(z\z'y), and hence z = z. There-

fore z may be taken as the unique representative of its own class of equivalents.

Meanwhile, x possesses, with reference to ß and y, the property of being a

resultant of ß such that every element of ß is a mediator between x and y.

Consequently, since F(bn\xy), F(bny\x), and hence x is a mediator between y

and whatever element 6n of ß may have been chosen. By 91, x is accordingly a

mediator between y and whatever resultant, rv, of ß, may have been chosen.

Whatever resultant, x , of ß, possesses the property just ascribed to x, is such

that x = x .

101. Conjugate limits of a collection with reference to a base. We may

sum up the result of the foregoing thus : If any element y he chosen, at our

pleasure, as what we shall now call a base, and if hereupon any collection

ß he considered with reference to this base, then there exists a pair, and

(barring for the moment the consideration of equivalent elements), a single

pair, of conjugate resultants of ß, which is so related to y and to ß that

(1) one of these two resultants (which we shall now symbolize by p>) is such

that F(p\bny) for every element of ß, and F(p\rvy) for every resultant

of ß ; while (2) the other of these resultants, which we shall now symbolize

by s, is such that F(bu\ys), and F(rc\ys), i. e., such that F(bny\s), and

F(rcy\s). If 7 be the collection of the totality of those elements of 2 which

are mediators between y on the one hand and each and every element and

resultant of ß, separately considered, on the other hand (see 92), then p has the

property of belonging at once to the collection 7, and to the collection p ; where

p is, as before, the collection of all the resultants of ß. Any element possessing

the property of belonging at once to 7 and to p, is equivalent to ^>, which may

therefore be viewed, for present purposes, as the unique representative of its

own class of equivalent elements. Barring equivalent elements, then, the col-

lections 7 and p have only this element p in common.    If 7' be the collection of
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those elements of 2' which are mediators between y on the one hand, and each

and every resultant of ß, separately considered, on the other hand, then s has

the property of belonging at once to the collection 7', and to the collection p.

Any element possessing the property of belonging at once to 7' and to p, is

equivalent to s, which may therefore be viewed, for the purposes of forming

O-collections and /'-collections, as the unique representative of its own class

of equivalent elements. Barring equivalent elements, then, the collections 7'

and p have only the element s in common. Of the pair (p, s), each resultant

of ß is a mediator. If, for the collection ß, and for p, the collection of the

totality of the resultants of ß, the pair (j), s) alone is substituted, and if here-

upon this pair is treated precisely as, in the foregoing, ß itself has been treated,

that is, if the resultants of (p, s) are first defined, and then their collection,

viz., p, is compared with y, the same pair (p, s), is once more found as that

pair of conjugate resultants of the collection (p, s) itself, whose relation to y is

the relation heretofore characterized.

We shall now call the pair (/>, s) a pair of conjugate limits of ß with

reference to the base y. For a given collection ß, and for a given base y,

principle VI thus requires us to define one such pair, and (barring equivalent

elements), but a single pair, viz., (p, s), which may be viewed as the pair of

conjugate limits in question. This pair, being a pair of mutually conjugate

resultants of ß, is symmetrically disposed with reference to the collection of the

resultants of ß. But, as has appeared in the foregoing, the pair ( p, s) is not,

in general, symmetrically disposed with respect to the enlarged collection (ß, y).

For p is a mediator between y and each resultant of ß separately considered ;

while each resultant of ß, separately considered, is a mediator of the pair (y, s).

To mark this difference of relative position of p and s we may call : p the inferior

limit of ß with respect to y ; s the superior limit of ß with respect to y ; while

y is the base of this pair of conjugate limits of ß. It is at once obvious that

if we choose y as base instead of y, s would become the inferior, and p the

superior limit of ß with respect to y.

102. We are now in a position to extend our result from the case of a single

collection ß, to the case of a set of collections ß, y, 8, etc., and in fact to the

set of all possible collections of the elements of 2. Holding a given base, y,

chosen at pleasure, constant, we may consider any and all collections of the ele-

ments of 2 with reference to this one chosen base. If we do so, then, whatever

collection, a, ß, 7, 8, etc., we select, we shall find, by a jn-ocess wholly analo-

gous to the foregoing, that there exists an unique pair of resultants of any one

such collection, such that this pair is, for that collection, the pair of conjugate

limits of the collection with respect to y. Of this pair, one element is the

superior, and the one the inferior limit of the collection in question, with respect

to this chosen and constant base, while the choice of the base is arbitrary.    The
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limits are each time functions of the collection in question, and may be regarded

as functions of that alone, so long as the base is held constant. *

If, while the base itself remains constant, a collection is altered, by the ad-

junction, or by the omission of elements, its limits alter or remain invariant, in

ways whose laws are now to be defined. If various collections are considered

with reference to the same base, their respective superior or inferior limits may

be considered as new collections, with results whose laws are also to be deter-

mined. But if, instead, while any collection or sets of collections remain con-

stant, the base is altered, so that an element y' or y" takes the place of y, then

the pairs of conjugate limits of any given collection with reference to the new

base remain invariant, or alter, in accordance with still other principles (which

we shall consider in chapter VI). We shall discuss these various cases in order.

But in the rest of the present chapter, the base shall remain constant.

103. Adjunction of the base to a collection. If, to the collection ß, while

the base remains constant, the base y is itself adjoined, the inferior limit of

(ß, y) becomes equivalent to y itself; but the superior limit remains invariant.

This appears from the reasoning used in 100.

104. Adjunction of the obverse of the base ; adjunction of resultants ; other

cases. If the base y is held constant, and if y is thereupon adjoined to ß,

the inferior limit remains constant, while the superior limit of (ß, y) be-

comes equivalent to y. The reasoning used in 100 can be employed to prove

this also. — If any resultant of ß is# adjoined to ß, or if any collection of

the resultants of ß is adjoined to ß-, the superior and inferior .limits of the

enlarged collection, so long as the base y is held constant, remain invariant ; as

appears from the reasoning used in 91, 92. Hence, by 89, if to a given collec-

tion, any mediator of any pair of its elements or of its resultants is adjoined, the

limits remain constant ; as they also do if the elements of a collection are repeated

any multitude of times. If y is the constant base, and if any element or collec-

tion of elements of the collection 7, of 92 and 101, be adjoined to ß, then, while

the inferior limit, in general, alters, the superior limit of the collection remains

in so far invariant. If any element or collection of elements chosen from the

collection 7' of 101 be adjoined to ß, this adjunction leaves the inferior limit

of the enlarged collection invariant, while altering, in general, the superior limit.

Elements may be omitted from collections in a manner which is subject to these

same laws. Thus, the omission of such repetitions of elements as occur in a

collection does not alter either the superior or the inferior limits, etc.

*The conception that the elements usually known as the products and sums of the algehra of

logic are relative to a chosen constant base (the zero of the usual algebra of logic), and that the

choice of what element of 2 shall be treated as the zero-element is essentially arbitrary, is Kempe's

But Kempe develops this conception solely on the basis of his theory of the symmetrical and

unsymmetrical resultants of triads. By the more general concept of the conjugate resultants of

collections, I have generalized Kempe's theory so as to be able to apply it, from the start, to col-

lections of any multitude whatever.
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The operation of determining the superior and inferior limits of a collection

is obviously independent of the order in which the elements are arranged or

considered, and may consequently be called a commutative operation.

105. The transformation of a collection into its obverse collection. If a

collection ß be transformed into its obverse collection (the base y remaining

constant), if p be the inferior, and s be the superior limit of ß, and if p be

the inferior and s be the superior limit of ß then the two equivalences hold good :

p = s ; and s =■ p .

For, by the definition of an inferior limit, F(p\yrf) for every resultant, rv,

of ß, while F(p | ß). Whence there follows (1) F(p | y~\) for every resultant

rv of ß ; while (2) F( p \ ß ). From (2) it follows that p is a determinate resultant

of ß. From (1) follows, by transfer, F(py\rv), whatever resultant rt of ß

may be chosen. Thus p is such a resultant of ß that whatever element or

resultant rv of ß may be chosen, this element or resultant of ß is a mediator

between p and y. Hence p is equivalent to the superior limit of ß with respect

to the base y.    Hence s' = p.

Furthermore, since a is the superior limit of ß with respect to y, we have

F(rv\sy), whatever resultant, rr, of ß we may choose ; while, at the same time

F(s\ß). It follows that F(s\ß), so that s is a determinate resultant of ß;

while F(rv\sy), i. e., F(rvy\s), for every resultant rv of ß; so that 5 is a

mediator between y on the one hand, and each and every rc of ß on the other

hand. Thus i is equivalent to the inferior limit of ß for the base y. The

equivalences in question, viz., p = s ; and s = p , are accordingly proved.

106. The combination of collections. The associative law in the determi-

nation of pairs of conjugate limits with respect to a constant base. If

we consider the inferior limit of a collection ßx, with respect to a base

y, and also the inferior limits, with respect to the same base, of collections

ß2, ß3, ■ ■ •, ßn, ■ ■ ■, in any multitude of collections, and if tr be the collection

of all these inferior limits, while » is the collection consisting of the totality of

collections (ßx, ß2, ■ - -, ßn, ■ ■ ■), then the inferior limit of it is equivalent to

the inferior limit of co (the subscripts 1, 2, • ■ ■, n, ••■ are now no longer to

be viewed as ordinal numbers, but merely as distinguishing marks).

The inferior limit pa of the collection «a is, in fact, an element such that

F((o\pf), while if 5^ is any element of any collection ßn in the set

(ßx, ß2, • • -, ßu, • ■ ■), F(pa \yb^). Meanwhile, if pn is the inferior limit of

any collection ßn, then F(ßn\pn), while F(pn\ b(^y) for every element Uf> of

ßH. If 7T is the collection (px, p2, ■ ■ -,pn, - - ■), then its inferior limit j»„. is an

element such that F(7r\pf), while, whatever pn may be selected, F(pn \pny)-

Since F(pjb^y), and F(p„\pny), it follows by 71, that F(p„\b^y);

and this latter assertion holds true, whatever element 6(*' of any collection ß



396 ROYCE: RELATION OF LOGIC [July

may be selected, that is, whatever element of a> may be selected. Moreover,

whatever element p of tv may be selected, since p is a resultant of /3 , pn is also

a resultant of a> (88). Thus F(m\¡> ), whatever element p of it may be

selected, while F(ir\2>„). Hence (by 57), F(as\pn). Thus^ is a resultant

of ta, while pv is such that F(pn\b'fy) for every element b'/f of  a>.    Hence

P, = P» •
The operation of determining the inferior limit of a collection a> which is

composed of a set of collections (ßx, ß2, • • •, ßa,•••), is consequently associa-

tive with respect to the operation of separately determining the inferior limit of

each one of these collections (/3,, ß2, • • ■, /3 , • • • ).

By a precisely similar reasoning, one can obviously prove that the operation

of determining the superior limit, sm, of the collection a>, is associative, in case

we separately determine the superior limits of ßx, ß2, etc., and use such deter-

mination as the basis for determining su.

107. Cross collections. If a set of collections (/3,, ß.,, ■ ■ -, ßn, ■ ■ ■) is given

(where the multitude of collections in question is wholly unrestricted), and if a

collection X is formed by selecting, at pleasure, one element, and one only (say

bf), from /S,, one element, and one only (say b'f), from ß2, and one element,

and only one, from each of the collections of the set (so that, for instance, bf is

selected from ß ), then the collection Xz, that is, the collection ( b\'\ W\ • • -, b['f, ■ ■ ■)

shall be called a cross-collection of the set ( ßx, /3„, • • •, ßn, ■ ■ ■ ). As many

distinct cross-collections ( X(, • ■ •, Xj, ■ • •, X., • • • ) exist as there are distinct

possible combinations of elements selected one from each of the collections of

the set (ßx, ß.,, ■ ■ ■, ßn, ■ ■ ■). Choose now a constant base y, to be retained

throughout what follows in this and in the next section. Hereupon, let sn be

the superior limit with respect to y of the collection ßn of the original set. Let

( s,, s2, ■ ■ ■, sn, ■ ■ ■ ) be the collection of all such superior limits, with respect to

y,oißt,ß2, etc. Let the collection (sx, s2, ■ ■ -, sn, ■ ■ ■) he here called the col-

lection d. Let the inferior limit of d, with respect to the base y, he symbol-

ized by 2't). Next, let p_ he the inferior limit of X., that is, of the collection

(bx'\ b[,n, • ■■, b\'t\ ■ ■ •)■ Let (pt, • • •,p , •• .,jj , • • •) be the collection compris-

ing all such inferior limits of the possible cross-collections ( X(, ■ • ■, Xr, • • •, X2, • • ■) •

Let the collection ( 2>,, • • ■, 1>X, • • •, p., • • ■ ) he called the collection yfr. Let the

superior limit of -x\r be symbolized by s^. Then we shall next inquire how p¿ is

related to s^, that is, how the inferior limit of the collection of all the respective

superior limits of a given set of collections, is related to the superior limit of the

collection of all the respective inferior limits of the corresponding cross-collec-

tions. To ask this question is to inquire (in the most general form possible)

whether the operation of seeking inferior limits 'is distributive with reference

to the operation of seeking the superior limits of given collections.

108. The Distributive Bate.    Using the conventions of the previous section,
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regarding the cross-collections, and retaining the symbols used, we are able to

assert that

P* = s* •

For, by the definition of an inferior limit, whatever element p we may select

from the collection \jr, the element/), is such that F(p.\yb'f) for every element

b'f which belongs to the cross-collection X.. And, by the rule according to

which this collection X. has been formed, there exists, in each of the original

collections ß, an element, b'f, for which the foregoing assertion is true. Mean-

while, if we consider the relation of the element b'f to its own collection ß , of

the original set ( ßx, ß.,, ■ ■ ■, ßn, ■ • • ), it follows, by the definition of a superior

limit, that F(b'f\sny). Since, then, the element b'f is such that F(pjyb'f),

that is, such that F(Uf\pzy), while F(b'f\suy), we have, by the usual rule

for the elimination of an element, F(suy \p¿y) ; whence follows F(pz\sny).

Since, whatever pz may be in question, that element of X. which Xz has in

common with any given collection ßn may thus be eliminated, it follows that the

relation F(pz\suy) holds of every element ¡.. of the collection \¡r, when the

relation of p_ to any element, whatever sn, of d, is considered. Since, however,

by the definition of a superior limit, F( s^ \ yjr ) is true, while F(pz \ su y ) holds

true of each element, p , of yjr, separately considered, in its relation to each

element of &, separately considered, it follows, by 57, that, whatever st be

chosen, the pair (sn, y) is such that (1) F(sny\s^).

Furthermore, since, by the definition of a superior limit, whatever p_ we may

select F(p_\s4,y), while, by the definition of an inferior limit, F(pz\Xz), it

follows that, whatever X. we may select, F( Xz | s. y ) is always true. Since this

latter relation is general, and holds for every collection X., without exception,

we have, for every possible cross-collection, F( bf b'f ■ - ■ Wf ■••\s^y); an asser-

tion which remains invariant and true if, instead of selecting, from any one of

the collections (/3,, ß2 ■ ■ ■ ßn ■ - ■) the element which here appears in the collec-

tion X., we select instead any other of the elements of that same collection ßx, ß2,

etc. Consider, hereupon, once more, the element b'f, here selected from the col-

lection /3 . Let X'"' be what the collection X. becomes if that element in X. which

is derived from the collection ßn is omitted. In other words, let X. be so sub-

jected to partition that X. is the same collection as (X'."', Uf). Then we have,

from the foregoing, F(XfUf\s^,y), that is, by transfer, F( l/f | s^, yX^f ) ; while

this relation holds true whatever element U°> is selected from ß . Since, how-

ever, sh is such that F( sn \ß„), while for If. ' any element whatever of ßu may be

substituted, we have, by 57, the collection (s¿, y, X'f) such that F(sA\s^yX"');

so that, by transfer, F( X'f su\s^y). It follows that, while, as before, /'( X. \s¿y)

is true, this relation remains invariant if we substitute for any element bf, qfX_,

the corresponding superior limit, siit of that collection ßt, from which Uf has
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been selected. Such substitution may be accomplished in case of any element

o',", b2J>, etc., independently of whether such a substitution has been made in case

of any other element of Xz.

For since both the assertions F(Xz\ s^y), and F(X(™)sm|s^y), hold good in

case an element 6(,) of X is selected from any collection ß which is not the col-

lection ßn, we could, by a repetition of the foregoing process of reasoning, show

that the relation expressed in F( Xt | .<y y ) not only remains invariant whichever

one of the two elements, ¥A or 6^' is selected as that element for which the cor-

responding sn or sm is substituted ; but also remains invariant when for both of

them, simultaneously, the corresponding superior limits of ßn and ß are substi-

tuted. This result can be extended, at pleasure, therefore, to any number, or

to any partial collection, or to all of the elements of Xz, without regard to their

multitude. The relation F(Xz\s^y) therefore remains invariant in case, for

each and every member of X2, we substitute the corresponding element sn, viz.,

the superior limit of that collection ßn from which the member of Xr which is

each time in question was itself selected. Hence carrying out this substitution,

vte have (2) F(d\s<,y).

But we have seen above, by (1), that F(sny\s<¡l) is true. By adjunction it

follows from this that F(dy\s^) is true. Hence we have at once true the two

assertions (2) F(y\dsf) and F(y\ds+). Hence F(ds^\ds^). Hence (3)

F(â\»t),by 54.
By (1), therefore, F(sny\sl¡l) is true, whatever element *„ of d we may

choose; while, by (3), F(s4l\d), so that s ̂  isa resultant of d. It follows

that &y is an element such that it is a mediator between y and every element of

d separately considered while s^ is also a resultant of d. Hence, by the defi-

nition of an inferior limit, s¿ = pô ; and the theorem is proved.*

109. The second form of the distributive law. Still retaining constant the

base y, let sz be the superior limit of any cross-collection Xz, as such collections

were defined in 107.    Let the collection of all the superior 'limits of the cross-

* The demonstration of the distributive law here given may be regarded as a generalization

of Kempe's treatment of the symmetrical resultants of triads; although this generalization

involves considerations which are somewhat peculiar to the present form of the theory of conju-

gate resultants. When the relations of the F-collections are regarded as degenerating into the

specialized but more familiar relation of antecedent and consequent, the proof of the distributive

law becomes subject to those difficulties whose treatment by Mr. C. S. Peiece, by Schroeder,

and by Dr. Huntington, are summed up by Dr. Huntington in bis Sets of Postulates'for the

Algebra of Logic (these Transactions, July, 1904).. The difficulties in question are a test of

the sort and of the amount of information which is surrendered when, instead of the i'-relations

viewed, so to speak, in their entirety, we confine ourselves to relations which are defined, for

all the collections concerned, merely with reference to a common origin, and when we thereupon

define the usual logical " sums " and " products " solely upon the basis of the antecedent-conse-

quent relations. Kempe's Theory, like the usual one, extends the distributive law by induc-

tion from pairs of triads to any number of cases. The present treatment, in this paper, applies

the distributive law at once to collections of any multitude whatever.
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collections ( s(, ■ • •, sx, ■ ■ ■, s., • • • ), be called the collection <f>. Let the inferior

limit of cf> be pé. Let the inferior limit of any collection ßn be pn. Let the

collection (px,p2, ■■■■>P„, •••) 0I &il such inferior limits be the collection e.

Let the superior limit of e be st.    Then

Pi = s< •

For whatever element b{f we may select from the cross-collection Xz,

F(szy\b'f) is true. And whatever collection ßn we may select, and whatever

Xz is in question, there exists in ßn an element for which the assertion

F(s,y\b'f) is true. But, in case of the collection ßn, the assertion F(yb{f\])n)

is true. Hence, since F(b'f\jxi¡y) and F(&f\szy), it follows that F(szy \pn) ;

an assertion which is true of every p in its relation to every sz. From

F(szy\2>lt), follows F(s.\ypf), an assertion which is true of every element sz

of the collection (j>, while F(<f>\p(¡¡). Hence the collection (y, p ) is such that

F(ypu\p¿), or (1) F(2>^\2>4,y); an assertion which again holds true whatever

p  of e may be selected.

Furthermore, since F(p<j>\ysz), whatever sz may be selected, while, by the

definition of s., F( s. | X. ), we obtain, by the usual elimination process,

■F>(p¿yW) or F(p<tly\bfb[f ■ ■ -b'f ■ ■ ■). This relation remains invariant

whatever element of /3, be substituted for Up ; whatever element of ß2 be substi-

tuted for b'J> ; whatever element of ß be substituted for 600 ; and so on. If, as

in 108, X'"> be what Xz becomes when ttf is omitted, we have, by transfer of the

entire collection X("', F(p<¡¡yX(")\b'f) ; and this holds true for every element b'°)

of ßh, separately considered. But F(pn\ßH). Hence the collection (p¿,y,Xzn))

forms an jP-collection with every element of ßn, separately considered, while

F(pn \ßH); and hence F(PiyXf \pn); that is,F(Pi¡y\ \fpm). And thus for

any element b\i}, b'f, b'f, Uf, of Xs, there may be substituted, either simultane-

ously with or independently of, any of the other elements, the inferior limit,

Pi > Pi i Pm ' Pn- °^ tne c°fiecrion /3,, ß2, ßm, ßn, from which the element in ques-

tion is selected. If the substitution is effected simultaneously for all the' ele-

ments of X_, it follows that Fd'^y \l>xI>2 ■ ■ -p,, • • •) ; that is, by transfer (2)

F(p**\y)-
But by (1) F(pH | pj, y ). By the adjunction of all the elements of e besides

pn this becomes F(e\p¿y) ; that is F(ep^ \y). By the elimination of y it fol-

lows, from (1) and (2), that F(epi¡ \p^ê). Hence F(e\p¿). The element p^

is so related to e that p^ is a resultant of e, while, by (1), whatever element pn

of e be selected, F(pn\pj)y). Hence p^ is equivalent to the superior limit of

6, and :

P* = s..
as was to be proved.

Thus the operation of seeking the superior limits is distributive with refer-

ence to the operation of seeking the inferior limits of given collections.
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110. The results of 91-109 may now be summarized in the somewhat less

general, but (by virtue of some of our best established mental habits) more

easily apprehended form of a series of statements concerning the antecedents

and consequents of the members of one or more collections.

Let an element y he chosen, and held constant, both as the base and as the

origin with reference to which antecedents and consequents are to be deter-

mined.    What we have shown is :

111. That if a given collection ß be considered, then, whatever element c is

an antecedent, with respect to y, of every element of ß, separately considered,

is also an antecedent, with respect to y, of every resultant of ß (see 91). More-

over (by 101 ; see what is there said concerning the collection 7'), whatever ele-

ment c is a consequent of every element of ß, is also a consequent of every

resultant of ß. If we consider: (I) the collection 7, consisting of all elements

c, each of which is an antecedent of every resultant of ß ; (II) the collection p,

consisting of all the resultants and of all the elements of ß ; and (HI) the col-

lection 7', consisting of all the elements c', each of which is a consequent of

every element of ß : then each of these three collections is a collection which

includes all of its own resultants. Each therefore is an internally complete or

" perfect " collection.

112. If ß includes y, or an element equivalent to y, then the collection 7

reduces to the single element y itself. If ß includes y, or any element equiv-

alent to y, then the collection 7' reduces to y. If ß is an O-collection, the same

result obtains for both 7 and 7; that is 7 reduces to y and 7' to y (95), all the

equivalents of an element being here regarded as represented by that element.

113. The collections 7 and p have an element in common (101). This ele-

ment is what we have called p, the inferior limit of ß with respect to y. What-

ever element 7 and p have in common is equivalent to p. The collections p and

7' have an element in common, viz., s, the superior limit of ß with respect to y.

Whatever element 7' and p have in common is equivalent to s. If all the ele-

ments of ß are mutually equivalent, for instance, if they are all equivalent to b,

then o = p = s. Otherwise, ]> + s. The elements p and s remain invariant in

case elements of ß are repeated, any multitude of times, or in case any result-

ants of ß are adjoined to ß. Moreover^ remains invariant whatever elements

of 7' are adjoined to ß ; and s remains invariant, whatever elements of 7 are

adjoined to ß (103, 104).

114. The element 2> is definable as an element which is: (I) An antecedent

of every element (and so of every resultant) of ß ; and (II) an element such that,

whatever element of 2 is an antecedent of every element of ß, is also an ante-

cedent of p. Or again, pi may be defined as that antecedent, of every resultant

of ß, which is also itself a resultant of ß. Or finally, p may be defined as that

antecedent of every element of ß which is itself a consequent of every element c

which agrees with p in being an antecedent of every element of
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115. The element s is definable as an element which is: (I) A consequent of

every element (and so of every resultant) of ß ; and (II) an element such that,

whatever element of 2 is a consequent of every element of ß, is also a conse-

quent of s. Or again, s may be defined as that consequent, of every resultant

of ß, which is also itself a resultant of ß. Or, finally, s may be defined as that

consequent of every element of ß which is itself an antecedent of every element

c   which agrees with s in being a consequent of every element of ß.

116. If ß is an A^-collection, no one of whose elements is equivalent to y,

and no one of whose elements is equivalent to y, while ß itself contains at least

one pair of non-equivalent elements, then, by 89, and by the reasoning of chap-

ter V, the three collections, 7, p and 7', contain, each of them, an infinite num-

ber of elements.

117. Of the various collections here in question a principle holds true which

is statable in general, on the basis of the foregoing, as a consequence of prin-

ciple VI, and as holding throughout the system 2 : If two collections are such

that one of them (say 7) includes all those elements of 2 each of which is an

antecedent with respect to a given origin y, of every clement of the other col-

lection (say ß), then there exists in 2 an element (the inferior limit, 2>, of ß,

with respect to y), which is at once a member of the collection 7, and also a

resultant of ß. Or again: If two collections a and ß exist, such that every

element of a is an antecedent, with respect to y, of every element of ß, then

there exists at least one element of 2 which is a consequent of every element of

a, and which is also an antecedent of every element of ß. The superior limit

of a with respect to y, and the inferior limit of ß with respect to y, both of

them stand in this position. If they are not mutually equivalent, all the ele-

ments which are their mediators agree in possessing the character in question.

Another and more restricted form of the same principle runs thus : Whatever

infinite sequence k, consisting of elements of 2, is so definable that, with refer-

ence to a chosen origin, every element kr of the sequence possesses a consequent

kt which also belongs to the sequence, there also exists in 2 an element which

is a consequent of every element of k . For k is a collection of elements of 2,

and consequently possesses, by the foregoing, a superior limit, with respect to y,

which also belongs to 2. The chains of elements, defined in chapter V, conse-

quently all of them possess superior limits belonging to 2.*

118. It is now possible, without further difficulty, to point out that the ele-

ments of 2 possess the properties of a system of logical classes, or of entities to

which the ordinary algebra of logic applies.     Let the arbitrarily assumed origin

*The definite relation thus brought out between the conceptions of logical products and

sums, and the conception of limits, is, so far as I know, a new feature of the present discussion.

It is brought to light by defining, from the outset, these conceptions with reference to collections

of unrestricted multitude.

Tr;ins. Am. Mi'.;h. Snp. 27
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y be taken as the 0 of the ordinary algebra of logic. Let y be taken as the 1

of that algebra (otherwise symbolized, by some, as oc ). Let the relation

p —< q be regarded as the usual relation of logical antecedent and consequent ;

and let the subscript of the symbol —<; be dropped, by virtue of that usual con-

vention which regards the reference to 0, not as reference to an arbitrary origin,

but as such that a —< b has an invariant or absolute sense. So regarded, the sys-

tem 2 possesses an element, 0, such that whatever element x be chosen, 0 —< x ;

and also an element, 1, such that whatever element z be chosen, z —< 1. The

relation —< is transitive. If a —< 6 and b —< a, then a = b. 11 a —< b, and

also a 4= o, the relation —< is asymmetrical. Elements such as p and s may

first be viewed as determined by some given pair of elements, e. g., by the pair

(«, 6). The element p is then called the product, the element s is called the

sum of this pair ; and, in the usual symbols, one may write

ab = p;        a + b = s.

The definitions of the operations of logical multiplication and of logical addi-

tion, may assume the form explained in 114 and 115. Obverses will now appear

as elements each of which is what is ordinarily called the negative of the other.

Since, in fact, by 95 and 112, the product of an O-collection is the origin, and

its sum is the obverse of the origin (see also 80, 82), the obverse elements a and

á are such that a + a = 1, while aa = 0. We shall have the known results

(easily verifiable on the basis of the foregoing) :

a + a = a; aa= a ; aO = 0 ; a + 0 = a ;

a  1 = a; a + 1 = 1 ; a + b = Tib ; ab = ä + b ;

(ab)c=a(bc);        a(b + c) = ab + ac;        a + be = (a + b)(a + c).

Not only are these results predetermined by the foregoing discussion, but we

have in fact given to the principles in question a form much more general than

the usual form by so stating the principles from the start that they apply to

logical operations upon collections possessing any multitude whatever.

It follows then, that the usual algebra of logic applies without restriction to

the system 2, which is in so far identical with a totality of logical classes,

whereof an infinity are mutually non-equivalent, while all are capable of an

unrestricted combination by the operations of logical addition and of logical

multiplication.

It is worthy of note that, in terms of the ordinary algebra, the conjugate

resultants of a given collection may be defined as follows : Let the logical product

of a collection ß of logical elements be/). Let s be the sum of ß. Then any

element q such that p —< q —< s is a resultant of ß.    If r is a resultant of ß
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such that qr =p, while q + r = s, then q and r are conjugate resultants of ß.

If ß is the pair (a, b) represented in the diagram (1), and if a is a resultant of

(a, b) so that q includes the common part of (a, b), but does not extend

beyond the limits of a + b, then, by repeating (a,b) in the diagram (2), we

may indicate, by shading, the portion of the repeated diagram where r lies, and

so the extent of r, the conjugate resultant of a, in the pair (a, b). It will be

observed that q and r have the product ab in common, but supplement each

other as to the remainder of a + b. If a expands so as to coincide with the

whole of a + b, r shrinks to ab, and conversely.

The negatives q and r are the elements whose existence is directly asserted in

principle VI.

Chapter VI.    The system 2 as a generalized space-form.

119. The inquiry of the previous chapter was primarily devoted to determin-

ing what elements exist in 2, and how they are arranged. As an incident to

this research, the relations of our system 2 to the system defined in the algebra

of logic was developed. But the consequences of principles V and VI, in their

combination, have still other aspects. In particular, the properties of the system

2 to which we have already called attention, make its array analogous to that of

the points of space.    This we are next to see.

120. By definition, all of the elements of any collection are resultants of that

collection. But if a collection ß contains at least one pair of non-equivalent

elements, and if ß at the same time comprises only a finite collection of the

resultants of some one of those pairs of non-equivalent elements which ß con-

tains, then there exists an infinite collection of resultants of ß such that these

resultants are not themselves elements of ß. This appears from 89, in combi-

nation with principle V. If ß is an O-collection, all the elements of 2 are

resultants of ß, and are also complements of ß. If ß is not an O-collection,

2 contains an infinity of elements which are not resultants of ß.    For the
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obverses of the resultants of ß can none of them be resultants of ß ; since

if F(ß\x) and F(ß\x) are both of them true, O(ß). The obverses of

the resultants of ß are, by definition, complements of ß. But if ß is not

an O-collection, 2 also contains an infinity of elements which are neither

complements nor resultants of ß. For let (a, 6) be any pair of conjugate

resultants of ß, so that J(ab; ß). Since ß is not an O-collection, E(ab)

is true (by 95). Every resultant of ß is a mediator of the pair (a, b).

Since E(ab), a +-b and b +- ä. No element x such that F(x\äb) is true,

and no element x , such that F(x \ab) is true, can be a resultant of ß unless

x = o or x'= a. Since the complements of ß, being obverses of the resultants

of ß, are mediators of the pair (a, b) we can thus define an infinity of elements

which are neither complements of ß nor resultants of ß. All elements, x, such

that x +- a, x += b and F(x\ ab) ; and all elements x', such that x +- a,x + b

and F(x'\ab), are, namely, neither complements nor resultants of ß. An anal-

ogous assertion holds for any other of the pairs of conjugate resultants of the col

lection ß. Whatever pair of elements (a, b) we may choose, an infinity of

pairs of elements of the form (a, b), (b, Ct)(c,d), (d, c)(e, f), (f,e), etc.,

are thereby determined, such that each pair consists of some resultant c, d, e of

the pair (a, b), while the other member of each pair is the obverse of the cor-

responding conjugate resultant of (a, b), No mediator of any one of the pairs

(a, b), (c, d), (5, f), etc. (except a, or c, or f, as the case may be), is a result-

ant of the pair (a, b).

If a, b,c, d, e,f, are mutually non-equivalent elements, while the pairs

(a, b), (c, d), (e,f), are each of them pairs of conjugate resultants of the

same pair, or of the same collection ß, then no resultant of ( c?, 6 ), or of ( a, b ),

or of (c, d), or of (c, d), or of (e,f), can be equivalent to any resultant of

the other pairs thus defined. If x, for instance, is a mediator of (c, d), so that

F(x\cd), F(dx\c), then, with respect to x, taken as a base, the conjugate

limits of (a, 6), or of the collection ß, in question, are, respectively c and d ;

c being the inferior and d the superior limit with respect to the base x, of the

collection ß. If therefore x is such that F(x \ tf), x' can be equivalent to x

only in case each of these elements x and x', taken as base, determines, in the

manner shown in 100, 101, the same pair of conjugate limits of ß ; in which

case c = e, d = /'. For if /'( dx | c ), and F( xf \e), where (c, d), and (e,f)

are conjugate pairs, this result follows.

121. If we begin afresh, with a pair («, b), and then choose a base, y, such

that F(y\ab), it is thus plain that, for this base //, a is the inferior, and b is

the superior limit of the collection of the resultants of (a,b), and that this

choice of inferior and superior limits for (a, b), remains invariant for any base

that is a mediator of (a, b ), while, if the base is changed to some other pair

(c, d)f (d,c), etc. — (c, d) being a pair of conjugate resultants — the inferior
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and superior limits of (a, b) (the products and sums of the ordinary algebra of

logic) vary accordingly. The totality of the expressions employed in the ordi-

nary algebra of logic to represent the relations of a system of classes, will remain

invariant as to certain values, and undergoes, for other values, perfectly definite

transformations, in case the base with reference to which products and sums are

reckoned is altered, so that some class y takes the place which has been assigned

to the zero of the ordinary algebra. If the base is, for instance, changed from

some element y', such that, F(y' \ab), to some element y, such that, F(y\7tb),

the product of the pair (a, b) is transformed into what was formerly its sum,

and the sum into what was formerly the product. If the new base is an element

y such that F(y\7tb), the product and sum of (a, b) are transformed into a

new pair of the conjugate resultants of (a, b). These transformations, some-

what analogous, for the algebra of logic, to a transformation of coordinates in a

space system, lead to results which are predetermined by the A"-relations of the

elements of the system 2. However the base may be changed, the product of

any O-collection will be equivalent to the new base ; the sum of an O-collection

will be equivalent to the obverse of the base ; and so on.

Meanwhile, any pair (a, b), such that E(ab), while a 4= 0, forms a means

of an exhaustive classification of the elements of 2. Given, namely, any ele-

ment of 2, say x, there is some determinate pair of resultants of (a, I), say

the pair (k, I), such F(x\kl). To the resultants of the pair (k, I) belongs

one resultant, koi (a, b), and there are also an infinite number of possible bases,

for which k is product and I sum, of (a, b). No element of 2 belongs at once

to two of the distinct classes thus defined by selecting pairs of conjugate resultants

(i,j), (k, I), such that i 4= k, i + I, etc., and by then defining the class of the

resultants of (k, I) and of (k, I).

Or, again, one may express our present result by saying that if an element x

is not a resultant of the pair (a, b), then there exists one and only one pair of

conjugate resultants of (a, b), namely the pair (k, I), such that, if the obverse

of a determinate one, say k, of these two conjugate resultants of (a, b) be

chosen, F(x\k, I), while x 4= I.

122. If a pair of elements (a, b) be chosen such that a 4= b, and E(ab),

it is always possible to find a pair of resultants, (q, r) of (a, b), such that q

and r are not mutually conjugate resultants of the pair (a, b), while q =£ r,

and E(qr), and while F(a\qr) and F(b\qr) are both of them false. In

order to construct such a pair, it is only necessary to choose any resultant q, of

the pair («, b), such that q 4= a, q 4= b, and then to determine r such that

r 4= q, r 4= b, and F( r\qb). In this case, since F( q\ab), and F( r | qb ), it

is impossible that F(a\qr). For if F(a\qr) and F(r | qb), it follows that

F(a\qb); while since, at the same time F( q | ab ), there results q = a, con-

trary to the hypothesis.    Moreover, if F(b\qr), and F(r\qb), it follows that
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r = 6 ; and this again is counter to the hypothesis. Hence q and r are both of

them resultants of (a, b), but neither a nor b is a resultant of (q, r).

Consider, now, the collection p of all the resultants of the pair (a, b), and

the collection px of the resultants of the pair (q, r). Every element of px

belongs to p. But there exists an infinity of elements of p such that no one of

them either belongs to px or is equivalent to any of the elements of p[. Since

the pair (a, r) is again a pair of non-equivalent elements which is not an

O-pair, it is possible to determine new pairs (s, t), (u, v), (w, x), etc., with-

out limit, such that the resultants of these pairs form a series, or chain, of col-

lections, p, px, p2, whereof each collection is wholly inclusive of all the elements

of each later collection, while each collection contains an infinity of elements

that are not included in the later collections, and that are equivalent to none of

the elements so included.

It is, in the reverse direction, possible to include any collection p of the re-

sultants of a given pair (so long as this is not an O-pair), in some more inclusive

collection, p , which then may be enlarged, if necessary, to the collection of the

resultants of some new pair, by considering any of the pairs of conjugate result-

ants of p .

123. The structure of 2 is, therefore, such as to permit this endless determin-

ing of internally complete systems of resultants within systems, every such collec-

tion comprising an infinite set of elements. This being the case, the question arises

whether there is also any sense in which the system 2 may be said to possess a

" dimensionality " resembling that of space. The answer is that such a concep-

tion, in the system 2, is capable of arbitrary definition in an infinite number of

ways. And such a way, in fact, is suggested by the relation of any inclusive

system p of the resultants of a pair (a, b), and any included system such as the

collection px of resultants of the pair (q, r) defined above.

Suppose, namely, that we arbitrarily define the collection of the resultants of

the pair (q, r) as a one-dimensional collection, simply because the totality of

these resultants is determined by the naming of the single pair of elements

( q, r ). In precisely the same sense, it would appear that the resultants of ( a, b )

or any other pair might be regarded as also of one dimension. But if we con-

sider more carefully, it is plain that the following reason appears for a distinc-

tion between the systems p and p,. Let m be any resultant of (q, r), such

that F(qr\m) while m + q, m + r. In p, that is, with respect to (a, b), in

possesses a conjugate resultant n, such that J[mn; (a, &)] , i. e., J(mn; p).

Now it is plain that F( qr \ n ) is false. For if F( qr \ n ) and F( qr \ in ) were

both at once true, we should have, by 73, every element of p a mediator of

(q, r), and so (q, r) would be a pair of conjugate resultants of (a, b), which

is contrary to the construction as stated in 122. Consider the triad (q, r, re).

Since F(qr\m), any resultant of the pair (m, n) is a resultant of (q, r, n),
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as can readily be shown by the usual elimination-process. Hence any element

of p is a resultant of the triad (q, r, n). Hence the triad (q,r,n) possesses

resultants which are not resultants of any of the pairs (q, r), (r, n), (q, n).

The triad (q, r,n) resembles then a triangle, or two-dimensional complex, when

viewed with reference to the pairs (q, r), (r, n), (q, n). Thus p can be

viewed as a two-dimensional complex in relation to p,. An analogous result

holds whatever pair (a, q), (6, r), etc., we choose from the resultants of p, so

long as the resultants of this selected pair form only a portion of the resultants

of p, while elements equivalent to none of the resultants of the selected pair

belong to p.

But we are not limited in our selection to the whole system p, in order to be

able to define such triads. Consider next the triad (q, b, n). By 122, q and r

have been so defined that F(r\qb). Since, by construction, F(m\qr), it fol-

lows that F(m \qb). Were n also such that F(n \qb). every resultant of (a, b)

would be also a resultant of (q, b), which is false by construction. Hence

F(n\qb) is false. Were F(q\bn) true, then since, as just shown, F(m\qb),

we should have true F( m \bn), and hence, since F(b | mn ), it would follow that

b = m, which is impossible by construction. For F(m \qr), while m +- q, and

m 4= r. Finally, if F(b\qn) were true, then, since F(m\qb), it follows that

F(m\qn), and hence, since F(q\mn), it would follow that q = m, which is

again false by construction.

Therefore, no one of the elements of the triad (q, b, n) is a mediator of the

other pair. The conjugate resultant, in this triad, of the element n, is an ele-

ment which is a mediator of the pair (q,b) (by 98); and hence, since, m, a

mediator of (q, r),is the conjugate resultant of n in p, it is impossible that the

resultants of the triad (q, b, n) exhaust the collection p. Meanwhile, the triad

(q, b, n) possesses resultants which are not resultants of any one of the pairs

(q, b), (b, n), (q, n). And so the triad (q, b, n) may be viewed as a two-

dimensional complex.

It thus follows both that the resultants of p, taken as a whole, can be viewed

as the resultants of a triad, if we choose, rather than as the resultants of a pair ;

and that triads such as (q, b, n) can be defined, in p, in such wise that a triad

(q, b, n) possesses resultants which are not resultants of any of its single pairs,

and which are still but a part of the resultants of the system p. Any such

triad, however, may be viewed as a two-dimensional structure.

The viewing of p as a two-dimensional complex with reference to p, as a one-

dimensional complex, is typical of a process which can be repeated any number

of times. For, since p, is itself inclusive of p2, etc., p, may be viewed, with

reference to these included systems, as a complex possessing two, three, or n

dimensions, where n is any whole number. According as this is done, p comes

to be viewed, with reference to a particular series of included collections, as of

three, four, or n + 1 dimensions.
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The result of the foregoing considerations is that, within any portion of the

system 2 which contains at least one pair of non-equivalent elements, we can

define, pairs, triads, etc., in brief, collections of any finite number of mutually

non-equivalent elements, such that, if such a collection, say a, possesses n ele-

ments, there exist resultants of the whole collection which are not resultants of

any partial collection of the elements, containing only n — 1, or n — 2, or any

less number of these elements themselves.

We may call the complexes of the resultants of such collections ?i-dimensional

complexes. But it is observable that any such complex, once given, may also

be treated, by the proper choice of conjugate resultants, as a complex of the

resultants of a single pair, and so as a one dimensional complex. So that all

such dimensionality is entirely relative to processes and structures of the type

that we have just been defining.

124. Such structures become, however, of a more positive significance if we

take account of the following application.

By a line shall be meant a structure of the general type of the chains of 83,

only completed by the insertion of certain mediators. A line shall be a collec-

tion of elements such that in case of any triad of the elements of the collection,

one member of this triad is the resultant of the pair composed of the other two.

And, in particular, the lines that we are here first and mainly to consider are

to be subjected to the entirely arbitrary restriction (foreign to the first prin-

ciples of our system 2, but quite capable of being satisfied by a due selection of

its elements as their existence has now been established), that if any two non-

equivalent entities of a line are given, no other line, in the set of lines that we

are to consider shall at once contain both of these elements. * In other expres-

sion, let the collections which are to be called lines be so selected that, if

(a, b, c) is any triad of elements belonging to the same line, F (abc) is true;

while, if F(a2>q) is true and F(bpq) is true, and if at the same time F(abp>)

is false, then we shall so select that 2> — q\ so that if (a,2>, q) is a triad of

elements belonging to one of the lines now to be selected, while (b,p, q) is a

triad belonging to another of these lines, and while (a, b, j>) is no linear triad

at all, then we shall be required so to select that p m* a.

125. That selections of this sort are possible the theory of the chains, as

developed in 83 sqq., has already shown. Such chains as were there defined,

might be constructed, as we now may observe, intersecting one another any

number of times. For if (c, d) he any pair of elements belonging to a chain,

the resultants of (c, d) form no single chain, but lie in sets subject to princi-

ple VI, which demands the existence of conjugate resultants, not only in the

collection of the resultants of the pair (c, d) itself, but in every one of the

countless collections of resultants of the pairs intermediate between c and d, as

* The development is here wholly due to Kempe's initiative.
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these pairs have been characterized, in their mutual relations, in 122, 123. It

is possible, within the limits of any pair of non-equivalent elements (c, d), to

define any number of segments, that is of intermediate pairs (px,p2), (p2,p3)i

(P¿iPx)i e^e., eacb of which consists of mediators of (c, d), while all the ele-

ments concerned form triads such that F(pip.pk) is true of any one of these

triads. A chain, or rather a series of chains, can be run through such a series

of intermediate pairs, according to any desired principle of selection from

amongst the elements present in the various systems of resultants encountered.

By virtue of the results stated in 117, a set of successive chains can be enlarged

to a complete line, resembling perfectly, in its structure, a continuous geomet-

rical line, by a mere insertion of intermediates and sets of intermediates. The

special principle of selection assigned for the lines now to be considered will not

only ensure that two lines have never more than one intersection, but in combi-

nation with the definition of a line will also exclude that degree of wealth of

elements which forbids the arrangement of all the resultants of any pair of ele-

ments in 2 in a single linear serial order. For in the system 2 as a whole, if

rn and n are equivalent neither to a nor to b and are conjugate resultants of

(a, b), F(m\ab) and /'(n\ab) are both true ; while F(m\nb) and F(n\mb)

are both false. The principle laid down for the selection of line-collections will

therefore forbid the inclusion in a given line of more than a single pair of con-

jugate resultants of any one pair. Thus, if c and d belong to the line, c and d

themselves will be conjugate resultants of their own pair. And the intermediate

elements of the line will be in 2 resultants of that pair. But no conjugate in

(c, d) of any such resultant of (c, d) as belongs to the line, will lie in the line,

except c and d themselves.

126. Since collections possessing the dimensional structure described in 123

exist in any region of 2, it will always be possible to define systems of lines as

follows: Let (d, e, f) be any triad such that it possesses resultants not con-

tained amongst the resultants of (d, e), (c, f), (d, f). If (d, e), (e, f),

(d, f), belong to lines that are amongst those lines which are here in question,

and if x be any resultant of (d, e, f) which is not a resultant of (d, e), nor

yet of (e, f), nor yet of (d, f), then it will be possible to regard (x, d) or

(x, e), or x united with any element of the lines (d, e), etc., as constituting a

new set of segments of lines. The result will be a two dimensional complex of

elements. That method of construction of the rc-dimensional collections or com-

plexes of elements of 2 which has been indicated, enables us to regard these

complexes, with all the lines, segments, etc., which are involved, as possessing an

extent and variety of elements such as to permit us to define new sets of ele-

ments beyond any segments or bounded complexes once defined. Therefore, in

selecting elements for our present purpose, we may regard these new elements as

extensions of the lines and other complexes, while the dimensionality of the
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complexes of lines which we may thus consider is subject altogether to our

pleasure, under the conditions now in general laid down.

If, in consequence of the foregoing considerations, we compare the set of

relations that we can thus define with the relations known to geometry, a natural

method presents itself in the form of a juncture that may now readily be effected

between our account and Dr. Veblen's System of Axioms for Geometry,

(Transactions of the American Mathematical Society, July,

1904).
Dr. Veblen's expression "in the order ABC," becomes, in our terms, the

assertion A"(6|ac). If we agree, in studying the constitution of our system of

lines, to take explicit account only of non-equivalent elements, if we here call

our elements points, and if we also adopt Dr. Veblen's definitions, his axioms

appear in our statement as follows :

Dr. Veblen's first axiom covers our own principles III and IV, according to

which our system contains a pair of elements. Axiom II of Dr. Veblen's set,

interpreted in our terms, declares that if F(b\ac), F(b\ca). This needs for

us, no comment. Axiom III asserts that, if F(b\ac), then F(c\ba) is false.

Our own principles require that, in this case, b = c; and the axiom may there-

fore be regarded simply as excluding us from treating certain pairs of equivalent

elements as distinct elements. This is merely a principle of selection. Axiom

IV asserts that if F( b\ac), then a 4= c. Our principles like Kempe's, require

that if a = c, a= b = c. Axiom IV, therefore, again excludes the regarding of

certain equivalent elements as, for the present purpose, distinct. Axiom V of

Dr. Veblen's set requires that if a +b, c exists such that F(b\ac). This

principle is provided for by our principles, which show that every pair defined in

any of our sets of lines may be viewed as included in larger systems possessing

linear A"-relations. Axiom VI defines the important, but for us, quite arbitrary

principle that governs the selection of the line-elements : " If points c, d ( c 4= d )

lie on the line (a, b), then a lies on the line (c, (/)." This agrees with our

foregoing statement in 124. Only, with us, this is merely a principle of selec-

tion. Axioms VII, IX. relate to dimensionality, and demand points existent in

triads and tetrads such as we have provided for in the foregoing. For us, such

requirements are permitted by the system 2 in an infinity of ways.

Axiom VIII, the " triangle transversal " axiom runs, in our terms, thus : If

the triad (a, b, c) is of the two-dimensional character described in 123, and if

d and e exist such that F( e\ac) and F( c\bd), then f exists such that

F(f I ab), and F(fed).
This axiom for us is, if we grant a certain mode of selection of elements, a

theorem, resulting from the theorem of 99 — an incidental result, as it may be

called, of the theory of conjugate resultants. That is, theorem 99 secures the

existence of elements which may be selected so as to verify axiom VIII.
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The theorem of 99 runs that if F(ß\a), ß and a have at least one resultant

in common.

By thejhypothesis of axiom VIII, F(c\e7i) and F(c\bd). Hence F(ea\bd).

Hence follows F(ed\ba). By 99, (c, d) and (b, a) have in the system 2 at

least one resultant in common (they have in fact, in 2 an infinite number in

common). Call this resultant f. Then f exists such that F(f\ab), and

F(f\cd); i.e., F(e\.fd) so that (at least) F (fed).* That the common re-

sultants here in question should belong as points to the system of lines that we

have selected from the system 2, is itself a matter of the mode of selection used.

The properties of the system 2 simply insure the possibility of such a selection.

Axiom XI, Dr. Veblen's form of the postulate of continuity, is provided for

by our own result, holding for the system 2 in general, stated in 117. This

result ensures the possibility of the continuity of the line-collections, in case we

choose to select suitable sets, precisely as the same result ensures in the system

2 as a whole, the existence of " products " and " sums." Axiom X, which

limits Dr. Veblen's system to three dimensions, is for us a perfectly possible,

but again quite arbitrary limitation ; and the same can be said of the parallel

line axiom XII, which concerns wholly the limitation of the selection of the lines

admitted into a given system.

Our own " transversal " theorem, in 99, justifies, in terms of our principles,

the remark made by Mr. Kempe, upon the basis of his postulates, to the effect

that any /'-collection which contains a finite number n of elements that belong

to the sets selected as the lines of the foregoing discussion, represents a definite

configuration of points in a space of n — 2 dimensions.

Thus F (abc) implies that (a, b, c) is a triad of points on one line.

F(ab\cd) is to be interpreted as follows: The pairs (a, b) and (c, d), lie by

hypothesis, upon some selected pair of lines of our geometrical set. The prob-

lem is, how are these two lines to be related? The assertion F (ab | cd) requires,

by 99, that, in 2, x should exist such that F(ab\x) and F(cd\x). If then

x be viewed as one of the selected elements of the geometrical set in question,

the assertion F( ab \ cd ) may be viewed as the assertion that the lines through

the segments (a, b) and (c, d) have in common a point of intersection which

belongs to the mediators of (a, b) i. e., to the points of the segment (a, b),

and also to the segment (c, d). On the other hand, if F(ab\x) and F(cd\x)

are given, our principles require that F(ab\cd). So that this form of asser-

tion definesa pair of intersecting lines. The assertion F(x\abc) defines a

resultant of the triad (a, b, c). If this triad is to be viewed, in the way here-

tofore defined, as determining a complex of two dimensions, then x is a point

* Kempe's theory is explicitly based upon two forms of the transversal theorem, assumed at

the outset. For this our statement of the theory substitutes the postulated existence of con-

jugate pairs.    What Kempe sets at the beginning we thus reach at the end.
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lying within the triangle (a, ¡>, c). If F(abc j def), wherein all the elements

are mutually non-equivalent, and wherein each triad is to be viewed as a two-

dimensional complex, then x exists common to these two areas, or two-dimen-

sional complexes here in question. Thus all the intersection theorems of geom-

etry may be stated in the form of the assertion of A"-relations, with a due regard

to the limitations of the classes of selected elements.

The principle of continuity is, for such a geometry, merely a principle of the

selection of the elements, a principle which the system 2 permits, but does not

require to be carried out.

Instead of such systems of lines as have here been selected, systems of lines

whereof any two have two, three or n intersections, are perfectly permissible, so

far as the system 2 is concerned. The possibility of a free, but definite varia-

tion of space-forms in a infinite number of ways, is thus provided for by the

system 2 ; and the outlook for a basis for generalized space-conceptions is all

the more attractive, since the structure of the system 2, based as it is upon

fundamental logical principles, makes a test of the logical possibility of any pro-

posed geometry a perfectly definite task — namely the task of seeing whether 2

actually contains complexes which are suitable to embody the desired space-form.

Since O-collections at once possess, as their resultants, all of the elements of

2 at once, no definite view of their dimensional structure is any longer possible.

Hence selections .suitable for space-forms must exclude O-collections; and so, as

Kempe again points out, no geometrical set contains the obverse of any of the

elements of the set. It follows that " spaces," defined in the foregoing way,

always occur in 2 in pairs, such that to any one space-form a there always cor-

responds a space-form, or collection a, constituted of the obverses of the elements

of a. These two space-forms are related, in Kempe's view, somewhat as two

hemispheres.

Finally, since metrical relations can be reduced, in the known way, to ordinal

relations, Kempe has briefly pointed out (as mentioned in the introduction to

this paper), that sets of the elements of 2 can be so selected that operations cor-

responding to the addition and multiplication of the ordinary algebra of quan-

tity, will enable us to select elements that may be viewed (with reference to cer-

tain arbitrarily assumed constant triads of reference-elements, i. e., bases), as the

sums or as the products of given pairs of elements. Hence, without introduc-

ing new elements, the elements of 2, if viewed in certain ways, enable us to

define, not only the algebra of logic, but the algebra of quantity.

Note on the indeptendence of the six principles.

That principle V is independent of the other principles is proved, in 84, by

the assumption of a system 2' consisting of a single pair of obverses.
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That principle IV is independent is proved by the reasoning used in 35.

For if we assume a system 2", all of whose monads and possible colleotions are

to be defined as O-collections, while the system itself comprises any arbitrarily

chosen number of elements, all the principles except IV and V are satisfied by

the possibly existent collections of 2", while principle V is satisfied " vacuously,"

since no pair of non-equivalent elements exist. But in such a system principle

IV is false ; since all the elements are, by the definition of equivalence, mutually

equivalent.

Principle III, and that principle alone, would be violated by an empty sys-

tem ; and that principle is therefore independent.

If, instead of the O-collections, we had used, as the basis of our account of

the system 2, the indeterminate /'-collections of 2, all the principles I, III, IV,

V, VI would remain true if we viewed them as statements regarding indeter-

minate /'-collections, and could therefore have been used as principles for the

system of /'-collections. But principle II is false if interpreted as applying to

/'-collections. For /'(xx) is always true, since O(xx). But from F(vx)

does not follow F(r¡). Hence principle II is independent of the other

principles.

If we consider the class of those O-collections of the system 2 which are either

pairs or triads, but which contain no greater number of elements than three, we

may call this class the class of the 0,-collections. For this class of collections,

principle I is false, since the 0,-triads cannot be enlarged, by the adjunction

of any new members. In order to apply principle II, the hypothesis of that

principle must be read as applying to a collection ß which, in order that it

should be an 0,-collection at all, must not exceed a triad. If O, ( ß), where ß is

a pair or a triad (so that O(ß) is also true), and if O,(8bn) is true, where bn is

any one of the two (or three) elements of ß, then 8 itself (by the definition of the

0,-collections), cannot exceed a pair; otherwise (8, bn) would be a collection of

more than three elements. Principle II then becomes equivalent to the asser-

tion that, if ß is a pair or a triad, and if 8 is a monad or a pair, if O(ß) is

true, and if 0(8bn) is true, then 0(B) is true. Hence principle II is true of

the 0,-collections. Principles III and IV are obviously true of the elements of

2, considered with reference to the 0,-collections. The equivalences and non-

equivalences are, in fact (because of what is proved in 27-30), unchanged by the

limitation of our view to the set of 0,-collections, since all equivalences and non-

equivalences are already concerned in determining the relations of obverses. And

principles V and VI, which require the existence of certain O-triads (such as

are also O, collections), remain true, although the hypothesis of principle VI

becomes limited, in its application, to the mention of the complements of pairs

and of monads.    Thus principle I is independent of the other principles.

To prove the independence of principle VI :
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Consider two pairs of mutually obverse collections of elements of 2, viz., a

and a, such that each is a line of elements, defined as follows :

(1) Every element an of a is a mediator of a pair (x, y) of elements of 2,

such that neither x nor y belongs to a, while E(xy) is true. Thus F(au \xy)

is true of every element an of a.

(2) Whatever triad of elements of a be chosen, say the triad (am, ai:, ar),

F( a a a ) is true of this triad.

(3) Whatever element an of a is chosen, a and ar exist, belonging to the col-

lection a, and such that F(at | xan ) and F( ar \ yan ), while at 4= a„ ■> an(l ar + a„ ■

(4) No two distinct elements of a are mutually equivalent elements of 2.

(5) Whatever pair (at, ar) be chosen from amongst the elements of a, «

exists such that F(am\a ar) is true.

From this definition of the line a, the properties of the obverse collection

5 at once follow. The elements of 5 are mediators of the pair (x, y). No

element of a can be equivalent to any element of a ; for if any mediator of

(x, y) is equivalent to a mediator of (x, y), then O(xy) is true, which opposes

condition (1). If then c and d he distinct elements, chosen in any way from

the total collection (a,ä),c4=<^by construction.

Whatever pair (c, d) of elements of (a, a) he chosen, it follows that there

exists g, also belonging to (a, ä), and such that g 4= c, g 4= à 1 and F(g\cd).

For if c and d both belong to a, the existence of g, as an element of a, follows

directly from condition (5). If c and d he both chosen from 5, a precisely

analogous result holds true. But if c be chosen at random from a, and d from

5, then let c = a , and let d = ft , where ä is such that its obverse a is such

that F (a \xan). Hereupon, choose in a an element at such that F(at\atx).

This, by condition (3), is always possible. Since F(ai \xan) and F(al\xai ),

it follows that F(at\a än) is true; hence F(ät\ätan) is true; and thus, if

g = y, F(g\cd) is true of an element g which belongs to (a, 5). Similarly,

were it true that c = a , and d = a , where (7 is an element such that

F( ar j yan ), then we might choose aic such that F( a¡r \ yar ). This, by condi-

tion (3), is also possible. Eliminating?/ we have F(av,\ arCtn) ; i. e., F(Ur \ üraH);

so that, if g = ty, we again have g belonging to the total collection (a, 5), and

such that F(g\cd) is true. Since all pairs of elements (c, d) thus chosen

from (a, 5) are, by construction pairs of mutually non-equivalent elements;

since g always exists, belonging to (a, 5) and such that F(g\cd) is true; and

since g also belongs to (a, 5); it follows that the collection (a, 5) contains

sufficient elements to satisfy, with respect to any pair of elements of (a, ä), the

demands of principle V, without going beyond the elements of this collection

(a, a) itself. That is, whatever pair of elements of (a, a) he chosen, an ele-

ment of (a, a) exists which is no obverse of either of the elements of the pair,

and which forms an O-triad when adjoined to the pair.
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Hereupon let us consider a system 2o, which shall consist solely of the ele-

ments of the collection (a, 57). Let there be formed, of the elements of this

system 2a, collections which we shall call the Oa-collections. These Oa-collec-

tions shall be identical with those collections of the elements of (a, 5) which

are O-collections in 2. The Oa-collections of the system 2a will now conform,

by construction, to principles I—V of the system 2.

But, in case of the Oa-collections, principle VI will be violated. For (return-

ing to the system 2 ) consider any element an of a ; and consider the totality of

those elements a , belonging to a, and such that F( a \ xan ) is true in respect

of the system 2. Call this totality the collection a; so that a is the collection

of those elements of a which, in 2, are mediators between an and x. By condi-

tion (1), x itself does not belong to a, and so does not belong to a . Now, in

the system 2, the element an, since it belongs, by construction, to the collection

a , possesses a conjugate resultant with respect to a . Let r be this resultant,

so that, in 2, or(anr; a) is true. It is manifest that r is an element such that

F(r\anx). Yet r is no element of the collection a or of the total collection

(a, 5). For if r were an element of a, then, by conditions (3) and (4), ak

would exist, belonging to a, and such that F(ak\rx), while ak + r, and ak+-x.

But ak would also belong to a , and by the definition of a conjugate resultant

F(ak\raf) would be true. Now F(r\ax) is true; and from F (a,. \rx) and

F( r | an x ) follows F( r ¡ «,. an ). If, at the same time, F( a,, | ran ), ak = r ; which

is contrary to the hypothesis. Thus r is no element of at, and also cannot be

any element of a. For since F(r\aux), if there existed f/t such that r = a ,

F(ä I ax), and hence F (a. |xy), would be true of some element a of which

F(ar \xy) would also be true. In that case O(xy), which is contrary to con-

dition (1).

Since r does not belong to a nor yet to 3, r does not exist in the system 2a.

There is then, in 2o, no element capable of meeting the requirements of prin-

ciple VI as applied, in this system 2a, to the partial collection a'. So principle

VI fails in 2a; and is therefore independent of the other principles.
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