
ON   MULTIPLE  INTEGRALS

JAMES  PIERPONT

§1. Introduction.

In the theory of multiple proper integrals the chief difficulty arises in the con-

sideration of the frontier points of the field of integration 21. The older writers

as Gauss, Dirichlet, Jacobi and Cauchy, supposed the field 21 to be bounded

by a finite number of surfaces of simple nature. In later years the theory of

point aggregates has made it possible to consider more general classes of fields.

Stolz, Pringsheim f and Jordan % have made valuable contributions in this

direction. The work of Jordan is particularly important as he has not only

blocked out the way for multiple integrals in any number of variables but has

treated the case of two variables with great generality and completeness.

Two fundamental theorems in this theory relate to the reduction of a multiple

integral to an iterated integral and the change of variables in a multiple

integral. As far as the writer was aware a year ago when he began to consider

the general treatment of these questions, none of the existing methods admitted

an extension to n variables, at least not without considerable complication. It

occurred to him that by properly generalizing the definition of an integral the

grave difficulties which the frontier points create might very readily be obviated.

The theory of integration which is here given, was presented by the author at

the April.meeting of the American Mathematical Society in 1904. At that time

Professor Moore called his attention to a paper of Stolz's, § published in 1897,

where not only the integrals considered in the present paper but also another

class of integrals are introduced. The importance of the integrals first men-

tioned seems entirely to have escaped Stolz's observation. At any rate he

seems to have made no further use of them, and to have considered them more

as curiosities. The only theorem he establishes is theorem 2 of the present

paper.

* Presented to the Society, April 30, 1904.    Received for publication May 19, 1905.

fSitzungsberichte der Mii'ichener Akademie, vol. 29 (1899), p. 39.

t Journal de MathemaH'i ues, ser. 4, vol. 8 (1892), p. 69, and Cours d'Analyse,

vol. 1.

I Zwei Grenzwerthe, von welchen das obere Integral ein besonderer Fall ii>t, Sitzungsberichte

•1er Wiener Akademie, vol. 106, abt. II, a, p. 453.
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§2.  Preliminary definitions.

It is convenient to represent the points x = (*,, ■ • -, xm) of an m-way space

Rm by a set of points marked off on m axes. Let us divide each of these axes

into intervals of length = d ; in such a manner, however, that no finite segment

of any axis contains more than a finite number of intervals. We shall say that

we have effected a rectangular division of space of norm d. It divides Rm

into rectangular cells whose sides are of length = d. The boundaries of the

cells are planes parallel to the coördinate-planes. When the lengths of the inter-

vals are all the same, these cells become cubes. The corresponding division may

be called cubical.

Let 21 be a limited point aggregate, i. e., let no coordinate of any point of 2Í

be greater numerically than some fixed number.

Let f(xi, • • -, x ) be a limited one-valued function defined over 21. Let D

be a rectangular division of space of norm d. Let dx, d2, d,, • • • denote those

cells of 1) containing at least one point of 21. Without ambiguity we may

denote the volume of these cells by the same letters.

Let

il/. = max f, m. = min /*, in di ;
and

|/(:.-,, ■•-,:«„)i ^F,        in 21.
We shall set

(i) sP=j:Ai,(f,   &-e«m».

which may be called the upper and lower sums for the division D.     It is some-

times necessary to consider such  sums over different aggregates  as 2Í, 33, •• •

These may be; indicated by

S,D, §*„, •■•,

where   the   subscripts   indicate that the sums (1)   are  taken   over 21, ¡Ü, ••■

respectively.

The difference M — mj is the oscillation of f in the cell d4 ■    We denote it by

ose/..

We remark here once for all that all functions and point aggregates consid-

ered in this paper are supposed to be limited. The case when either or both

are unlimited will be considered in a later paper.

Let (« = («,, •••, «m), ¿» = (1,, ••-, bw ) be two points. The distance

between a and b is defined  by

dist(«, b) = r"K - bjr+ "■"• • + "(a'^'KY-

Trans. Am. Math. Soc. :!8
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If c is any other point, we have

dist (a, c) = dist (a, b) + dist (b, c).

Let 33 be a partial aggregate of 21. If the distance between any frontier point

21 and any frontier point of 33 is = p > 0, we say 33 is an inner aggregate of 21;

also 21 is an outer aggregate of 33-

If 21 contains all its limiting points, it is complete. If it is complete and con-

tains only limiting points, it is perfect.

A point aggregate embracing none of its frontier points is called a region.

The points x such that dist (a, x) = 8 form the domain of a of norm 8.

We denote it by Ds(a).

§ 3.  Fundamental theorems.

Theorem 1.    Let f(xx, • • -, xm)H^0 be defined over the field 21.    Let

S = min SD

with respect to all rectangular division D of norm d, however small.     Then

(1) lim2,%=£.
'2=0

The points of 2t lie in a certain cube S of edge C. The representation of 6

is formed of m segments 6,, • ■ •, 6m on the xx, ■ ■ ■, xm axes. We may suppose

ß taken so large that no point of 21 comes within a certain distance of any side

of 6.

Since S is obviously finite, there exists for each e > 0 a division A such that

(2) s^sA<s+l-

Let D be an arbitrary division of norm d. Let us superimpose A on D, form-

ing a division E. The division i^is formed by interpolating certain points,

let us say at most ft. in each of the segments dx, ■ ■ •, ß . The interpolation of

one of these points may be interpreted as passing a plane parallel to one of the

sides of £. Its effect is to subdivide certain of the cells of 6. The volume of

the cells so effected is
S dCm-A

Hence the superimposition of A on D, being equivalent to passing at most my.

planes, affects cells of G belonging to the original division D, whose volume is

(3) V<mfidG
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Let A subdivide d., a cell of D containing points of 21, into the cells

dix, da,  •••

containing points of 21 and into cells

8«1    Si2'    •••

containing no points of 21.    Then

SD=¿TMidiA-R;        Sx=Y,MikdikA-R,
i it

where R denotes the sum of those terms common to SD and SE corresponding

to cells of D unaffected by the division A.    But

ik ik

hence

Sv-T.MAk + Y.M^ + R.
Thus

0^SD- ^£(J<¡ - Mik)dik + ZvJf $,,,

<F^dikA-F^8ik=FV,

<mfidFCm-\
by (3).    If we take

d' ^ e
a  <•2mf^FCm-1,

we have

SD < SB + g »

for any d == d'.    But regarding Eas formed by superimposing i) on A, we have

since f = 0.

Thus

which proves (1).

In the same way we establish :

Letf{xx   •a!„)=0.    Let

S = max SD

with respect to all rectangidar divisions D.     Then

lim SD = S.
<l=6   ~
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Theorem 2. Let f(xx, •••, xm) be defined over the field 21. Then the

limits

lim SDf        lim SD
rf=0    "" <2=0

exist and are finite. They are called respectively the lower and upper inte-

grals of f over 21 and are denoted by

{fd% = ffdxx ■ ■ ■ dxm ; ffd% = ffdxx ■ ■ ■ dxm.

This is a corollary of theorem 1. We have only to introduce an auxiliary

function

y(«n ■•'*«) "-/(»n •••'a;1„) + c

and take the constant c so that g is either ^ 0 or s 0 in 21 according as we wish

to show the existence of the first or second of the above limits.

When

f/á21= f/rf»,

we say y is integrable in 21; the common value of these two limits we denote by

ffd%=ffdxl--dxm
«/a ./s

and call it the integral of f over 21.

We may now prove at once the following theorem :

Theorem 3. Let D be any rectangular division of norm d, and f. any

point of 21 in the cell dr     Then iff is integrable in 21,

(1=0

however the D's and f's are chosen. Conversely if this limit exists, f is in-

tegrable in 21.

It is now easy to show that the usual criteria for integrability hold for the

present case.

An important class of integrable functions are those having limited variation.

In fact, let f(xx, ■ • -, xm) be defined over 21. Let D be a cubical division of

norm ds=da.    If there exists a positive number to such that

^^-'osc/Xib,

XfdM,
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however D be chosen, we say f has limited variation in 21 ; otherwise J has

unlimited variation.

Theorem 4.    If f(xx, • ■ -, xm) has limited variation in 21, it is integrable

tw21.

For,

£ di osc/( ^ £ <¿m oscf < cod.

But

lim tod =0.
<2=0

Hence y is integrable.

§ 4. Content of point aggregates.

In all the following work the notion of content is fundamental. This has

been defined in various ways, e. g., by Cantor, Borel, Jordan. The defini-

tion we adopt is equivalent to that of Cantor and Jordan, although on the

face, it is different. We have chosen it because of its relation to the definition

of a multiple integral just given.

Let 21 be any limited point aggregate in Rm. Let us effect a division D of

space of norm 8.    Let

dx, d2, d3, ■■■

denote those cells of D containing at least one point of 21, while

denote those cells all of whose points lie in 21.

Then the limits

2l = lim £c7,. ; 21 = lim £<
ä=0 - 8=0

exist and are finite.

For, let
g ( x,, • ■ •, xm ) = 1 at points of 21,

= 0 at other points.

Then obviously

2t = cô7Tt2i=  Ç gd%;        21 = cont21= {gd%.

The number 21, 21 are called the upper and lower content of 21.    When

2Ï = 2I,

their common value is called the content of 21 ; in this case we say 21 is measur-

able.
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We observe that criteria for the integrability of f(xx, • • -, xm) give at once

criteria for the measurability of 21. When no ambiguity can arise, we may

denote the content of 21 by the same letter, otherwise we denote it by

contât.

When cont 21 = 0, we say that 21 is discrete.    We show at once :

For 21 to be measurable, it is necessary that the content of its frontier points

j^ be 0 ; Le that J be discrete.

With the points of an aggregate 21 let us form partial aggregates 21,, • • •, 21,,

such that the aggregate of the common frontier points of any two of these aggre-

gates is discrete. We shall say that we have divided 21 into the unmixed aggre-

gates 21,, ■ • •, 21,.

Theorem 5. If we divide 21 into the unmixed aggregates 21,, • • •, 21,, then

1-1, + •.• + !,;       Ï-&+••• + !,.

For, let D be a rectangular division of norm 8. Let %¡D be the volume of

those cells of D which contain points of more than one of the aggregates

2Ij, • ■ ■, 21,. Let 21, D be the volume of those cells containing points of

%(i=l,2,.-.,s).'  Then

(1) à* ^2*,,*+••• + ».,* = €„ + *&,.

By hypothesis
lim §*-<>.
S=0

Hence passing to the limit in (1), we get the first half of the theorem. The

other half follows similarly.

In showing that certain aggregates have content, the two following theorems

are sometimes useful.    They rest on the notion of a total difference quotient.

Let f(xx, • ■ -, xm) be defined over 21. Let x = (x,, •'• -, xm) be an arbi-

trary but fixed point of 21 while x = (xx + hx, ■ ■ -, xm-\- hm) is a variable point

of 21.    Let Af=f(x) —f(x), and Ax = dist (x, x).    The quotient

Ax

may be called the total difference quotient of f at x.    The point x  may, or

may not, be restricted to remain near x, as required.

Let

yx=fAx^ ■■•.*»)« •••■> Vn =/(*i» •••»*»)

be defined over 21.   As x = (xx, ■ ■ ■, xin) ranges over 21, the point y=(yx, ■ ■ -,yn)
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will range over an aggregate 33 in an «-way space Rn. We call 33 the image

of%.

Theorem 6.    If 21 is discrete, and the functions

Vi -/(«n ••.*»).  ■••• 2/„ =/„(*!< •••.*„)       (n^+pSm)

Aave limited total difference quotients, the image 33 of 21 ts discrete.

Theorem 7.    ¿ei the functions

yl=/Ax^    ■■■>xm)> ■•> y„=/A.xH    ••»*»)        (n = m + r>»»)

Aa-ye limited total difference quotients in 21 except at points of a discrete aggre-

gate A. /«. i/\e ce/Zs o/" any cubical division of norm d=d0, let at least m of

these difference quotients remain limited. Then 33, the image qffH,is discrete.

We prove only theorem 6, as the demonstration of 7 is similar. Let us effect

a cubical division D of the x-space of norm d. Since the difference quotients

are limited,

\Af\<dG (i = \,2,--,m),

when x ranges over any one of the cells d{ of D. Hence each coordinate remains

in an interval of length < dG as x ranges over the points of 21 in di. Hence

y = (yx, ■ ■ •, yn) remains within a cube of volume d"G", and thus

â < £ <*" G" = d" G"Y,dm = d» G" I*.
4* Ä

As lim 21 ¿, = 0, it follows that 33 = 0 ; hence cont 33 = 0.

It is convenient to extend the terms cells, division of space into cells, etc., as

follows. Let us suppose the points of any aggregate 21, which may be Rm,

arranged in partial aggregates which we shall call cells and which have the fol-

lowing properties :

Io. There are only a finite number of cells in any limited portion of space.

2°. The frontier of each cell is discrete.

3°. Each cell lies in a cube of side = 5.

We shall call this a division of 31 of norm 8.

Let A be such a division of space. As in the case of rectangular division,

21A may denote the contents of all the cells which contain at least one point of

21 ; while 21A may denote the content of those cells all of whose points lie in 21.

It is now easy to show that

Theorem 8. lim §A -> &,        lim 21A.= 21.
S=o 6=u   -   '       -

If 21 does not contain all of its limiting points, these may be adjoined to 21 • The

resulting aggregate is called the completed aggregate.
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Theorem 9. An aggregate 21 and its completed aggregate 33 have the same

upper content.

For, let us effect a rectangular division D of norm d. The cells containing

points of 33 fall into two classes : Io those cells dx, d2, ■ ■ ■ containing points

of 21; 2° those cells e,, e2, ••■ containing no point of 21. Each of these latter

cells as e{ is contiguous to at least one cell dk. If e, • • • are contiguous to dk

we will join them to dk to form a new cell 8k, in such a way that each e-cell has

been joined to some one ¿-cell. The cells ¿,, 82,- • ■ together with the cells

dt, d2, ■■■ which remain unchanged by this process of consolidation define a

division A.    The norm 8 of this division converges to 0 with d.

But for the division A,

äU = 23A ;
and by theorem 8,

lim21A = 2t.
{=0

Hence

33 = 21.
We may now show at once :

Theorem 10. If % is measurable, its completed aggregate is also measur-

able ; and both have the same content.

Theorem 11. If 21 is measurable, it has the same content as its deriva-

tive 21'.

Connected with any complete aggregate 21 of upper content 21 > 0, is an

aggregate 33, obtained from 21 by a process of sifting, and therefore it may be

called the sifted aggregate of 21.

Let Dx, D2, • •• be a set of rectangular divisions of space each formed by

superimposing a division on the preceding. Let the norms of these divisions

converge to zero. The division Dx effects a division of 21 into unmixed partial

aggregates. Let 21, denote those partial aggregates whose upper content is > 0.

Then 21, = 21. Similarly D2 defines a partial aggregate of 21,, such that 212 = 21.

As this process goes on, the cells of Dn containing points of 2In diminish in size

and, for n = oo, converge to a set of points 33. The upper content of the points

of 21 in the domain of any point of 33 is > 0. Thus each point of 33 is a limit-

ing point of 21, and hence is a point of 21. It is now easy to show that 33 con-

tains no isolated points, and is hence perfect.    Moreover

33 = 27.

§ 5.  Some properties of multiple integrals.

Theorem 12. Let f(xx, • • -, xm) be defined over the field 21. Let A be

any division of norm 8 into cells 8,, 82, • • •, not necessarily rectangular. Let

9JÎ., tn, be respectively the maximum and minimum of f in 8.    Then
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(1) lim/§A«lim£gR4S4-  f/d2l.
s=o Jn

(2) lim,5A = lim£mi.o\=  f/d2l.
«=o J«

For, let D be a cubical division of norm d. Let d,, d2, -be the cells of D

containing points of 21 ; while Mi, m. denote as usual the maximum and mini-

mum of y in dr Let \f | = F in 21. For convenience, we also take F = 1.

Then for each s > 0 there exists a d such that

Sd —   I     < ö
./a ¿

(3)

We may also take d so small that

(4) 2l2,-Í<¿i.

Consider now the division A.    Those of its cells containing points of 21 fall

into two classes : Io those lying in only one cell of D; 2° those lying in more

than one cell of D.    Let 6\,, b~a,   •be the cells of the Io class lying in dt ; let

8[, 8'2, • • ■ denote all the cells of the 2° class.

Then the content of all the cells of A containing points of 21 is

(5) i. = z^ + zs;.

But since the frontier of 21B is discrete, there exists a 80 such that

(6) £*<T^

for any 8 = 80.    As moreover 21A converges to 21, we may also suppose 80 small

enough that

00 2íA-Í<í¿F,        oSiV

From (5), (6) and (7) we have

ir*tt-i|<¿»,
which with (4) gives finally

(8) |2A-»i>|<¿,.

Let 2Ri4, M'i be the maxima of /in 8ik, 8'. respectively.    Then
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Hence

AVith (6) this gives

(9) \Ss-ZMi8ik\<¡-

But

I S» - EM, o,„ ISi F( Zd< - £o,, ) = F( jt, - £S, )

(io) <¡>t>y(8),

From (3), (9) and (10) we have

|SA-f|<«, S = S„.

This proves (1) ; in a similar manner we may establish (2).

It is now easy to prove the following theorems :

Theorem 13. Let f(xx, •••,xm) be defined over the measurable field 21.

Let A be an unmixed division of ^l of norm 8. Let S be the maximum of

S± and S be the minimum of S¿ for all divisions A of norm 8^8 .     Then

S=ffth2l,        8- f/rfä.

Theorem 14. Letf(xx, • • -, xin) be integrable in .21. Let 33 be a partial

aggregate depending on v > 0 such that 33, = 21 as r¡ = 0 .     Then

lim Çfd-lS= ffiftl.

Theorem 15. Let f(xx, • ■ -, xm) be defined over 21. Let '33 be a partial

aggregate of% such that 21 = 33.     Then

f fd% = ÇfdtS ; CfdM = ffcW .

Theorem 16. Let f(xn ■ • -, xm) be defined over the measurable field 21,

which is an inner field of 33. Let g(xx, • • -, xw) = 0 in 3J, except at the

points of 21 'where it =f( x,, • • •, xm ).     Then

CfdAi = f gdl\ ; ffdM = f gd%.
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Theorem 17.  Let ,/*(x,, • • •, xm ) be defined over the field 21 which is divided

into the unmixed fields 21,, • • -, 21,.     TJien

fjm = j +■■■+ f,

f/aa- f+...+ f.
•/it t/'Ä| «Ah,,

Theorem 18.    Letf(xl,   ■ •, x„ )=Xi»ï.     7%en

x/rfä = X3t.

Theorem 19. Let f(xx, ■ ■

denote the points of 21 at which

is integrable and

, xm) be defined over  the field 21.    Let 21 „

f\ = cr.     IfH„ is discrete for any tr > 0, /

X/d2l = 0.

Theorem 20. Let f(xx, •••, xm) ¿e integrable in the complete field 21.

7/ei G ¿e í/¿e points of 21 ai which f is continuous.     Then ß = 21.

For, if 21 is discrete, the theorem is true even if f has no points of continuity

in 21;. Let us therefore suppose that 21 > 0. Let 3Í be the sifted aggregate

of 21. Let I) be a rectangular division, and d one of its cells containing points

of 33 • We can choose D so that no cell has points of 33 only on its sides. Let

a be the points of 21 in d. Since f is integrable in 21, it is in a. We can there-

fore choose a system of cubical subdivisions of a whose norms converge to zero,

such that for each subdivision there is a cube lying in one of the preceding divi-

sion, in which the oscillation is as small as we choose. These cubes converge

to a point in a at which f is continuous. Returning now to the original divi-

sion D, we see that every cell of 1) which contains a point of 33 contains a

point of ß.     Hence (£„ = %,,; hence ß = 33 = 2t.

Theorem 21.    Letf( x,, ■   •, xm ) = 0 in 21.    If

Xfd-n = o,

the points 2i„  at which f is equal to or greater  than   an arbitrarily  small

positive number a, form a discrete aggregate.    Let  3 denote the points at

which f = 0.     If 2Í is complete, 21 = 3 •

For,
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Hence, 2iff = 0. To prove the second part of the theorem, let 6 be a point of

the sifted aggregate 33 of 21, at which f is continuous. Then we can choose

S > 0 so small that f = \ > 0 in any Dh(b). But the upper content of the

points 5 of 21 in D(b) is ä > 0.    Hence

r/d2i=f/da!=Xä>0.

Hence f = 0 at every point of continuity of 21 in 33. Let now D be a rectan-

gular division of space. Any cell of D which contains a point of 33 also con-

tains a point of continuity lying in 33.    Hence

öd = "a 5
which gives

gSg,        or        3 = 31.

§ 6. Reduction of multiple integrals to iterated integrals.

Let 21 be a point aggregate in Rm. As x = ( x,, • • •, xm ) ranges over 21, xrf

will range over an aggregate £; on the x{ axis which we call the projection of 21

on this axis.

The points of Rm for which one of the coordinates as x{ has a fixed value

as. = |; lie in an ( m — 1 )-way plane perpendicular to the x{ axis. We denote it

by P(. or more shortly by P{. The points of 21 in _Pfj form a plane section of

21 corresponding to the point £{ in j¿.    We denote it by ty(. or by ty..

Asx = (x,, •••, xm) ranges over 21, the point (x,, ■••, x._lt 0,xi+1, •■-,xm)

ranges over an aggregate Xj, called the projection of 21 on the plane x(. = 0.

Let us fix all the coordinates of x = ( x,, • • •, xm ) except x{. Then x describes

a line ; the points of 21 on one of these lines we call the rectilinear section of 21

parallel to the x4 axis. We mention a few properties of these aggregates, whose

demonstration is readily given.

Theorem 22. If 21 is complete, so are the aggregates £;, £,., o\, Sßf, above

mentioned.

Theorem 23. Let 21 be measurable. Let Tça denote those points of £¿ for

which the upper content of the frontier points of ty. is =ï a. Then ia is dis-

crete.

A similar theorem holds for the aggregate 3£a.

Theorem 24. Let f(xx, • • -, xm) be defined over the measurable field 21.

Then

(i) f/da ̂  fdx. ffd^=§ fdx{ ffd%=1 f/da,

(2) f/da = fdx, ffdy = fdx, ffd% si f/da.
«/SI «/*i        «/ft Jli        Jf¡ v%
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Let us prove (1); the demonstration of (2) is similar. Let a lie in an outer

cube 33, whose projection on the x¿ axis is b, and whose plane sections perpen-

dicular to this axis are C.    We introduce the auxiliary function

g(xx, ••■,xm)=/(x,, ••■,»„) in a,

= 0 at other points of 33.

Let öbea cubical division of Rn of norm d. This divides 33 into cells which

we denote by 8. It also divides the plane section ¡Q, into cells 8', and the seg-

ment b into intervals which we denote by 8".

Let 31, M' be the maxima, and m, m the minima of g in the cells 8, 8'.

Let | /1 = F in 21. Let G, G denote the upper and lower integrals of g in

the field 33.    Then for each e > 0 there exists a d„ such that

(3) £-e<Çro8 = ÇJf8<G + e (d^d„).

Also for each xt of b

2>i'$'2! fgd&^^TM'8';

or since m = m', and M' = At,

£,»8'=i CgdQt^^MS'.
0 Jq c

Multiplying by 8" and summing over b we have, since 8 = 8'8",

Z.m8S¿2e' f^E^S-

Combined with (3), this gives

-e<Lo-"f<£' + e'

<4) g-XXsXX-e-
From (4) and theorem 16 we have

(5) f/<ßt=  [dx. [gd&^  [dx, [gdS^   f/da.

Let yf.j( denote the upper content of the frontier points of ^.    Then

(6) ¡jVd^-jVüjsi^.

G

or
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Let us set

Kxi)—  I fd%, for points of ¿\ ;

= 0, for other points of b.

Then by (6), since the points of f; for which g\;. > a form a discrete set,

(7) | hdx, =  I dx,. | grdD.
«/b «/b */û

But obviously

(8) [ hdx,=  f Adxr

Hence from (7), (8),

(9) fdx,[gd£l =  [dx, [fd%.

In the same way we show

(10) [dx, [gd£i=   [dx, ffidlß,.
Ab        */ü Ají        t/%!

By placing (9) and (10) in (5) we get (1).

In a similar manner we may prove :

Theorem 25.    Let a be measurable.    Let 3£¡ be its projection on the plane

x, = 0.    Let a, be the rectilinear section of a parallel to the x, axis.     Then

f/da< [dm, [fdx,^ [di, [fdx,^ f/da.
«/» A_\        A a. Ax,        An, •/«

f/da- [dx, [fdx,^ [du, [fdx,^ [jm.
«/■a Ait        «Ali A*i        "A "*

Many theorems follow now from 24 and 25 as corollaries.    We state only the

two following.

Theorem 26.    Let f(xx, ■ ■ -, xm) be integrable in the measurable field a.

Let £„ denote those points of %, for which

[ßty - [fd% ^

Then TCa is discrete.    If a is complete, the upper content of the points at which

the above difference vanishes is £,.

Theorem 27.    Let f(xx, ■ ■ -, xm) be integrable in the measurable complete

field a.    Let y, denote those points of ¡T; for which the integrals over the cor-
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responding plane sections Sß, exist. Let 2); denote the points of £, for which

the integrals over the corresponding rectilinear sections a, exist.     Then

f/aa = [dx, f/d% = fd2j; [fdx,.
«/u «/Ç| t/Ç, «/)); «/

§ 7.   Change of variables.

Let the transformation T be defined by the equations

T;        xx = tbx(tx,  -.., tm),  ••-, xm = <*»„,(«,,  "-t tm),

where the tb'a have continuous first derivatives in the region R. Let the cor-

respondence between R and its image RT be uniform. Let the determinant of

the transformation J 4= 0.    We say the transformation T is regular.

It is easy to show now that to any inner aggregate a in R corresponds an

inner aggregate %T in RT.    To inner and frontier points of a correspond sim

ilar points in 21 r, and conversely.

As a direct consequence of theorem 6 we have

Theorem 28.    If either a or %T is measurable, so is the other.    Also if one

is discrete, so is the other.

We show next how the transformation T can be expressed as the product of

two simpler regular transformations.

Since J =3p 0, not all the first partial derivatives vanish at any point of R. >

Let

i^ + o

at a point t and hence in a certain domain Ds(t) of t. Let us define the first

of these new transformations by

T ;        u. = t,, • • •, u „ . = t    ,,        u   = <f> ( t., • • •, t ).

Since Tx is regular, it can be inverted, giving

ii = wn •••! <—i"-*«-n *„-0(»i» ••••' MJ>

where 0 is a one-valued function having continuous first partial derivatives in a

certain domain Dr¡(u). If 8'=8 is taken sufficiently small, the image U of

Dp(t) lies in Dv(u).    The second transformation is

T2>       xx = <r>Aul> •••'«—!»*)>     ••' *«-i-*»-i(«i» • '■»«»-i. 0)'       a;m = MBl'

and is defined over Í7.

Obviously now

r= r, ?2
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when t ranges over Ds,(t), and the determinant J2 of T2 is 4= 0, since the

determinants J, Jx of T and Tx are 4= 0, by hypothesis.

Let a be an inner aggregate of R. It is easy now to show that we can effect

a cubical division of the ¿-space of norm d such that for the points of a in each

cell dk, there exist two transformations Tf\ T2k) of the kind just considered

such that

(1) 1 = TfTf.

For we can take d so small that not all the first partial derivatives vanish in

any cell, since otherwise J = 0 at some point in this cell. Next, making use of

the uniform continuity of our functions, we show that the norms v of the domains

D^(u), and hence the norms 8' of D6,(t) considered above, do not sink below

some positive number, as t ranges over any inner region of R. Thus taking

d > 0 small enough, the relation (1) holds in each cell containing a point of a.

Theorem 29.    Let

T;        xx = <j>x(tx,   ..,«,), .-., xm = tbm{tx, ■■■,tm)

define a regular transformation of determinant J in the region R. Let i£ be

any inner perfect measurable aggregate of R and let 3£ be its image. Let

f(xx, • • -, xm) be continuous in X.     Then

(2) j[/(«i, • • -, xjdx, - • • dx,„ = JT \J\fdtx - - ■ dtm.

For m = 1, the theorem is obviously true. Let us therefore assume it correct

for m — 1, and show it is so for m. As just shown, we can effect a cubical

division of the »space such that the relation (1) holds in each cell containing

points of %. But if (2) holds for each of these partial aggregates of %, it

obviously holds for %. We may therefore assume without loss of generality

that the relation (1) holds throughout %. Let 11 be the image of £ in the

M-space, while n'n, ty'm are the images of nm, ^5m.    Then

| /dx, ■ • • dxm =  I dx„, I   /dx, • • • dx„_,
«Aï «/i>„ •/*.

= j   dum J t   I ¿2 I fdui ■ ■ ■ dum-X

J21 dux ■ ■ ■ dum.

The application of the transformation T2 to the integral on the right gives sim-

ilarly,

-X
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f | J2\dux ■■■dum= [\Jx\\J2\fdtx • ■ • dtm.
«/u Az

This and the preceding equation give (2 ).

As a corollary of the last theorem we have

Theorem 30. Let dk denote the volume of one of the cells of a rectangular

division D of norm d in the t-space. Let X be any inner region of R and X

its image. To the division D correspond a division A of the x-space into cells

of volume 8k.    The ceils of A following within X are unmixed, and

S*=KK + €*'        tindk,

where | ek | < e uniformly, if d is taken sufficiently small.

Theorem 31. Let Tbea regular transformation of determinant J defined

over a region R. Let X be an inner aggregate of R and let X be its image.

Let f(xx,---,xm)be limited in X.    Then

(3) J7(x„...,xjdx=jy|/d2;,

(4) f/(x„...,x,„)dX=(V|/d£.

Let us prove (3); the demonstration of (4) is similar. To the end we effect

a cubical division of the ¿-space of norm d. To it corresponds a division of X

into cells of norm 8.

Let us consider the integral on the left of (3). Employing the usual notation,

and letting J, denote the value of J at some point of d,, we have

ZMA-WAW+ <<)*<

= YlM,\J,\d,+ Y.*iM,di.
Here

(6) \^e,3I,d,\<eFc^Dl% = n,

which may be made as small as we choose, on taking d sufficiently small.

Let us consider now the integral on the right of (3).    In the cell d,,

max/ ■ min | J\ ^ max - f\ J\ = max/ max | J\,

if ma«/is positive, while the signs are reversed if it is negative.    Let us set

31'. = max-/| J"|, in d..
Then

3f'. = 3t.(\J.\A-e'.),
where [ €. | < e uniformly.
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Thus

(7) Y.M'idi-T.Mi\J\di+Y.*'iMidi,

where, as in (6),

|£c;jf;«i4|<9.

Thus (5) and (7) give

\-EMi8t-Y,3Id,\<2v,
which proves (3).

Outer Island, May, 1905.


