
ON A CERTAIN SYSTEM OF CONJUGATE LINES ON A SURFACE

CONNECTED WITH EULER'S TRANSFORMATION*

BY

JOHN  EIESLAND

In a paper published in vol. 26 of the American Journal of Mathe-

matics I have proved a number of theorems concerning curves and two-dimen-

sional surfaces in five-dimensional space which belong to a so-called asymptotic

complex whose lines satisfy the differential equations

dxs + x2dxx — x, dx., + xtdx3 — x3dxi = 0,

dx, dx. + dx, dx. = 0.

If (u) and (v) are the coordinate lines on a surface belonging to such a com-

plex,! and if we make use of the transformation J

P, P
(   ) a'l=="2^'   *2=!""-l'   ""î =    O    '   Xi =        2'   ""a   '   Xl ^2    '    "^3Xi ==        3 '

where Xx, X2, X3, Px, P2, — 1 are the coordinates of a surface-element in

ordinary space, we obtain, as I have.shown, a surface in three dimensional space

on which the lines (it) and (v) are asymptotic lines.

The geometry of asymptotic complexes is thus seen to be closely connected

with the general theory of surfaces ; in fact, in five dimensions, to any geometric

property of a two-dimensional point-manifoldness belonging to an asymptotic

complex corresponds a property of surfaces in ordinary space.

In the first part of this paper it is shown that a certain single protective

transformation of the complex (1) will lead to Euler's classical transformation

* Presented to the Society under a slightly different title at the Boston summer meeting,

September 1, 1903.    Received for publication October 24, 1903, and April 10, 1905.

f A surface is said to belong to the complex ( 1) whenever the linear tangents along the « and

v lines are lines of the complex.

JThis transformation, which was used by Lie, when generalized for 2r-f-1 variables estab-

lishes a correspondence between two spaces J/W+i and Mr of such a nature that the projective

group of the linear complex dxzr+i + 2 ( xvdx^—ar(1<ix„)=0 becomes a group of irreducible

contact-transformations in the space Mr. See Lie, Theorie der Transformationsgruppen, Abschnitt

II, p. 522.
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in three-dimensional space. This transformation, moreover, transforms the

asymptotic lines on a surface into a definite system of conjugate lines having a

well-defined geometric property which characterizes the system. I have called

these lines Eider's lines, since they are inseparably bound up with the transfor-

mation that bears his name.

The problem to find all surfaces such that Euler's lines are lines of curva-

ture is then considered, and it is found that the determination of such surfaces

leads to the integration of a partial differential equation with equal invariants

and quadratures. It follows as an immediate corollary that on these surfaces

the lines of curvature correspond to asymptotic lines on the transformed surface

by Euler's transformation.

While in Lie's sphere-geometry asymptotic lines correspond to lines of curva-

ture by virtue of the well-known contact-transformation that transforms all the

oo4 lines in space into oo4 spheres, in the case of Euler's transformation such

correspondence is established only in the case of certain surfaces. It is also

worthy of notice that while in Lie's sphere-geometry to a real surface corre-

sponds in general an imaginary surface (the sphere being imaginary), in Euler's

transformation corresponding elements are either both real or both imaginary.*

The second part has been devoted to the geometrical definition of Euler's

lines and the derivation of their differential equation from this definition.

In the third part it is shown that Euler's transformation is only one among

oo10 which change asymptotic lines on a surface into Euler's lines on the

corresponding surface. A group of contact-transformations leaving Euler's

lines invariant is also considered, and it is shown that it contains oo10 such

transformations.

Part 1.

Let there be given in the space M5 a two-dimensional surface belonging to

the complex

(3) dx5 + x2dxx — xxdx2 + x^dx3 — x3dxt = 0,

and let it be written

(4) x. = aV(«,«) (¿ = 1,2, •••,5).

The following conditions must evidently be fulfilled :

dcj)5 d(bx d<f>2 d<f>3 d(bi

du~ + *» "5S - *i du +^Tu~ *» "eu = ° '

d** + éd*i     di^+J.0**     ¿^4    o

*See Lie, Geometrie der Beriihrungstransformalionen, vol. 1, pp. 411-480.

Trans. Am. Math. Soc. 31
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Using the transformation (2) we obtain in the space M3 a surface

Xx = cb2,        A-2 = <fv        X3 = <t>lcp2 + <picpi + cp5,

which is the image of the surface (4) considered as a point-locus in Mb. If the

complex (3) be asymptotic, that is, if the additional Monge equation

dxxdx2 + dx3dxt=0

be satisfied, and if the surface (4) belongs to this complex, we obtain, as I have

proved in the paper mentioned above, a surface in M3 on which (u) and (v ) are

asymptotic lines. The analytical conditions which must be satisfied by the func-

tions <f>i are, besides (5), the following

d<t>i d<f>2 , çh ''h _ n        £h d(Pi , d<t>3 d<t>t _ «
au   cu       cu   cu cv    cv       cv   cv

(6)

cu   cv        dv   du

From this it may be proved that the coordinates cf>2 and cpt must satisfy the dif-

ferential equation with equal invariants *

D26       e        de      d cd

where

du dv

du dv

Conversely, whenever particular solutions cp2 and cpi of this equation can be

found, the other functions cf>x, <£.( and r£. can be obtained by quadratures and the

corresponding surfaces thus be determined J.    It may also be proved that to

* A partial differential equation of the second order

d'-ó dé        do

dudo da dv

is said to be one of equal invariants whenever

,   -f- aft — c = ,   + ab — c.
LU CV

See Darboiix, Théorie des Surfaces, vol. II, chapter 2.

f It should also be noticed that that the function X3 -- *, 4, + <¡>3<¡>t + <pb satisfies (7).

t American Journal of Mathematics, vol.2G, pp. 130-134.
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any surface in M3 referred to its asymptotic lines corresponds in Mb a two-

dimensional surface belonging to an asymptotic complex.

Closely associated with an asymptotic complex is a complex defined by the

equations

dxb + x2dxx — xxdx2 + xtdx3 — x3dxt = 0,

(8)
dxx dx2 — dx3dxt = 0 ;

in fact, if we employ the transformation

(") Xx = ¿j- ,   X2= — ->XX,   X3 = X3,   Xt = Xt,   33j = Xj,

we obtain an asymptotic complex.    In the space M3 this transformation is equiv-

alent to the well-known Euler's transformation *

(9')      Px = Xx, Xx = — Px, P2 = P2, X2 = X2, X3 = X3 — PxXx

which transforms the surface-elements of M3 into the surface-elements of the

corresponding space M3; moreover, it is a contact-transformation, since

<10) dX3 - PxdXx - P2dX2 = dX3 - PxdXx - P2d'X2.

Let there now be given a surface in M6 belonging to the complex (8).    We

have

ö*» -x.Ad^     A 5<p* _l A d&     A d<^*     n

-du~ + *» ÔÛ - *>äT + *'~du ~ *«äT ~ °'

<U).

d4>x ̂<h _£&B_Ê±_ = o       d<f>l dA2   dAzd^ _0
du   du        du   du dv   dv       dv    dv(12)

In order that d<f>5 shall be an exact differential, we must also have

?Êi - f* _• ̂ i zlh < Bh *Wj _ ^3 *+s = 0
du   dv        dv   du       du   dv        dv   du '

which, by the aid of the two equations (12), reduces to the form

(Ë+» ËA + Ëh. ËÉi\ (ËÈa ËÉi _ Ë+* ËÈ\ „ o
\ du    dv dv    du J \ du    dv dv    du J '

* See, for example, LIB, Berührungstransformationen, p. 645.
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We shall assume that the second factor is different from zero,* so that we may

put

(13) -f-* d(f>1   i   d(f>* 0<t>l _ Q
*    ' du    dv dv    du '

which may be replaced by the equivalent one

(13') -A f^ +d<^ -^i = 0.

obtained by eliminating d<px/dv and dcp3/dv from (13) and the second of (12).

If now we transform the surface x{ = <f>i (u, v) by the transformation (2) we

obtain in M3 a surface on which (u) and (v) are conjugate lines.    In fact,

introducing the coordinates of M3 in (13') we get

dv     du dv    du '

which is the condition that (m) and (v) shall be conjugate lines.    Hence the

Theorem.     To a surface in Mb belonging to the complex

dx5 + x2 dxx — x, dx2 + x4 dx3 — x3 c?x4 = 0,

dxx dx2 — dx3dxt = 0

corresponds by virtue of the transformation

Pi P2
x, =  cy i x2 = -a,, x3 = -g  , xi = -A\2, x,x2 + XjX4 + x5 = -2l3

a surface in M3 on which (u) and (v) are conjugate lines.

Suppose now that Ms be a space with coordinates x\ and let a one-to-one cor-

respondence be established between it and the space M& by means of the trans-

formation (9). Since the complex (8) is transformed into an asymptotic complex

in Mb, any surface belonging to the former is transformed into a surface belong-

ing to the latter, and conversely ; hence, if we obtain the images in M3 and M3

of the respective surfaces £3 and S3, using the transformation (2), these will be

of such a nature that Euler's transformation transforms S3 into S3 and, more-

over, to the conjugate lines on S3 correspond asymptotic lines on *SY3 and con-

versely, so that we may say :

By means of Euler's transformation a one-to-one correspondence is estab-

lished between two spaces M3 and M3 such that all the surfaces S3 in M3 whose

images in M5 are surfaces belonging to the complex

* It may easily be proved that if this factor vanishes the surface *,=& (t = l, •••, 5) will

degenerate into a curve ; hence the assumption.
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dx5 + x2dxx — xxdx2 + xtdx3 — x3dxi = 0, dxxdx2 — dx3dxi = 0,

are transformed into surfaces in M3 whose images in Mb are surfaces belong-

ing to an asymptotic complex. To the conjugate curves (u) and (v) on S3

correspond the asymptotic lines (u) and (v) on S3, and conversely, to the

asymptotic lines (u) and (v) on S3 correspond a set of conjugate lines (u)

and (v) on S3.

If now we put

(14) *-£- -7&.ËÈ±       Et*
du dv

the conditions (12) and (13') may be written

^    ' du du ' dv dv '

(16) -P-B^P*        ?£ — *?&■x    ' du du dv dv

Eliminating d&Jdu, dájdv, d<f>2/du, d<j>2/dv we find that <bi and <p, must sat

isfy the differential equation

cPá d dé d dé
(17) =-£ + I g- log B • -f + I ,- log B- ~? = 0.
v    '                    dudv      2 dv    &        du      2 du    6       dv

Conversely, if we know two particular solutions, <j>4 and éx, of this equation, ó3

and <f>2 may be obtained by quadratures from (15) and (16) and é5 likewise from

(11).*    The surface

(18) Xx = é2,       X2 = éi,       X3=é5 + éxó2 + cp3éi,

has (u) and (v) for conjugate lines and is transformed by Euler's transforma-

tion into a surface on which (u) and (v) are asymptotic lines.

Since the surface (18) is referred to a set of conjugate lines the differential

equation of its asymptotic lines must take the form "f

Adu2 + Bdv2 = 0 ;

in fact, we find by an easy calculation that this equation is

(19) Ôpd^du2 + dpdpdv2=0.
v    ' du   du dv    dv

* It may also be shown that the function <¡>& + ¡¡>i<j>i — 0,02 satisfies the above equation.

t See Dabboux, Leçons, vol. 1, p. 139, § 110.
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Example I. Let R= const., then <px = px(u) + ax(v) — cx(u — v), and

<^4 = P4(m) + <r4(v). From (15) we find that tp3 must have the form

<f>3 = ccx(u + v); likewise from (16) we get <p2 = c[p4(w) — ""«(v)] an^ from

(11)
& + 0102 4- 030i = ^cxf up\ du + 4cc, fva'tdv.

If now we put

I ptdu= — F(u), I cr4dv— — Fx(v),        c = k,

we obtain in M. the surface

1
c, =

*'

(20)   XX=-\(F'-F'X), X2 = -F'-F'x, X3 = -uF'-vF'x + F+Fx.

By means of Euler's transformation we obtain the surface

(21)

AT, = M-^,       X2=-F'-F[,

X3=-^F'-^F'X + F + F[.,

which may also be obtained directly by considering a translation surface in M3

belonging to an asymptotic complex.* Dajiboux f has derived the same sur-

face by a different method.

The equation of asymptotic lines reduces in the case of the surfaces (20) to

the form
F"(u)du2-F';(v)dv* = 0

which may be integrated by quadratures ; it follows, therefore, that the corre-

sponding set of conjugate lines on (21) may be so obtained. J

If we take note of the fact that the surface (20) is the most general form of

a translation surface whose generating curves are in planes forming a constant

angle 6 = tan-1 Sk/(k'1 — 16) with each other, we have the

Theorem. The asymptotic lines of all translation surfaces whose generat-

ing curves lie in two intersecting planes may be found by quadratures. If

k = 4, the planes are perpendicular to each other for which special case this

theorem has been proved by Bianchi. §

* American Journal of Mathematics, vol. 26, p. 131.

t Leçons, vol. 1, pp. 141-142.

i As is shown by Darboux's method the lines (« — v)/k = a, (u + v )/2 = /3 are also a set

of conjugate lines which may be constructed by Koenig's method. On all surfaces (21) we

know therefore two different sets of conjugate lines.

\ Lezioni di geometría differenziale, p. Ill ; German edition, p. 113.
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Example II. Let B = 1 ; <j>2= u — v, <p4= u + v, <£, = — <f>x(v),<f>3 = <l>x(v)

and

<r\i + 4>l4»i + "r^A =  - ^SAl(V)dv-

In M3 we get the cylinder

(22) Xx = u-v,        X2 = u + v,        X3 = Ç(v)

whose elements are v = const.    In M3 we obtain the ruled surface

(22')        Xx = 2<f>x(v), X2 = u + v, X3 = Ç(v)-2(u-v)<px(v)

on which (u) and (v) are asymptotic lines. In this case then we observe that

to the lines of curvature (u) and (v) on the cylinder correspond asymptotic

lines on the ruled surface (22').

This particular example raises the question whether it is possible to determine

all the surfaces on which there is a one-to-one correspondence between lines of

curvature and asymptotic lines by virtue of Euler's transformation. To do

this we must introduce the condition that the conjugate lines shall be at right

angles.    We find

(23) A"=(l-r.4^)^^ + (l-,4^)^^=0,

which by virtue of (14) may be written

(24) (l+4fl)Ä»-(l+4#)-0.

This equation may be satisfied if we assume <f>2 and <bi functions of only one

variable, but we shall exclude this case, since the surface then degenerates into

a curve. Introducing the value of B obtained from (24) in (15), we obtain the

two equations

| ^-log ( 2<p\ + 1/1 +4#) =    , ÔU      ,2 du    6 v  ^ T        T   ri'     VI+ W,

(25) Y3

h^log(2<Px + VÏ+Wx) = V^W:

from which we obtain the following differential equation for <p3,

d2<P3 ,   Ô , 1 5<r>,        ,   d , 1 5$,       n
■r-ir + i ¡r !og   y ■ -3a -f i Wog    ._• -¡r* = 0.
dudv        dv   ° i/\ + 4<£2    du      2 du   ° y\ _|_ ̂     dv
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When simplified, this becomes

¿203 403        ̂ 03^03

dudv     1 + 4<p2 ôv   du

which integrated gives

p2(u)cr2(v)-l

4p(u)a(v)

Substituting this value in (25) and integrating, we also find

p and cr being arbitrary functions of u and v respectively.    The value of R is

now found to be
1 + pV2

/? =
p2 + o*

In order to find <j>2 and cf>i we substitute this value of R in (16) and eliminate

dcpjdit and d<bjdv.    We obtain a differential equation of the form

?lh _, Tcrfl-p')     _ d$2      _pp'(l-Q djh
dudv + (p2 + o-2)(l + a2p2) du + (p2 + *2)(1 + a2p2) dv

which has equal invariants and of which we know one particular solution, c/>3, as

may be easily verified. Having obtained a particular solution tb2 (different from

cf>3) we may obtain eht from (16) by quadratures and (f>5 may then be found from

(11) as before. We have thus found a surface on which the lines of curvature

by Euler's transformation correspond to asymptotic curves on the transformed

surface.

If we put p(u) = m and a(v) — v, remembering that d>2 = X2— X2 and

2<p3 = Px = Xx, we may state the preceding result thus :

If a surface, referred to its lines of curvature, (u), (v), is transformed by

Euler's transformation into a new surface on which (u) and (v) are asymp-

totic lines, the cartesian coordinates Xx and X2 of the surface must satisfy

the differential equation

roa,      g20    , v(l-u<) deb u(l-v') deb

\M)     dudv + (m2 + v2)(l + u2v2) du "*" (m2 + v2)(l + mV) dv

Conversely, whenever two particular solutions, Xx and X2, of (26) can be

obtained, ft surface can be found such that Euler's transformation transforms

the surface into a new surface on which the asymptotic lines (it) and (v) cor-

respond to the lines of curvature on the original surface.
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There is one particular case not included in the above theorem, viz., when

either p or cr is a constant. We shall consider this case later. The case where

B = const, was considered on p. 457, where for k = 4 lines of curvature on

a cylinder were obtained.

Surfaces of this class are, as a rule, transcendental. It is not at all difficult

to obtain a particular solution of (26) differing from <p3 and depending on an

arbitrary constant.    In fact, putting

<P2-<t>3+k[Hu"> + y(v)] (fc = const,),

and substituting in (26) we obtain

v(l-u^)§i + u(l-v^=0,

which may be satisfied by putting

</f        — u dn v

du = T^ATd ' dv = T-v"' '

so that <j>2 will have the form

,   C   udu        .   f   vdv
*.-*.-*J l--i? + h) ÏZAÏ-

We may now determine aS4 from (16) by quadratures.    We find

u2 — v2 Ç T u2 + v2 u u2 + v2       v "I

*« = ~4uv~ ~   J  11 + u2v2 ' ÏAAu-*du + 1 + «*«» H^ dv J ;

so that we have the following functions

M2 — v2 u2v2 — 1       k 1 — U2    1' + V2

^ = ~4w~' ^ =     iuv~ + 2    g 1+Ai2 ' ÏAAç?'

_mV-1 «» — «»     k (l + u2v2)2

Ti J.o/1,        ' '* Anil A       °  I4uv    '        r4_   4wv        4    s(l-«4)(l-e4)'

<p5 may then be calculated without difficulty from (11).    In M3 we obtain the

surface
1 _ u2   1+v2

<P) x, = "Àf-^r^+-"*f
luv        4 '"* (1 - u*)(l - v'f

_      (u2v2-l)(u2-v2)     .
xi =-ö-T^-+ * tan-1 Mt),

3 SuV
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on which (m) and (v) are lines of curvature. For k = 0 we obtain the quadric

surface 2XXX2= X3 whose rectilinear generators are (u2v2— l)/áuv = u',

(u2 — v2)/4uv = v'.    Transforming (27) into M3 we get the surface

— u2 — v2 =.      m2 — v2     k      1 — u2   1 + v2

1 = ~2uV~ ' 2 =    4m«   ~ 4    gf4^? ' r^v~2'

(28)
- ku2-v2,     (l-u2)(l+v2)     .

X. = — -T -log >=—-—2~~-r: + k tan-1 uv,
3 4       uv        ° (1 + M )(1 — V2)

on which (m) and (v) are asymptotic lines. For k = 0 we obtain the straight

line X3 = 0, Xx = X2 which is the transform of the quadric 2XXX2 — X3 = 0.

We shall now consider the case where R is a function of one variable only,

say v. For this purpose it will be sufficient to put p = 1/j/c and a2 = v2/c,

so that R will take the form
_c2 + v*

Introducing this value in (16) and eliminating dcbjdu and dcpjdv, we obtain

the differential equation

-alt + èiwc(1+^.^ = o
dudv     2 dv    &    c2 + tr     du

By integrating this we find, putting the arbitrary function of u which occurs in

the integral equal to u,

(b2 = u\/R + fcr'2Rdv,

and from (25) and (16),

where o-2 is an arbitrary function of v.    The surface in M3 is

ff2>

x, = mi/íí + JV;**•     ^"^-*-

c2 — 1
x ='3

MU 1    r(v4 — C2)ct'

'1 + ^)(cí + „')tcJ   t>(l+t>2)•c      l/(l+V) (<!» + «»)

a ruled surface on which (m) and (v) are lines of curvature.    It is, moreover,

developable as may easily be proved by forming the differential equation of the

asymptotic curve. *    In M3 we get the ruled surface,

•Since dex¡du = 0, the differential equation (19) becomes

do   do

which means that the surface is developable.
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Xx = l(v-l),X2 = ^-

=     c2— 1 uv (v2 — l)uvB

3=    Vc   V(\+v2)(c2+W)~~       2«

1 ('(v'-c^a'dv     ,v2-l r  , _,
+ - m  /A-i-    o-;Äo"tJ,

cj     u(l + tr) 2      v    J    2

on which « = const, are the rectilinear generators and m = const, the family of

asymptotic lines corresponding to the generators. It will be noticed that all

the rectilinear generators lie in a plane parallel to the AT2 AT3-plane. For the

special value c = 1, B becomes equal to unity and we obtain in M3 a cylinder

Xx = u + a-2,        X2 = u-a2,        X3=%(v)

whose elements are parallel to the plane X3 = 0. If we put a2(v)= —v' this

surface takes the form

Xx = u — v,        X2 = u + v,        X3 = £(v)

which is the cylinder obtained on p. 457. The transform of this surface is the

surface (22').

Part 2.

Since through any point on a surface there pass two asymptotic lines, and

since Euler's transformation establishes a one-to-one correspondence between

the asymptotic lines on a surface in M3 and a set of conjugate lines on the

transform in M3, it is clear that this system must be a definite one of all the

oo ' pairs of conjugate lines that can be made to pass through a given point.

The question is, therefore, what geometric property distinguishes this system

from all the others.    To answer this question we proceed as follows :

Suppose given in M3 any surface S3 and let it be referred to a family of

conjugate lines (u) and (v). This surface, considered as an ensemble of oo2

surface-elements, will when subjected to the transformation (2) become a two-

dimensional point-locus in M. whose coordinates (w),(v) belong to the null-

system

dx5 + x2 dxx — xx dai2 + xA dx3 — x3 dxx = 0.

If the coordinates of S3 he written

(30) Xx = 4>2,       X2 = <bi,       x3 = (p,

the image in M5 will be

F P
XX =    o'■ = #1' X2 = XX = <f)2, X3 = -   2 = <j>3,
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p p
^=^2=0*' XS = Xi—    2    Xl — "2i-X2ss=05»

where

P,=^, and P^sT-

Since ( m ) and ( v ) are conjugate lines, we have

5m. l du 2 du

<81) ^=P^,pö5,

dv 1 dv 2 dv

dPi dXx    ap2 ôZ2 _

*■    ' du    dv du    dv    ~

from which it also follows, since dA3 must be an exact differential,

tm 03dx> + dp2¿x> = 0
\    ' dv     du dv     du

We now put

dXx dXx

du dv
(34) öx = Rl^H' v)'        dX = R*(u* v)'

du dv

so that the equations (32) and (33) take the form

(35) Rt du- + -ëu = 0,        Rx -dv- + -^- = 0.

Eliminating dXfdu, dXfdv from (34) and dPJdu, dPJdv from (35), we
find that X2 and Px must satisfy the differential equation

dR^ dlf2
d26 dv_      dO du        de_r,

V36) dudv + ~RX^R2 ' du ~ Rf~-TR2 "dv~

Conversely, if two particular solutions of this equation can be found, we obtain

from (34), (35) and (31) by means of quadratures a surface on which (m) and

(v) are conjugate lines. Now suppose, in particular, that — R2 = RX = R.

Since Rx and R2 are the respective slopes of the tangents drawn to a point of

intersection of the projections of any pair of conjugate lines on the A', AT2-plane,
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this relation expresses the geometrical property that the tñangle formed by any

pair of such tangents and either axis is isosceles*

The equation (36) may now be written

d20 a,      „aö d ,      _ c0     n

dudv        dv    °       du      2 du dv

But, since X2 = <£4(w, v), and Px = 2<f>x, this is the equation (17) on page

455.    We have therefore the

Theorem. If a surface 2iossesses a set of conjugate lines (u) and (v) such

that the fiair of tangents drawn to the pioint of intersection of the projection

of the curves on the Xx X2 plane form with either axis an isosceles triangle, then

will Euler's transformation transform it into a surface on which the asymp-

totic lines correspond to this family of conjugate lines. We shall call such a

set of conjugate lines Euler's lines.

The relation B2= — A?, may be written

d_X2dX     dX2ôXl = 0

du     dv        dv     du

from which, by the use of (32) and (33) we deduce the equations

du    du        du     du ' dv    dv dv     dv

That is to say, the image of the surface in 31 belongs to the complex (7) which

we shall call a conjugate complex. Conversely, the relation B2= — Bx is satis-

fied for all surfaces in M3 whose images in 3I5 by the transformation (2) belong

to a conjugate complex, so that we may say :

The necessary and sufficient condition that a surface in M3 referred to a set

of conjugate lines shall have as image in 3I5 a surface belonging to a conju-

gate complex is that the conjugate lines shall be a family of Euler's lines.

Let there be given on any surface in 3I3 a system of lines satisfying the dif-

ferential equation

(37) dXx dPx - dX2 dP2 = 0,

which expanded may be written

•This may also be expressed thus : The conjugate lines, when projected on the X¡X2-plane

form infinitesimal parallelograms whose areas equal

« d A,   d A% ,   ,
2-;-! -ä 2dudv;

du      dv

this may easily be proved geometrically.
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'    '      \ du    du        du    du J

ídX.dP^   dxxdpx_dx3dp2_dx2dp2\dudv
\   dv    du        du     dv dv    du du     dv )

\   dv    dv        dv     dv )

We shall investigate some of the properties of these lines. Since the differen-

tial equation is of the second degree it is satisfied by an infinite system of

curves <j>x = c,, <f>2= c2. Let us suppose that the surface be referred to this

system ; since now u = const., v = const, must be integrals of the equation we

have

m)       dX> ̂ j_ax2 *£_ o       --5 dJ^_dX* dP-2 = 0.
^    ' du    du        du    du ' dv     dv        dv     dv

But we also have

*5_ p SXx ,  p ^ 3Xt_ Pd_Ji+p dXi
du »  du  ^    2 du ' dv   '       > dv   ~*~    2 dv

Eliminating dX3/0ü and dXJdv we get

^    ' du    dv du    dv du    dv du    dv '

and eliminating dPfdu, dPfdv from equations (39) and (40) we obtain the

equation

(dX2 dX_l + iX2 ^U^, £5_dXt ?A\ = o.
\ du    dv dv     du J \ du    dv dv     du J

If the second factor vanishes we find that combined with (39) it will cause

the coefficient of dudv in (38) to vanish, in which case every line on the surface

will satisfy the equation ; this can happen only for special surfaces. Excluding

this case we have

^    ' du    dv dv     du '

■combining this again with the second of equations (39) we obtain

du    dv du    dv

This is the condition that (u) and (v) shall be conjugate lines.    Moreover,
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these lines constitute a family of Euler's lines, since the condition (41) is just

the relation B2 = — Bx.    Hence the

Theorem. If an infinite family of curves <bx = cx, <p2 = c2 on a surface

satisfy the differential equation

\ du    du       du    du  )

(38) + ( ?5 ?£ + ÔXa î*x _ DX> ÔP> _ 5X> ô P>\ dudv
'    ' \ dv     du        du     cv        dv     du        du     dv   J

\ cv    cv dv     dv   J

then will these lines be a family of Euler's lines.*

Conversely, a family of Euler's lines on a surface satisfies the differential

equation (38).

Proof. Let the curves be f,(u, v) = cx, f2(«, v) = c2, which by hypothesis

are Euler's lines. Introducing the curvilinear coordinates Çx = u', £2 = v' in

the rectangular coordinates of the surface, we have by hypothesis

(42)

dF}dXl + dF^X^0
du'   dv'       du'   dv'

du'   dv'        dv'   du' '

to which we may also add the condition

UK dPxdX     dP,dXt
^ dv'   du' + dv'   du' '

since dX3 must be an exact differential also after the introduction of the new

coordinates.    The conditions (42) and (43) reduce to the following

vPx dXx _ dP2 dX2 = 0 dPx dXx _ dP2dX2

du'   du'        du'   du' dv'   cv'        dv'   dv'

Expressing dP./du', dP./dv', dXJdu, dXJdv (i=l, 2) in terms of

dPJdu, dP./dv, dXJcu, dXJdv, £, and £, and substituting in (43')

we get

*If « and » are a set of asymptotic lines on the surface this equation is simplified ; in fact,

an easy calculation will show that it reduces to

¿>/>2 ÍJ  , , , fP. a A', J ,     „
, 2   .  *du2+   , 2    , 'dv*-0.
CU      CU C'l>      cv
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(dpxdxx_dx2dp2\/djxy

\ dv    cv dv    dv  J \ dv J

_idX2dP2    d X2 dP2 _ d Xx dPx _ dXx dPx \ ¿>J, djx

\ cu     cv dv     du        du    cv dv    du J du   cv

fdpxdxx_dp2dx2\fd^xy_
^ V du    du        du    du J \du J

and an equation of identically the same form in dÇ.fcu, d%Jdv. But, since

£, = c, and f2 = c2, we have

¿?. of,
du du du

dv= ~ d^ = ~ dÇf
dv dv

and substituting these ratios in the above, we obtain the differential equation

(38). Q. E. D.
The theorem on p. 458 may now be stated thus :

The problem of finding all surfaces on which Euler's lines are lines of curva-

ture depends on the integration of the equation (26) and quadratures. These

surfaces have the following geometric property. T/ie projection of the lines of

curvature on the XxX2-plane form a system such that the tioo tangents drawn

at a point of intersection of any pair of curves form with either axis an isos-

celes triangle.

If the system Sx be referred to a set of asymptotic lines, the equation (38) of

Euler's lines takes the simple form

,99„ dP2dX2Jn     dP2dX2J„     n
(38 ) - _, 2 -.,  l du2 + •-,—   -  2 dir = 0.
v      ' eu    vu dv    dv

If Sx be transformed into S2 the asymptotic curves u = c, v = c become

Euler's lines on S2, and the equation of asymptotic lines on S2 will be identi-

cally of the same form as (38'), since by Euler's transformation X2 = A'2 and

P2= P2. It follows therefore that if on any surface Sx we know the asymp-

totic lines, the Euler lines are known on the corresponding surface S.,.

Part 3.

The following question now presents itself : Are there contact-transformations

other than Euler's that will change asymptotic lines into Euler's lines? We

shall find that there exist oo10 such transformations. To establish this it will be

convenient to go back to the space Mb from which we started.
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A null-system in Mb, defined by the equations

xi = Pix* + ai (i = l,2,3,4),

(44)
P2ax - Pi<T2 + P**i - Piai + 1 = 0,

will when subjected to the transformation (2) become an ensemble of surface-

elements consisting of element-bands formed by oo5 parabolae

Pi Xx - PiXi = °2Px - aiPz .

(45) v-     PxP2 + P3Pi( y      „v, . *i££i+Pt*»),y     „\i„„>
X3 =-~r,-(Ax-a2)   +   - -(Xl-a-.2) + a-xcr2+ rr3ax,

r-z r¿

lying in planes parallel to the AT3-axis. * Moreover, the coordinates of the plane

of each surface-element are subject to the conditions

Px
Pz 2  = P>Xx +<riPi — <rtPi'

(46) p

P2   22 = fVYl+<r3ft.-°-2fV

To each line of the nullsystem corresponds one of the parabolae considered as

an element-band, or, in other words, to the oo1 points of the line correspond

the oo ' surface-elements of the parabolas. We shall now consider the effect of

Euler's transformation on these element-bands when the nullsystem becomes a

conjugate complex, that is, when the additional Monge equation

dxx dx2 — dx3 dxt = 0

is satisfied. Now in order that the lines (44) shall be lines of such a complex

we must have

rVî-rV*-°-

Introducing this condition in (45) we obtain the parabolas

Px Xx - P2 X2 =a2Pi~ ai Pi »

(47) X3 = ^(Xx-,2f + ^^^(Xl-aï) + <rxa2 + a3ai,
rz rz

while the conditions (46) become

Pz 2   =PxXx + axPz-azPx^

(46') p
Pi ~2   =PxXx + ffiPi — ff2Px-

•American Journal of Mathematics, vol. 26.

Trans. Am. Math. Soe. 3«
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Next I shall show that Euler's transformation transforms these oo5 parabolce

into oo4 straight lines. In fact, transforming (46') and (47) and reducing, we

have

PxXi - 2PiX2 = 2(°iPx - Px*4)*

A3 =-Ji.x-(- arxcr2 + a3a^
ri ri

which represent oo4 straight lines in M3.

In the same way we may prove without difficulty that if the null-system (44)

becomes asymptotic so that pxp2+ PiPi= 0, the oo4 straight lines

Px Xi —PxX2 = a2?x — ax?2 '

(49) 2(p2ax+Pia3)
X3 = -      —-(A, - <72) +crxa2 + <r3«r4.

T2

are by Euler's transformation transformed into oo5 parabolae of a form similar

to (47).
Since all the con tact-transformations that transform (47) into (48) also trans-

form Euler's lines into asymptotic lines and vice versa our problem is now

simplified. Let us consider an asymptotic complex in M5. There exist oo10

projective transformations which leave it invariant. * In M3 we get a group

of ooI0 contact transformations which leave invariant the differential equations

dX3 - PxdXx - P2dX2 = 0,

(50)
v    ' dXx dPx + dX2 dP2 = 0.

These transformations have the form

Xx = axXx + bxX2 + dx,

X2 = a2Xx + b2X2.+ d2.

(51) X3 =a3Xx + b3 X2 + c3X3 + d3,

p   _hCSp «2C3 p      ,    "A4" «A

p _ ~5ic3 p  , 5l5 p _!_ ^h-Jhh
*~    A        lf A      ,+      "A        '

where A = axb2 — a26,. We notice that they are projective point-transforma-

tions  since the coordinates Xx, X2, A^3 do not involve Px and P2 ; all these

•American Journal of Mathematics, vol. 26, p. 146.
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transformations form a subgroup of the general linear group. We shall denote

any one of them by the symbol Ta.

If now we superpose Euler's transformation on (51) we obtain oo10 contact-

transformation s

Xx = axPx + bxX2 + dx,

X2 = a2Px + b2X2 + d2,

(52) ^-«.P, + b3X2 + b3(X3-PxXx) + d3,

P   - ^  X   _ aa5 P     ,    a3&2~a2&3
*i ""       A      l       A      2 "^ A        '

P   _ 6»5?  Y   _L a'°?  P   _L ai53-fl35l
r2~  A      » "*"  A     *■ A        '

which change the differential equation

(53) «T Z, dPx + dX2 dP2=0,

into

(54) dXx dPx - dX2 dP2 = 0,

and, therefore, also asymjitotic lines into Euler's lines. They also change

oo5 parabolae (47) into the oo4 straight lines (48); we shall denote them by

T E. The transformations (52) do not form a group, for, if so we should

have TaETbE= TkE, where Tu, Tb, Tk are transformations of the group

(51), that is, TaETb= Tk. But the succession of Ta, E and Tb cannot be

equivalent to a projective transformation.

All the transformations leaving the equation (53) invariant are included in

the group (51) and Legendre's transformation.* The transformation EB will,

therefore, have the same property as any one of (52). But the succession of

two Euler's transformations is a Legendre's transformation so that the com-

bination of a Legendre transformation with any one of the transformations (52),

or, what is the same thing, the succession of Ta and an odd number of Euler's

transformations will transform Euler's lines u = c, v = c on 8. into the

asymptotic lines u = c, v = c on S2.

If we transform the coordinates bn the left hand side in (52) by Euler's

transformation we obtain oo10 contact transformations which leave invariant the

equation (54). These transformations form a group ; in fact calling any one

of them T we have T = E~l T E and E~lT E E~1ThE= E~XTE.    This
tea ab c

*See p. 148 of my article, American Journal of Mathematics, vol. 26. By a curious

mistake the name Euleb's transformation is there given to the well-known one of Lkokndbk :

Xx = Pt,       _3T, = — Px,       Xt = Xa     P, Xi     "¡a,,        °i=     Xt,       Pt = Xx.
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group is a subgroup of a group of contact-transformations connected with the

projective group of the non-special nullsystem in Mb

dxb + x2 dxx — xx dx2 + xt dx3 —- x3 dxt = 0,

which has been discussed by Lie in the second volume of his Theorie der Trans-

formationsgruppen.    The transformations are

Px = axPx+ bxX2+dx,

P2 =
c3bxXx     a

+
'*.+ a, 6, a3bx

(55) b„c3Xx     a2c,"A~ + ~Ax = -2~-P^ + T3p„-

A

a, 6„ — a„ b,

X2=a2Px + b2X2+d2,

X3 - PXXX = a3Px + b3X2 + c3(X3 - PXXX) + d3.

Now since Legendre's transformation also leaves (54) invariant, all the trans-

formations that leave this equation invariant are obtained by superposing Legen-

dre's on any one of the oo10 transformations (55). We have thus found all the

transformations which change the oo5 parabolae (47) into themselves. It should

be noticed that the group (55) is similar to the projective group (51). *

In conclusion we shall give the following resume putting in evidence the

relations of the spaces Mb and M3:

M.. M3.

II.

III.

\(a) dxb + x2dxx — ■ • • = 0,

[ ( 6 )    dxxdx2 + dx3 dx4 = 0.

Projective group of nullsystem

(a) (21 parameters).

Sub-group Ga of oo10 transfor-

mations leaving the asymp-

totic complex I invariant.

I.

II.

III.

IV. Special projective transforma-

tion not included in II

leaving I invariant (x,2=2x3,

xt= — 2xx,     2xx = — xt,

¿x3 = x2, xb = xb).

IV.

(a) dX3-PxdXx-P2dX2=0,

(b) dXx dPx + dX2 dP2=0.

Irreducible group, C3, of con-

tact transformations.

Subgroup Ca of C3 leaving I

invariant, i. e., transform-

ing asymptotic lines (u),

(v) on Sx into asymptotic

lines (w), (v) on S2.

Legendre's transformation

leaving I invariant.

*See Lik-Scheffbb's Continuierliche Gruppen, p. 427.
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{(a) dxi+x2dxx— ■■■=0,

\(b)    dxx dx2 — dx3dxt = 0.

VI. Linear projective group of

oo10 transformations leaving

V invariant (denoted by Gc).

VII. Special projective transforma-

tion not included in VI,

changing I into V.

VIII. oo10 projective transformations

transforming an asymptotic

complex I into a conjugate

complex V.
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V.    dX3 - PxdXx -P2dX2 = 0,

dXxdPx-dX2dP2 = 0.

VI. Group of contact transforma-

tions similar to C3, leaving

V invariant, i. e., chang-

ing Euler's lines (u), (v)

on Sx into Euler's lines

(m), (u)on S2.

VII. Euler's transformation

changing Euler's lines into

asymptotic lines.

VIII. oo10 contact transformations

changing I into V, or

changing Euler's lines (m),

(v) on Sx into asymptotic

lines (m), (v) on S2.


