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Professor Hilbf.rt's Festschrift (1899) contains a theory of areas of plane

polygons independent of every axiom of continuity, and dependent on the

remaining axioms of plane geometry, viz., those of incidence, order, parallelism,

congruence. The main results obtained by Hilbert in this connection are the

following :

(a) The measure of area of a triangle [(base x altitude)/2] is independent

of the selection of the base.

(b) The measure of area of any polygon is independent of any particular

decomposition. [The measure of area of a polygon being defined as the sum of

the measures of area of a set of triangles into which the polygon may be decom-

posed] .

( c ) If two polygons have equal measures of area it does not follow that there

exists a decomposition of them into finite sets of polygons which are congruent

in pairs. If such decomposition does exist the polygons are said to be decom-

positionally congruent.

( d ) If two polygons have equal measures of area then it is always possible to

add polygons decompositionally congruent such that the resulting polygons shall

be decompositionally congruent, f

The measures of volume are expressed in terms of elements which satisfy cer-

tain conditions imposed upon a segment calculus. Among other conditions they

satisfy such conditions of order as are usually adapted for scalar quantities, viz. :

♦Presented to the Society (Chicago) December 29, 1904. Received for publication January

3, 1905.
t We notice here that Hilbkrt's theory requires a slight modification. Hilbert defines as

follows: "Sind P und Q zwei inhaltsgleiche Polygone so mus es nach der Definition zwe¡

flächengleiche \decompositionally congruent] Polygone P* und Q' geben, so dass das aus P und

P/ zusammengesetzte Polygon mit dem aus Q und Qf zusammengesetzten Polygon flächengleich

ausfällt."    Festschrift, p. 45.

In developing the theory it becomes necessary to adjoin polygons which are entirely prede-

termined, but this is not always possible. Following is an example of two polygons which can-

not be thus adjoined : A regular sharp pointed star with a large number of sides and a regular

convex polygon of a large number of sides.

If we regard the sum of a number of polygons not as one polygon formed by adjoining these

polygons but as an aggregate of polygons which may be decomposed separately there is no such

difficulty.
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If a, 6 and c are any such scalar quantities then

(1) Of the three relations a = b, a <o, 5<a one and only one is

valid.

(2) If a = b and b = c then a = c.

(3) If a < b and 6 < c then a < c.

The proposition listed as (d) makes it possible to define equal and unequal

areas in terms of geometric congruence of a finite number of polygons in such

manner that it shall correspond to the definition stated in terms of measure of

area.

In space the situation is different. M. Dehn has proved * the following

condition necessary in order that two polyhedrons shall be decompositionally

congruent :

If two polyhedrons P' and P" are decompositionally congruent then there

exists a linear homogeneous function ,f('rr'x, tr\, • •■, nr"x, 7r'2, • • •) with integral

coefficients all different from zero such that

/C77-!' K> ■•"' 7rM wt> ••)= 0(mod2i?)

(where R denotes a right angle) in which tt'x , 7t.', , • • • are the plane angles of the

dihedral angles of P' and ir"x, w'l, • • • are the plane angles of the dihedral angles

of P".

In the article cited, M. Dehn further shows that this condition is also neces-

sary in order that it shall be possible to adjoin to P' and P" polyhedrons

decompositionally congruent so that the resulting polyhedrons shall be decom-

positionally congruent. Since it is not difficult to find two polyhedrons such

that this condition is not satisfied no matter what may be their measures of

volume, it follows that in respect to the volumes of such polyhedrons the theory

must be essentially different from the theory of areas of polygons.

More recently,f S. O. Schatunovsky has discussed the measure of volumes

of polyhedrons. He considers a scalar function p (base x alt.) of a tetrahedron

(p is ultimately given the value £) which is called the measure of volume of the

tetrahedron. The measure of volume of any polyhedron is defined as the sum

of the measures of volume of the tetrahedrons into which the polyhedron may

be decomposed. A proof is then given that this measure of volume of a poly-

hedron is independent of any particular decomposition of the polyhedron. Hence

to every polyhedron P there corresponds a unique segment (number), denoted

by M(P), which is the measure of volume of the polyhedron. Evidently these

measures of volume satisfy the conditions of order enumerated above.

It follows that if two polyhedrons Px and P2 are decompositionally congruent

then M(PX) = M(P2).    If Px and P2 are decomposable into sets of polyhe-

*Mathematische Annalen, vol. 55 (1902), p. 465.

fMathematische Annalen, vol. 57 (1903), p. 496.
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drons P[ and P'2 such that the elements of P'x are congruent in pairs to part of

the element of P'2 then M( Px ) < M( P2 ).

The converses of these propositions proved by Schatunovsky do not fol-

low without the use of the archimedian axiom. From the hypothesis that

3l(Px) = kM(P2), k being any segment (number) whatever different from

zero, we can draw no conclusion whatever as to whether or not there exist

P[ and P'2 such that the elements of P'x are congruent in pairs to a part or all

of the elements of P'2 or vice versa.

The proof of this statement is identical with that suggested * by Hilbert f in

proof of the proposition that two parallelograms of equal base and altitude cannot

be proved decompositionally congruent without the use of the archimedian axiom.

Hence it does not appear possible without the use of the archimedian axiom so

to define volume of polyhedrons in terms of geometric congruence of a finite

number of polyhedrons that it shall correspond to the measure of volume.

The object of this paper is to state a theorem provable only by means of the

archimedian axiom and to base upon it a definition of volume in terms of con-

gruence which shall correspond to the current definition in terms of measure of

volume.

* A detailed proof runs as follows :

Consider an equilateral triangle ABC whose sides are unity. It follows readily from the

axioms at our disposal that any decomposition (into polygons) of this triangle will result in a

set of polygons such that a segment connecting any two points in one of them will be equal to,

or less than, unity.

On a non archimedian line consider three points A, B, C, in the order ABC, such that

AB= 1 while the point C cannot he reached from B by laying off unit segments any finite

number of times. AtJ/ erect a perpendicular to the line AC and on this perpendicular lay off

a segment CD = \ 1^3 (i the altitude of the equilateral triangle described above). Connect

jlDand BD.
The following lemma follows directly from the theory of proportion : Let M, N, M', N' be

four points on the segment BC such that MN= WN'. Erect perpendiculars to the line BC

at these points. These perpendiculars intersect the sides AD and BD of the triangle ABD form-

ing quadrilaterals. The quadrilateral two of whose sides lie on the perpendiculars at M' and N'

is congruent to part of the quadrilateral two of whose sides lie on the perpendiculars at M and

N, provided at least one of the points M and N lie between B and both M' and N'.

Any decomposition of the triangle ABU into polygons which shall be congruent in part with

polygons of a decomposition of ABC must be such that a segment connecting any two points in

one of them is equal to or less than unity. Hence any such polygon lies between a pair of lines

perpendicular to BC and not more than a unit distance apart. It follows from the lemma that

any set of n such polygons may be obtained by suitably decomposing that part of the triangle

A BD which lies between the perpendiculars to AC at A and at a point E between B and C such

that BE = n (AB). By this process we cannot reach a point P between B and C such that

PC'-^=n(AB) for any value whatever of n. Hence any decomposition of the triangle ABC and

ABD into polygons of which any number n are congruent in pairs will always have a set of poly-

gons resulting from the decomposition of ABD, not included in these n polygons, the sum of

whose measures of„area is greater than the measure of all of that part of the triangle ABD which

lies between a perpendicular to the line BC at P and the perpendicular to that line at C. Con-

sequently ABD cannot be exhausted even by an infinite limiting process, in spite of the fact that

its measure of area is only one half that of A BC.

t Festschrift, p. 42 ; Townsend'b translation, p. 60.
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Theorem. If M(PX) denotes the measure of volume of a polyhedron

Px and M(P2) the measure of volume of a polyhedron P2 and if

M(P2)<.M(PX) then there exists a decomposition of Px and P2 into sets of

polyhedrons P[ and P'2 such that the elements of P'2 are congruent in pairs

with part * of the elements of P[.

Proof: Denote by Sx and S2 the areas of the surfaces of Px and P2 respec-

tively, by lx and l2 the total lengths of their edges and by vx and v2 the numbers

of their vertices. Consider a division of space into a set [c] of equal cubes, f

Denote by [ c, ] a subset of the set [ c ] such that every cube of [ c, ] has at least

one point in common with Px and by [ c2 ] a subset of [ c ] such that every cube

of [c2] has at least one point in common with P2. Denote further by [c¡ ] all

cubes each of which has at least one point in common with the boundary of Px

and by [c2] all cubes each of which has a point in common with the boundary

of P2. Denote the diagonals of such cubes by k. Then all cubes of the set

[c] which have a point in common with a segment of length I lie within a

rectangular parallelopiped of length I + 2k its other dimensions being 2k.

Hence the total volume of such cubes is less than 4&2 ( I + 2k ). Therefore the

total volume of all cubes of the set [c] which have a point in common with an

edge of the polyhedron Px is less than 4&2Z, + 8k* v. It is readily seen that if

we add to this 2ksx we shall have a sum greater than the measure of volume of

the set [ c, ] .

Denote by fx(k) the expressions 4k2lx + 8k3vx + 2ksx, and by f2(k) the

similar expression 4k212 + 8k3v2 + 2ks2, which is greater than the measure of

volume of the set [ c2 ].

Let M(Px)-M(P2) = cr.    Take k so thatfx(k)+f2(k)<0-4    Then

fi(l<)+f2(l<)<M(Px)-M(P2)

M(P2)+f2(k)<M(Px)-fx(k)

M[c2]<{M[cx]-M[c'x]}.

Hence for such values of k there is a larger number of cubes of the set [ c ]

which contain interior points of Px without containing any point of its boundary

than there is in the complete set [c2]. Hence there exists a decomposition of

/*, and P2 into P[ and P'2 such that the elements of P'2 are congruent in pairs

to part of the elements of P'x which was to be proven.

We arrange a relation between any two polyhedrons Px, P2as to volume,

so that in every case at least one of the relations

* By part is meant proper subset (not denoting the whole of P[ ).

t This division is effected by means of parallel planes. The parallel line axiom is also used

in forming the calculus of segments here used.

X It is at this point that the archiraedian axiom is used.

or

and therefore
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vol(P1)>vol(P2),        vol(P1) = vol(P2),        vol(P1)<vol(P2)

holds by the following

Definition.    The relation

vol(P1)>vol(P2)        or        vol(P2)<vol(P,)

implies that the two polyhedrons Px, P2 are decomposable into sets P'x,P'2qf

polyhedrons such that part of the elements of P'x are in a one-to-one way con-

gruent to all of the elements of P2.    The relation

vol(P1) = vol(P2)

implies that neither of the relations

vol (P,) > vol (P2),        vol (P2) < vol (P2)
holds.

It follows from the above theorem that if M(Px) = M(P2), then in ¡the

sense of the definition just given vol (Px) = vol (P2) and conversely that if

vol (Px) = vol (P2) then M(PX) = M(P2).

We have thus obtained in terms of congruence a definition of equal and

unequal volumes such that if a and 6 represent the volume of any two polyhe-

drons then between a and b, there exists one and only one of the following rela-

tions

a=b,        a<6,        6<a.

Obviously these relations are transitive, as required by the statement on page

487.

The Univebsity of Chicago,
October 31, 1904.


