
ON THE CAYLEY-VERONESE CLASS OF CONFIGURATIONS*

BY

WALTER B.   CARVER

Cayley, in his paper Sur quelques théorèmes de la géométrie de position,^

first calls attention to the figures obtained by taking the section, by a plane or

3-dimensional space, of the complete n-point (viz., n points, and the (2) lines,

( 3 ) planes, etc., determined by them) in a flat space of v dimensions.

Later, Veronese discusses more fully \ the nature of this class of configura-

tions, treating in general the configurations thus obtained in r dimensions.

Both Cayley and Veronese state that these same configurations can also be

obtained as projections of higher-dimensional figures.

Among the posthumous papers of Caporali is a paper : Sulla teoría delle

configurazioni § (1879), giving, without proof, a number of theorems concerning

a certain class of plane configurations. Although there is no mention of space

of higher dimensions in Caporali's paper, his configurations may be regarded

as projections upon a plane, or sections by a plane, of simple higher-dimensional

figures ; and they belong, in fact, to the Cayley-Veronese class indicated

above. Caporali's theorems become almost self-evident when viewed from this

standpoint.

In a paper Ueber Polyedrale Configurationen,\\ de Vries discusses a special

sub-class of the Cayley-Veronese configurations, viz., the plane sections of com-

plete «-points in ordinary space.

It is my purpose in this paper to state a number of general theorems for the

Cayley-Veronese configurations in space of r-dimensions (extensions, for the most

part, of Caporali's theorems for the plane case) ; to give a construction for the

quadric polarity in the plane and in 3-dimensional space, based upon certain of

these configurations; and finally to call attention to certain peculiar sets of

conies in the plane, connected with plane configurations of this class, ^f

* Received for publication, August 23, 1904.    Presented to the Society Ootober 28, 1905.

fCrelle's Journal, vol. 31 (1846) ; Collected Papers, vol. 1, p. 317.

% Behandlung der prqjectivischen Verhältnisse der Bäume von verschiedenen Dimensionen durch das

Princip des Projicirens und Schneidens, Mathematische Annalen, vol. 19 (1882).

§ Memorie di Geometría, p. 262.

¡Mathematische Annalen, vol. 34 (1889).

Tf There may be mentioned a few of the very many instances of the incidental occurrence of

these configurations.

The well-known figure of two perspective triangles with their center and axis of perspection

534
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In this paper, Sv denotes, as usual, a linear or flat space of v dimensions (in

points). The words " copoint," " coplane," etc., are used to specify the dual of

the point, plane, etc., in the space Sv ; thus, in Sv, a copoint is an £„_,, and a

complete n-copoint is the dual of the complete n-point. The number of combi-

nations of n-things taken v at a time will be denoted by ("), with the usual con-

vention that (no) = (;) = 1.

§ 1.     General Theorems.

Let r^ denote the configuration obtained in an Sr by cutting a complete

«,-point in Sy by the Sr. The incidence relations of the configuration * may be

shown by means of the square matrix of the rth order

(«,,) (j»,« = o, 1, ■■•,1—1)

in which a ( denotes the number of S 's in the configuration, and a (p =+■ q)

denotes the number of S's incident with each S .t    For the T"    we havep q    ' «i r

app = (p+y-r+l ) '

apq= (iXl-ffi) (9>P),

*pq=(n-q7-r-1) (*>«)•

If each of the »t-points in Sv is denoted by a single letter, any S of the

T* r is denoted by a combination olp + v —r+1 of these n letters ; and any

particular Sp and S (p~> q) of the configuration are incident if the q + v — r + 1

belongs to this class. It was probably first mentioned by Desargues in 1636 (cf. Eneström,

Bibliotheoa Mathematica, 1885), and is discussed in the aforementioned paper of

Oayley, and also in Kantoe's paper on (3, 3)10 Configurations, Sitzungsberichte der

K. Akad., Wien, vol. 84 (1881). Veronese shows, in his memoirs, Nuoviteoremi svJV hexa-

grammum mysiicum, Atti del la R. Accad. dei Lincei, vol. 1 (1877), and Interprétations

géométriques de la théorie des substitutions de n-letters, etc., Annali di Mathematica, vol. 11

(1881 ), that the sixty lines of the Pascal hexagram form six of these Desargnes figures.

The configuration of two perspective tetrabedra with their center and plane of perspection

occurs in Klein's memoir, Zur Theorie der Liniencomplexe des ersten und zweiten Grades, Mathe-

matische Annalen, vol. 2 (1870) ; and also in Richmond's paper On the figure of six points

in space of four dimensions, Quarterly Journal of Pure and Applied Mathematics,

vol. 31 (1900).
Whitehead treat« of the figure of two perspective reference figures in space of any number

of dimensions ( Universal Algebra, vol. 1, p. 139).

Caylky, loc. cit., shows that a peculiar special case of the plane figure of fifteen lines and

twenty points, obtained as a section of the figure of two perspective tetrahedra, occurs in the

Pascal hexagram.
*Cf. Vebonese, Mathematische Annalen, vol. 19 (1882), p. 171; or Grundziige der

Geometrie, p. 615.
tThis is the notation suggested by Professor Mooee, Tactical Memoranda, American

Journal of Mathematics, vol. 18 (1896), p. 265.
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letters belonging to the latter are contained among the p + v — r + 1 letters

belonging to the former.

Suppose, on the other hand, that one starts with the complete n-copoint in

Sv, and projects it upon an Sr, taking a eo-Sr, or Sr_r+X, as the projection-

center. By such a projection,* each point, line, plane, • • • or Sr_x of the

original figure is sent into a new point, line, plane, • • • or Sr_x in the Sr. The

#r's, ^,+i's, • • • and S„_xa of the original figure are lost. The configuration

thus obtained in the Sr is evidently the dual of the 1"^ r, and may be repre-

sented by the symbol, C*   .

The incidence relations of the Cj r may be shown by the matrix

(«„) (P,? = 0, 1, •••,!—l)

where

«W-ft-»).

«„-(PÎ)» (P>9).

Any element, Sp, of a C£ r is named by a combination of v — p letters out of

n. If we re-name all the elements, assigning as a new name to each S the

n — v + p letters not contained in its old name, we see at once that the Cyn r

under this new lettering becomes a T^~f+r~1. A T¡ r, with a similar change of

lettering, becomes a C^~f+r~1. (It will be convenient hereafter to write p for

n — v + r — 1.) Since a Tj r and a C* r are dual figures, it follows that a

Cvn<r and a C*r are dual, as are also a Tvnr and a T;r. Also a T"nr or a Cvnr

is self-dual if n — v + r — 1 = v, i. e., if 2v = n + r — l.f

While the symbols Cj r and T% r represent the same configuration, it is con-

venient to have both. One may use T£ r, when considering the figure as a sec-

tion of a /¿-dimensional figure, and C* r when regarding it as a,projection of a

v-dimensional figure. \

Theorem I. If in a C„, r we separate all those elements whose names con-

tain a certain letter from those xohose names do not contain it, the latter form

a C¿_x¡rand the former a C¡z}tr. Fach Sp of the C^_x<r (p=l, 2, 3, • • -, r—1 )

is incident with an Sp_i of the Cñzl¡r.

*This is what Veronese calls an eindeutige projection.    Cf. Grundzüge der Geometrie, p. 614.

fCf. Veronese, loe. cit., p. 164 ; also Grundzüge der Geometrie, p. 623.

i These configurations may, of course, be defined without reference to space of higher dimen-

sions than the Sr in which they lie ; but it should be understood that the matrix giving their inci-

dence relations is not sufficient so to define them. We must add the condition that they be so

arranged that they can be lettered, p+v — r-f-1 letters to each SP, in such a way that the

q + v — r-f-1 letters of any S, incident with a given Sp (p> q ) shall be contained among the

p + v — r + \ letters of the SP.
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When a C£_, r and a C^zx\r are so related we may speak of them as being

chiastically incident, or. for present purposes, simply as chiastic*

Theorem II. With respect to two letters, say a and b, the C£ r breaks up

into a C"t_2. r i the names of whose elements contain neither a nor b ; two C%z\. r's,

one containing a but not b, the other b but not a; and a C^Z2,T containing

both a and b.

The two C,"rl r's are both chiastic with the C,*_2, r and also with the C^zt. r.

Moreover each Sp of the C¿_2i r(_p=2,3, •••,»• — l)is incident with an Sp_2

of the C^zl r ; and we may speak of a C¿_2| r and a C*z\, r so related as being

chiastic.

In general, any two configurations whose symbols have the same subscripts

but different superscripts, as C£ r and C*"", are chiastic if each Sp of the C£ r

is incident (in a certain order) with an Sp_K of the C'f' • It is evident that we

cannot have chiasm between these two figures unless k = r — 1. If a C¿~K

is chiastic with a C"hr, and the CB"r is chiastic with a Cn"+', then the C¿~" is

chiastic with the C¿fr'.

Theorem III. The breaking up of a Cvn¡,. with respect to S given letters

may be symbolically expressed by the formula :

Cn, r —   Cn-j,r + S^n-t,r + (2) ^n-*, >• + " -' +  (2) C*n-'?r  + S C n-'^r +  G n-'t. r •

Any Cj;zj r of this expression is made up of those elements of the C"n r whose

symbols contain a certain k of the s letters but not the remaining s — k. A

CvnZ"s. r and a C^z'^' are chiastic if the k — I letters which distinguish the latter

are contained among the k letters which distinguish the former.

Theorem IV.    There are (")('K)C"nZ'r's contained in every Cvnr.

Theorem V. If sC"~\r's are chiastic with a C^_sr, any two of the

C„z\ r's determine a C^Z2.r with which they are both chiastic; three of the

C„zl r's determine thus three C"¿z\ r's which are chiastic with and determine a

C'Z-l r> '" and finally 1 the sC^Zl.r's determine sC^Z'fr's which are chiastic

with and determine a Cü,Zse¡r; and the entire figure thus determined is a C"n r.

When v=n — s, this theorem is Veronese's "perspective pyramid"

theorem, j-

Theorem VI. If a C"nr and a C°f' are chiastic there are oo",-,s C"~r"s

(«> I) chiastic with both the Cvnr and the C¡¡~'- If we fix arbitrarily one

"Sr_,_1 of the C"~l lying in any Sr_x of the C"n< r and, passing through the cor.

responding Sr_K_x of the C\ff, the C"~¡: is then completely determined.

Theorem VII. There are oo"(,,_'c+1)Ci~f's chiastic with any given C\r.

We   may fix   arbitrarily the  v — k + 1  points of the   C^~' lying  on   the

* The word chiastic is similarly used by Sir Robert Ball.

t Loc. cit., p. 171 ; also Grundziige der Geometrie, p. 614.
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v — K+1 SK's passing through any SK_X of the Cvnr, and the Cvn~r is then

completely determined.

Theorem VIII. There are 0oKin~y+r~") Cvn+fs chiastic with any given C*r.

We may fix arbitrarily the n — v + r — ic copoints of the G%ff passing through

the n — v + r — K Sr_K_xs lying in any Sr_K of the C* r, and the Cvff will

then be completely determined.

Theorem IX.    A Cvn, T *s determined by

r(n — v + r) + (v — r)(n — v + r — 1) = nv — (v + l)(v — r)

arbitrary constants.

§ 2.  Constructions of Quadric Polar Systems.

It is well known that the Desargues configuration in the plane, the rjj 2, deter-

mines a certain conic or polar system with respect to which it is self-polar.

Veronese shows,* more generally, that the complete figure of two perspective

"fundamental pyramids " in Sr, i. e., the configuration r^+jj r, determines a cer-

tain (r — 1) dimensional quadric spread, <br_x, with respect to which it is self-

polar. Each point of the TÇ$\ r. named by two letters is the pole, with respect

to <*>r_,, of that particular copoint which is named by the remaining r + 1

letters.

Let us consider first the case of the plane figure. Cayley shows f that the

I"1;} 2 breaks up into two pentagons, each inscribed and circumscribed to the other.

If we take any cyclic arrangement of the five letters, as abcde(= bcdea = edcba,

etc.), it will represent one of these pentagons, i. e., the pentagon whose vertices

are ab, be, cd, de, and ea, and whose sides are abc, bed, ede, dea, and eab.

The remaining five points and five lines of the configuration form the other pen-

tagon, i. e., the pentagon acebd. In either of these pentagons, each vertex is

the pole of the opposite side with respect to the polarity, <J>,, of the configura-

tion.

To say that a quadric polarity sends each vertex of a pentagon into the oppo-

site side places five linear conditions on the polarity, which is just sufficient to

determine it uniquely.^    A polarity may then be given by a pentagon.

Of the two pentagons which form a T\2, one may be taken arbitrarily, and

any line or point of the second to satisfy a single condition.    (A T\ 2 depends

* Loc. cit., p. 193.

f Crelle's Journal, vol. 31 (1846), p. 213 ; also Collected Works, vol. I, p. 317. This fact was

probably fiist noticed by J. T. Graves. Cf. Philosophical Magazine, vol. 15 (1839), p.

131.
I Cf. Reye, Geometrie der Lage (3d edition), vol. 2, p. 125; and Kohn, Mathematische

Annalen, vol. 46 (1895), p. 303.
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upon 3.5 — (3 + 1)(3 — 2) = 11 arbitrary constants. * Ten of these con-

stants are fixed in fixing the first pentagon, leaving one arbitrary constant to the

second pentagon). But the polarity is determined as soon as the first pentagon

is fixed, hence the second pentagon is necessarily self-polar with respect to the

polarity determined by the first pentagon.

This gives a method for constructing the polar of a given point with respect

to a polarity, when the polarity is given by a self polar pentagon.

Consider* the given pentagon as the pentagon abcde of a Tj 2. If we make

any side, say ace, of the second pentagon, acebd, pass through the given point,

x, this second pentagon is then determined, and the polar of x must pass through

the point bd. Now draw a different second pentagon, a'c'e'b'd', making a dif-

ferent side, say b'd'a, pass through x. Then the polar of x must pass through

the point c e of this pentagon, and is thus determined.

The essential part of the construction may be remembered conveniently

as follows : Number the vertices and sides of the pentagon consecutively

1,2,3, ■•■,10, assigning to the vertices the odd, and to the sides the even

numbers. Then join a: to 1 to meet 4 at A, A to 7 to meet 10 at B, B to 3

to meet 6 at C,.and C is then on the polar of x. Shift the numbers, replacing

3 by 1, 4 by 2, 5 by 3, ■ • -, 2 by 10, and repeat the above process, obtaining

thus a point C".    Then CC is the polar of a;.

A dual construction gives the pole of a given line.

Two pentagons, representing two polarities <I> and <ï>', of which the first

sends points into lines and the second sends lines into points, give a collineation.

The common polar triangle of O and í>' is the fixed triangle of the collineation.

If ABCBE is a pentagon giving the polarity O, the triangle B, B, (AB Ï>E)

is evidently a polar triangle of <&.+ If then a given triangle, with vertices

a, b, and c, and sides a, ß, and 7, is to be the fixed triangle of a collinea-

tion which is in addition to send a given point, F, into a given point, F', we

can at once construct two pentagons which will give this collineation. Let S he

any line. Our two pentagons may be F, a, (ß-S), (8-a), b and F', a,

(ße),(S-a),b.
The two pentagons ABCBE and ABCBE', where E' lies on BE, give a

collineation in which the point B and all points on the line A B are fixed points,

while AB, and all lines through the point B, are fixed lines. This collineation

sends F into E', and it sends any point, F, into a point B' on the line

BB, such that the cross ratio F, F', B, AB is equal to the cross ratio

E, E, D,AB.
Clebsch $ calls attention to a collineation determined by a pentagon.    With

*Cf. 11, theorem IX.

t Cf. Eeye, Geometrie der Lage (3d edition), vol. 2, p. 125.

Î Ueber die Anwendung der quadratischen Substitution auf die Gleichungen 5ten Grades und die

geometrische Theorie des ebenen Fünfseits, Mathematische Annalen, vol. 4 (1871).
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the pentagon ABC DE is naturally associated the pentagon of the diagonals,

A CEBD, and these two pentagons give the Clebsch collineation.

Passing now to the three-dimensional case,* we have the configuration, Ig 3,

which consists of two perspective tetrahedra with their center and plane of per-

spection. The points, lines and planes are denoted respectively by combinations

of two, three and four letters out of six. The point ab is the pole of the plane

cdef, and the lines abc and def are conjugate, with respect to a certain polarity <ï>2.

Taking any cyclic arrangement of the six letters, as abcdef, they represent a

skew-hexagon whose six vertices are ab, be, cd, de, ef and fa; six lines are

abc, bed, cde, def, efa and fab ; and six planes are abed, bede, cdef, def a,

efab and fabc.

In addition to the six vertices of this hexagon there are nine other points of

the configuration, viz.,

ac, ce, ea, bd, df, fb, ad, be and cf,

each of which lies in two planes of the hexagon, the first six lying on lines and

the last three on the intersection of opposite planes of the hexagon. (For

instance, ac lies on the line abc, but ad lies on the intersection of abed and

def a.) Similarly there are nine planes of the configuration besides the six of

the hexagon, viz.,

abce, bedf, cdea, defb, efac, fabd, beef, cdfa and deab,

the first six passing through lines of the hexagon, and the last three through

the joins of opposite vertices.

From these nine points and nine planes we can pick out, in three different

ways, a second hexagon which, like the first, may be represented by a cyclic

arrangement of the six letters. Such a hexagon is adfbec, and, like the first

hexagon, each vertex is the pole of the opposite plane with respect to the polarity

02. Moreover the hexagons abcdef and adfbec are mutually related to each

other. Of the six vertices of each, four lie on lines, and two on the intersection

of opposite planes of the other. Of the six planes of each, four pass through

the lines, and two through the joins of opposite vertices of the other. Also four

out of the six lines of each lie in planes and pass through vertices of the other.

To say that each vertex of a hexagon is the pole of the opposite plane with

respect to a polarity 3>2 is to place nine linear conditions upon the polarity, and

this determines it uniquely. Hence, as soon as one of the hexagons of our

configuration is given, the polarity í>2 is deterinined.f

* Cf. the author's paper in The Johns Hopkins University Circular, April, 1904.

t Dr.. Kasneb, in a paper on The double-six configuration, American Journal, vol. 25

(1903), calls attention to a polarity, fl, connected with the double-six. In a letter to Professor

Morley, he shows that a skew-hexagon, self-con jugate as to fl (and thus determining Q) may be
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I wish now to show that the first hexagon, abcdef, can be taken arbitrarily,

and any plane of the second hexagon, adfbec, can be taken to pass through any

point in space, and that the second hexagon and the entire r* , will then be

determined.

Suppose abcdef to have been chosen arbitrarily. We then make any plane,

say adfb, of the second hexagon pass through the line fab and any given point

x.    Let adfb cut def in df and bed in bd.    Then draw

bdf (join of 60? and df) cutting fab in fb,

fbe (  "    "/ô   "    ef)     "      bede "   oe,

[abe(   "    "  be   "   ab)     "       efa   "   ae],

bee (   "    "  be   "   be)     "       cde   "    ec,

eca (   "   "  ec   "   ae)     "       abc   "   ca,

and cad (  u   "  ca   "   erf)     "      de/a "   ad;

and if our hexagon is now to close properly, ad should lie in the plane adfb on

a line with fa and df; and I shall show that this will always be the case.

The figure thus far constructed is part of the figure of two perspective tetra-

hedra, which we proceed to complete.

(In Fig. 1 the hexagon äbcdef is shown by dotted lines, the hexagon adfbec

by heavy lines, and the rest of the configuration by light lines. The double

figure viewed through a stereoscope shows the figure in relief.)

Draw cef (join of ec and ef). Then the three lines fbe (fb-bc), fac

(fa • ca), and cdf (cd ■ df) will cut cef; for they lie respectively in the

three planes fbee (fb be ■ ef- be ■ ec), face (fa • ae • ef ■ ca • ec), and fede

(df-de ef-cd-ec) passing through cef. Moreover these three lines all cut cef

at the same point, cf, because each pair of them lies in a plane which does not

contain cef; viz., fbc and fac lie in fabc (fa fb-ab-bc-ca); fac and cdf lie

in facd (fa df adedae); and cdf and fbc lie in fbed (fb df -oded-bc).
Also the line bde (be-de) passes through bd since it lies in two planes contain-

ing bd, viz., the planes bdef (be-de fb df bd) and bede (be-de-bedc-bd).

Examination of the figure now shows that ca be cd -cf and ae be de ef are two

perspective tetrahedra with ec as perspection-center. Five pairs of correspond-

ing edges meet in the five points bd, fb, df, fa, and ab, points in the plane

selected in twenty different ways from the lines of the double-six. If L¡ and Mi ( i = 1, 2, ■■-, 6)

are the lines of the double-six, then any corresponding triples, as l^, L„ L, and Ml; Mt, Ms

form such a hexagon. In this same letter Dr. Kasner suggests a construction for a polarity

when defined by a hexagon. He reduoes it to the construction of several plane polarities defined

by plane pentagons.
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adfb.    The sixth pair of edges, cad and ade (aede) must also meet in a point

of this plane.    But cad was to meet the plane def a in ad, and the line ade is

Fio. 1.

in the plane defa, and, therefore, ad lies in the plane adfb and on a line with

fa and df. Hence our hexagon closes properly, and the entire Tl3 is

determined.
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This gives us now a method, similar to the method for the plane, of construct-

ing the polar plane of any point x with respect to a polarity when the latter is

given by a self-polar hexagon. The vertex of the second hexagon opposite to

the plane passed through x (the vertex ec in the case just described) must lie on

the polar plane of x. The construction of this point ec is in fact very simple,

and may be stated as follows :

Let 1, 2, 3, 4, 5, 6 be the vertices of the given hexagon taken in order.

Pass a plane through x, 1, and 2 and cutting 34 and 56 in A and A' respec-

tively. Draw A A' cutting 12 in B, and ¿?6 cutting the plane 345 in C.

C3 will then cut 45 in the point D which is the point required on the polar

plane of x. Now shift the digits around on the hexagon, replacing 2 by 1, 3

by 2, • • • 1 by 6, and repeat the above process, obtaining a second point D',

similarly for a third point D". The plane DD'D" will then be the polar of a;

with respect to the polarity given by the hexagon.

A dual construction gives the polar point of a given plane.

The combination of two consecutive space polarities gives a space collineation,

and hence a space collineation may be given by two skew-hexagons.

If a given tetrahedron with vertices a, b,c, and d, and faces a, ß, y, and &

is to be the fixed tetrahedron of a collineation which is in addition to send a

given point, P, into a given point, P', this collineation may be given by the

two skew hexagons whose vertices are

P, a, (yß-e), (ß-a-e), (a-S-e), b

and
P', a, (yß-e), (ßae), (a-8-e), b

where e is any plane.

The two hexagons A B CDEF and ABCDEF', where F' lies on EF, give

a collineation in which the point E and all points of the plane ABC are fixed

points, while the plane ABC and all planes through E are fixed planes. This

collineation sends any point, P, into a point, P', on the line PE, such that the

cross-ratio P, P', E, ABC is equal to the cross-ratio F, F' E, ABC.

§ 3.  Associated systems of conies.

The two dual configurations, T¿ 2 and C¿p 2 (which are respectively the section

by a plane and the projection on a plane of the space configuration T¿ 3) give

rise to certain peculiar sets of conies which are worthy of notice.

All the elements of a Tg „ containing a given letter of the six, say a, form a

T\ 2* with which is associated a conic that may be called Fu. There are six

such conies.    The twenty points of the Y\ 2 naturally fall into pairs such as abc

*Cf. Ui theorem I.
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and def. The point abc is the pole of the line adef with respect to Fa, and

since def lies on adef, abc and def are a pair of conjugate points with respect

to F . Similarly, since abc and bdef are pole and polar with respect to Fh,

abc and def are conjugate with respect to Fb. They are conjugate points, in

fact, with respect to all six F's. The same is true of each of the ten pairs of

points. Regarding these ten point-pairs as degenerate line conies, and the F's

as point conies, we have then ten line conies each apolar with each of six point-

con ics.

This being the case, either (1) the ten conies belong to a range and the six to

a 4-spread ; or (2) the ten belong to a web and the six to a net ; or (3) the ten

belong to a 4-spread and the six to a pencil. The first supposition cannot be

true, for there can be only three degenerate conies in a range. If the second

alternative be true, the twenty points lie on a cubic curve ; but this is impossible

since they lie by fours on straight lines. Therefore the third supposition is true,

and the six conies F belong to a pencil, i. e., they pass through four points.

Thus every T, 2 determines four covariant points.

In the same way it may be shown that aCj¡ determines six line conies,

£>0, • • •, &/t belonging to a range ; and hence a C\.2 determines four covari-

ant lines.

Every r^ (where i/ = 3 and n=Zv + 2) contains (n%)(nvZ¡) r^3's,with

each of which is associated a conic F.* We obtain one of these Tl 2s by pick-

ing out all the elements of the T^ 2 which contain certain v — 3 letters, say

ab - - - k, and do not contain certain n — v — 2 letters, say mn - ■ ■ s. We may

denote the conic associated with this T\ 2 by Fat...K.mn..... If v = 4, the con-

figuration T1; 2 contains (n"6)(;zJ) T\ 2's, with each of which is associated a

pencil of six of the conies F. The T\ 2, and therefore the associated pencil, may

be denoted by the symbol ( 6 • • • k . mn - - - s ) made up of two groups of v — 4

and n — v—2 letters respectively. A given conic, as Fab K.mn B belongs to

a given pencil, as (6 ■ • • k ■ mn - ■ - s), if the n — v + 2 letters in the two sym-

bols are the same, and if the v — 4 letters in the symbol for the pencil are con-

tained among the v — 3 letters in the symbol for the conic. We have then,

connected with a r,;2 (where v = 4 and n = v + 2), (fLr,)("zt) conies lying in

( ™—e ) ( "-4 ) pencils, six conies in each pencil, and each conic in v — 3 pencils.

Similarly, a C*2 (where M = 4andra = /¿ + 2) gives rise to (nís)(^z¡) h'ne-

conics lying in („Ze)(^z\) ranges, six conies in each range and each conic in

p. — 3 ranges.

Restating this last theorem in terms of the T's instead of the C's, and noting

that p. = n — i; -f 1, we have :

Associated with every I*, (where v = 3 and nSv + 3) are (n"5)(^) Hne-

conics lying in (nït)(^zl) ranges, six conies in each range, and each conic in

*Cf. §1, theorem IV.
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n — v—2 ranges. But these (n"5)(*lJ) line-conics are the same as the point

conies F associated with the T^ 2. Hence we have the somewhat remarkable

theorem :

Associated with every r,"( 2 (wnere v = 4 and n = v + i)are (nl5)(lzl)

conies which lie by sixes in (n!6)("Z*) pencils, each conic in v — 3 pencils, and

■which also lie by sixes in (,,"6)("!*) ranges, each pofdc in n — v — 2 ranges.
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