
ON THE RELATION BETWEEN THE THREE-PARAMETER GROUPS

OF A  CUBIC  SPACE  CURVE AND  A  QUADRIC SURFACE*

BY

A. B. COBLE f

§ 1. Statement of the problem. %

As is well known, there is a three-parameter group, G3, of projective trans-

formations which leaves unaltered a cubic curve, C3, in a space of three dimen-

sions, S3. The group, F3, of algebraic transformations, reciprocal to G3 also

leaves C3 unaltered.

The six-parameter projective group which leaves a quadric, Q, in a three

dimensional space, 23, unaltered contains two three-parameter subgroups, T3

and 4>3, each of which is defined by its leaving unaltered every one of a set of

generators of Q.

That the groups 6r3 and T3 are similar Lie has pointed out. He has given

also a transformation which carries the one group into the other. But the

form of this transformation is not such as to permit of an easy discussion of its

properties. It is the object of this paper to set forth a transformation, T, which

carries G3 into 1\, in such a form that its effect upon the various manifolds in

S3 and 2S may be more easily studied. This object will be effected by first

obtaining the integral equations of G3 and T3 in readily comparable forms.

Possibly the chief interest of the method lies in the fact that the algebraic trans-

formation T will also transform the projective group <I>3 into the algebraic

group F3. Properties of F3 may then through the knowledge of T be inferred

from those of <E>3.

§ 2.  The trüinear binary form.

The general trilinear binary form, written symbolically as

A = (ax)ßy)(yz),

involves homogeneously eight constants — its system of coefficients.    If these

coefficients or properly selected linear combinations of them be considered as

*Read before the American Mathematical Society December 23, 1904. Received for publica-

tion February 18, 1905.
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| The author is indebted to Professor Study for the suggestion of the problem and the method

of treatment employed.
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coordinates in a linear seven-dimensional space, 87, we obtain a one-to-one

correspondence between the points of S7 and the totality of forms A. Expand-

ing A according to the Clebsch-Gordan formula, we have

A<mAx+ A2,
where

A = ¿ [(«0 W(w) + (*O0%)(7*) + (qr)(0")(7*)]i

^-K(yO(07)(«) + («)(7«)(ty) + (^)(<tf)(7*)].
If

(px)3 = (ax)(ßx)(yx)        then ^ = (px)(py)(pz ).

Hence Al and A2 each depend homogeneously upon four constants : the former

upon the coefficients of the cubic (px)3; the latter upon the six quantities

(/?7)at, (ya)ßt, and (aß)yi (t = 1, 2), among which exist the two linear

relations given by the identical vanishing of

(ßy)(ax) + (ya)(ßx) + (aß)(yx).

In the aggregate of forms A occur two special linear aggregates : that of the

forms At represented by the points of a three-dimensional spread, S3, in S7 ; and

that of the forms A2 represented by the points of a three-dimensional spread,

23, in S7. Since Ax and A2 do not vanish simultaneously, S3 and S3 are skew

spaces. If the forms A (x, y, and z considered cogredient) be transformed by

the general binary projective group, the space S7 is transformed by a three-

parameter projective group, which, in the invariant space S3, leaves a cubic

space curve unaltered and, in the invariant space 23, leaves a quadric unaltered

— the quadric

(ßy)(aß'){y'a') = (ya)(ßy' )(a'ß') - (aß)(ya')(ß'y') = 0.

The trilinear form has now served its purpose in having suggested the fol-

lowing coordinate systems in S3 and 23. In S3 we take as the coordinates of

a point the coefficients of a binary cubic form, (px)%. In 23 we take as the

coordinates of a point the six quantities lt, mt, nt (t = 1, 2), connected by the

identity
(Ix) + (mx) + (nx) = 0.

§ 3.   The group G3 and its invariant systems of manifolds in S3.

The representation of points in an S3 by binary cubic forms is well known.

For our present purposes we use the following notation for the comitants of

the cubic and resolution of the cubic into its linear factors given by E. Study.*

We take

f=p = (pxf = {p'*Y>      è = O)2 =- Hpp'Y(i>x)(p'x)>
*American Journal of Mathematics, vol. 17 (1895), p. 187.
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q=(qx)3=2(p,8) = (pPy(p"p)(p'x)(p"x)\

r = Hp, <if = H^J=h{pp')2{p"p){p'p'){pvJ-

The syzygy between these forms is

48» + gt + r/i.0j
whence

-Ah3={q+V -rf}{q-V -rf}.

The linear factors {<rx) and (to) of S are defined as

Hence

(<ra)3 + (to)3 = ?, (<ra;)3 - (to)3 = }/^7f,

(o-t)3 = ?•■(/— r, (<7t)2=—r, . •. (o-t) = — V — r.

If e is an imaginary cube root of unity and elf e2, e3 a cyclical permutation of

1, e, e2, also if et is the conjugate of et, three linear forms C^x), (px), (»^) are

defined by the equations

(<rr)(Xx) = ël(ax) — €l(Tx), (<Tr)(fix) = ê2(ax) — e2(rx),

( o-t)( kb) = e,(<w) - c3(to) ;

and it follows further that

0 = (Xa5) + (/«) + (kb),

38 = r {(itx){vx) + (ra)(Xx) + (\x){ia)} = - ¿X(X*)2,

p = rC\jx)(fix)(vx) = g£(Xz)3,

3y^3?= {(pa) -(vx)}{(vx) - (Xa>)}{(Xa>) - (px)},

-•-3      1/-3

(<rr)     = 17^7 = (""> = ("X) = ( V)-

We can now write the group G3 in the form

(il)    (\'x) = (\d)(8x),        (iJL'x)=(fMl)(Sx),        (v'x) = (vd)(8x),

where (dy)(8.v) is a general linear transformation in the binary domain. Any

one of these three identities in a; is a consequence of the other two. Since the

forms (Xa;), (px) and (vx) are defined on the supposition that r 4= 0, the

group G3 in this form is defined only for points in general position. This is

sufficient however to completely determine the group.
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Hereafter we consider (px)3 a variable point (undetermined cubic form) and

retain for functions of its coordinates (coefficients) the above notation. The

forms (pxx)3, (p2x)3, etc., denote fixed points and their comitants are distin-

guished from those of (px)3 by the use of the respective suffix. A point on Cs

is given simply by a linear form.    Then we can state that

(1) (ppyf = 0 is a plane cutting C3 in the points (\x), (^x), (vtx) and

passing through (p^)3.

( 2 ) r = 0 is the Touted surface of tangents of C3 and contains O3 as a cuspidal

edge. Or it is an algebraic surface of the fourth order containing C3 as a double

doubly asymptotic curve.

Here we understand by an m-tuple p-tuply asymptotic curve on a surface, a

curve of m-tuple points such that the tangent cone of order m at every point on

the curve contains the osculating plane of the curve at that point p times.

(3) ( qp¡)3 = 0 is the polar cubic surface of (pxx)3 as to r = 0 . It contains

C3 as an asymptotic curve but has double points at (\x), (fitx), (vlx) . It

meets r = 0 in the three tangents to C3 at these double points and in C3 taken three

times.

(4) (8a)2 = 0, where (ax)2 = (alx) ■ (a2x) is a general quadratic binary

form, is the most general quadric containing C3. The system of generators

which are chords (double secants) of C3 meets C3 in pairs of points apolar to

(ax)2 = 0. The two tangents of C3 at (a¡x) and (a2x) together with C3 taken

twice form the intersection of (8a)2 = 0 and r = 0. If (ax)2 has a double factor

(atx), the quadric is the cone containing C3 with vertex at (axx).

If now, for brevity, we write [(pa)3]" for (p&)3(p'a)3 ■ ■■• (p(n_,)a)3and use

corresponding abbreviations for the other concomitants of ( px )3 we can state

the theorem :

(5)*  The most general algebraic surface of order n in 83 can be written

2 [(pa)3yi[(8a)2-]»*\_(qay]n*rn< = 0,

where n3 = 1 and (ax)3"1"1"2"*"'"3'1' is a general binary form of that order, the sum-

mation being extended over all positive integer solutions of «,-|-2n2-|-3Ti3+4n4=n.

(6) The most, general algebraic surface of order n containing C3 as an m-tuple

p-tuply asymptotic curve is that of (5) where the exponents satisfy the further con-

ditions

n2+ ns+ 2n4 =m,        n3+2n4^p (p^m)

and the summation contains a term satisfying both equalities.

*Of the above (1), (2), (3) and (4) are well-known manifolds connected with C3. (5) and

(6) are proved in an article by the author to appear later. The proof of (7) rests simply on the

application of Aronhold's process fto the comitants of the cubic The sextic in (7) in con-

formity with the requirements n3 ^ 1 can be written

rx ■ (*, )2{6'pl )2(à"Pi ) (à"p[ ) -r ■ ( ̂ p )2( <V)2( d'/p) (^V) =0.
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A particular surface which turns up later is

S*(Pl) = r[(pqjy-rl\_(plqfY=0.

Of this the following properties are easily verified :

(7) The sextic surface Si(pl) contains C3 as a double doubly asymptotic curve

with triple points at (<txx) and (t^). At the point (ptx)3 it has a triple point.

The tangent cone at the triple point osculates C3 at (a^) and (Ttx) and cuts it at

the points given by (qxx) = 0. The surface contains the line (pxx)3 + p(qxx)3

as a double line (except for the three triple points). The tangent cone at (q¡x^ is

( 1\ P f — 0 taken twice.

The system of surfaces S6(pl) is transformed into itself by G3 and the group

is six-tuply transitive with regard to general members of the system.

§ 4.  The quadric Q in 23 and the groups T3 and <I>3.

A point in 23 being given by the coefficients of the three binary forms

(lx), (mx), (nx) for which always the identity

(1) (lx) + (mx) + (nx) = 0

holds, and therefore

(2) (mn) = (nl) = (lm),

we have, as the equation of a quadric Q,

(3) (mn) =(nl) = (lm) = 0.

A system of generators, say the A-generators, of Q is given by the identity

(4) p(lx) + a-(mx) + r(nx) = 0 (p:»:r+i:l:l)

By the use of (1), identity (4) may be written in infinitely many forms but we

shall take usually that one for which p + a + t = 0. The A-generators are

then determined by a binary value system p, a, t.

Three of these generators, denoted hereafter by a, b, and c respectively and

given analytically by

— 3(lx) = — 2(lx)+  (mx)  +  (nx)  =0,

(5) — 3(mx)=     (lx)    — 2(mx)+  (nx)  =0,

— 3(«x)=     (lx)     +  (mx)   —2(nx) = 0,

will be called the "principal generators."    The Hessian pair if (a, b, c) of

these three are

(6) (lx) + a>(mx) + a>2(nx) = 0,        (lx) + m2(mx) + <o(nx) = 0,

where <o is an imaginary cube root of unity.    The generators forming the cubic

covariant of the principal generators, denoted respectively by a , b', c , are

(7) (mx) — (nx) = 0,        (nx)—(lx)=0,        (lx) —(mx) = 0.
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The second system of generators, say the «-generators, of Q is defined by the

simultaneous holding of

(8) (lu) = 0,        (mu) = 0,        (nw) = 0,

in which it, : u2 is an arbitrary but fixed value. Any one equation of (8) is a

consequence of the other two. The «-system is thus also determined by a

binary value system 'u, : u2.    The plane

(9) p(lu)-r-<r(mu)-T-T(nu) = 0

is a tangent plane of Q containing the A-generator (p, a, t) and the «-genera-

tor (m). Then the tangent planes containing a and the «-generator (I'); b

and the «-generator (m' ) ; c and the «-generator (n ) are respectively (W ) = 0,

(mm' ) = 0 and (nn) = 0 and they meet in the point whose coordinates are

(I'x), (m'x), (n'a;). Thus if the principal generators are fixed as well as a

binary value system on any one of them then our coordinate system is fixed.

If the V, m , n' are permuted in all possible ways six points are obtained cor-

responding to the six possible ways of coordinating the three «-generators with

a, b, c. Such a set of points will be called a 6-point and be said to be defined

by a 3-« (I', m', n).    By very simple analysis we verify that in general

(10) A 6-point (I, m, n) lies on two lines which form the diagonals of the skew

quadrilateral on Q whose sides are H(a, b,c) and the Hessian pair of the 3-«

(I, m, n). These two lines are conjugate lines of Q and each intersects Q in the

Hessian pair of the three points on it.

The construction of a 6-point just given is not valid if (mn)=(nl)=(lm)=0.

The point then has coordinates pl(ux), <rl(ux), rl(ux) where pi + trx + t, = 0

and lies on a «-generator (u) and an A-generator (p,a,r) where p + <r -4- t = 0

and ppl + o-o-j -4- rrl = 0. In general the three quantities, p, a, t are distinct

and different from zero and the 6-point is the six intersections of the «-genera-

tor (u) with the six A-generators obtained by permuting p, a, r. But if

p :a ;r = — 2:1 :1, the 6-point is the three meets of a, b,c with the «-gene-

rator u; if p :a :t = 0 :l : — 1 the 6-point is the three meets of a', b', c' with

k(u); while if p : <r : t= 1 : co : w2 the 6-point is the two meets of H(a, b, c)

with «(«).

The equation of a plane in 23 may always, by the use of (1), be put in the

form

(11) (Û) + (mm) + (nñ) = 0

so that the coefficients or plane coordinates (lx), (mx), (ñx) also satisfy the

identity (1). Hence as for points we have 6-planes whose coordinates are the

permutations of the coordinates of any one of the six.

(12) Each plane of the 6-plane (I, m, n) passes through a line of the 6-point

(I, m, n) and a point on the other line.    This relation of the two is reciprocal.
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The construction of the 6-plane is entirely dual to that of the 6-point except that either

the a', b', c' take the place of a, b, c or the cubic covariant of the 3-« (/, m, n)

takes the place of the 3-« itself.

The polar planes as to Q of a 6-point (I, m, w) form a 6-plane

(m — n, n — 1,1 — m) whose construction is entirely dual to that of the 6-point.

The identities in x

(13) (l'x) = (dl)(8x),        (m'x) = (dm)(8x),        (n'as) = (dn)(8x),

in which, as before, (dy)(8x) = 0 is the general linear transformation in the

binary domain, represent a transformation of the point, l, m, n into the point

V, m', n which leaves unaltered both the identities (1) and (4) and, therefore,

every generator A.    Hence

The identities (13) are the equations of T3.

And further the identities

(I'x) = al(lx) + a2(mx) + a3(nx),

(14) (m'x)=bl(lx) + b2(mx)-rb3(nx),

(nx) = c^(lx) + c2(mx) + c3(nx),

in which (a, + bx + c,) :(a2 + b2 + c2) : (a3 + b3 + c3) = 1 :1 :1, leave un-

altered the identity (1) and the equations (8) and, therefore, all «-generators.

By the use of (1) these may be written more compactly

(l'x) = a2(mx) + a3(nx),

(15) (m'x) = bt(nx) + bl(lx),

(n'x) = Cj(fa;) + e2(mx),

in which (6, + c,) : (c2 + a2) : (a3 + b3) = 1:1 : 1.    Hence

The identities (15) are the equations of 4>3.

From the form of (13) and (15) we see that the order of succession is im-

material, i. e., the group <I>3 is the group reciprocal to T3. A simple transforma-

tion that carries the one group into the other is the harmonic perspectivity with

center of perspection the point I', m", n" (not on Q) and plane of perspection

the polar plane of this point as to Q.    This transformation, S, reads

(m"n")-(l'x)= [(mn") + (m"n)](l"x) - (m"n")-(lx),

(16) (n"l")(m'x)= l(nl")+(n"l)](m"x)-(n"l")(mx),

(l"m")-(n'x)= {(Im") + (l"m)](n"x) - (l"m") ■ (nx).

And the transform of (13) by (16) reduces to
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— (m"n") -(l'x) = (dn")(8l") -(mx) — (dm")(81") -(nx),

(17) _ (n"l")-(m'x) = (dl")(8m")(nx) - (dn")(8m")(lx),

-(l"m")-(n'x) = (dm)(8n")-(lx)-(dl")(8n")(mx).

This is the group (15) or <ï>3.

It contains a finite group, g6, of six transformations which gives rise to the

six permutations of I, m, n, i. e., it is the group which leaves every 6-point

and every 6-plane unaltered.

The group <ï>3 also contains the special transformation, D, given by

(18) (l'x) = (mx) — (nx),     (m'x) = (nx) — (lx),     (n'x) = (lx) — (mx).

D is "interchangeable" with any transformation of gt ; and D and the transfor-

mations of ge are the only transformations of 4>3 which carry 6-points into

6-points.
§ 5.   The transformation T.

A comparison of the integral equations of G3 and T obtained above suggests

at once the transformation, T, which carries the one group into the other.

Introducing for convenience later a factor of proportionality, we will define T

by means of the identities

3 3 3
(*)      W=(m^)2(l^>       ^x)=(nïj(mx)>       (ra) = (7^)2(ra)'

viewing this as a transformation of the space S3 into the space 23.    The form

is so simple however that we may also consider (1) as T~\ the inverse of T

which transforms the space 23 into the space S3.

Since (Xa:), (px), (vx) are defined only to within a permutation we have

(2)  T is an algebraic transformation of the space S3 into 23, one point of S3

being transformed into a 6-point of 23.    By T_1 one point of 23 is transformed into

one point of S3.     T transforms the six-tuply transitive group G3 into the simply

transitive group T3.

By a well known theorem, 21-1 will then transform the group <I>3, reciprocal

to r3, into the group F3, reciprocal to G3 whence from (15), § 4, we have the

identities

(X'x) = a2(fix) + a3(vx),

(3) (p'x) = b3(vx) + bl(Xx),

(v'x) = c1(Xx) + c2(px),

in which (bl + ct) : (c2 + a2) : (a3 + 63) = 1 : 1 : 1 are the equations of the alge-

braic group F3.

The translation of the property of S, (16), § 4, gives

(4) The transformation S in which f°, mM, n(l) are replaced by \(l), pM, i/l)

carries the projective group G3 into its reciprocal algebraic group F3.
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Having now obtained the various groups and the transformations S and T in

the desired form there remains the study of the effect of these transformations

upon certain manifolds and the resulting derivation of some properties of the

groups.

§ 6.  The transforms by T of manifolds in S3.

The cubic (px)3may be written as r(Xx)(px)(vx) or 3 (Xx)(px)(vx) /(Xp)2.

From the formula? (1) § 5, (Xp) = 9/(lm)3. Hence, by T, (px)3 = (lx) (mx) (nx)

and the plane (ppx )3 = 0 becomes (lpx)(m,px)(npx) = 0, a cubic surface. Using

the comitants of (pyx)3, this surface may be written in various ways and its

properties easily deduced.    Thus

(1)    (Ip^mp^np,) = J [(^)3 + (mPl)3 + (nPl)3}

¿V — rx

(2)       = -L, [(^x^x^-c^x^x^)]
V — Tx

= 9 [(ÍX1)3-r-(mX1)3+(nX1)3+(^1)3+(m^1)3-r-(rl/il)3+(^)3+(mv1)3+ K)3]

= 5 [(iM(*0(*»i) + (mX^mp^mv^) + (n\)(n^)(m>1)]

(3) - -^ { [(^l)+(«M4)+("»i)] K&O+0""'i)+("\)] [(i"1)+(™\) + («/O]

+ [(^i)+(™"i)+(»/*l)][(^1)+('»^)+(«Xl)].[(^1)+(mX1)+(nv1)] }

(4) = -^ { [(¿X.) + »(mXj + »»(nX,)] [(fc,) + «(m/ij + «»(n/i,)] K&Ü

+ «(m^) + »«(n»,)] + [(IX,) + «?(m\) + »(nX,)] [(^)

-»-»'(»»^^-^(»(ra/*,)]^?^) + a>2(»ii»1)-|- »(w,)]}

Í5) = 07,/1— { [('*.) + »(»".) + "'("»i)]' + C(^) + »»(^rJ+wCnT,)]8
ú i \ T j

- [(fr,)+ •(■»,)+ ^(1»,)]»- [(/T1) + £B2(mT1)-r-û)(nT)]3}.

Calling now the six points in which the 3-*(X1, plt vx) meets the two gen-

erators H(a, b, c) or A, and A2 respectively hn, h2l; hn, h22; hl3, A^ ; and

further the six points in which the Hessian generators, (^œ) and (^a;), of

the 3-« meet a, b, c respectively alt t1; <t2, t2; tr3,r3; and recalling that

the 6-point (X,, plt vt) is made up of two sets of three points I1, I2, I3 and

Jj, J2, J3 lying respectively on two lines Lx and L2, we may with reference to

(5) state :
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(6) The plane (ppx)3 = 0 in S3 is transformed by T into the tetrahedral cubic

surface (1). The vertices of the tetrahedron are the four meets of H(a, b, c) and

the Hessian K-generators (o"rx) and (t,x). The planes of tlie tetrahedron are

the tangent planes of Q at the vertices, i. e., the tetrahedron is inscribed in and cir-

cumscribed to Q.    The third pair of opposite edges is Lx and L2.

From (2), (3) and (4) we may read off the situation of the right lines of the

surface.

(7) The 27 straight lines on the cubic surface (1) are AjtA2<, <rlrK and ItJK

(i, k= 1, 2, 3). The surface cuts Q in the three h-generators a, b, c and the

three K-generators (Xtx), (^x), (v%x).

If (p¡x)3 has a double factor, say (plx)3= (ax)2(bx) where (ax) and (óx)

are linear forms, (ppxJ = 0 is a tangent plane of C3 at (ax). The cubic sur-

face (1) is now

(lpl)(mpl)(npl)=^(laf(lb)-r(ma)2(mb) + (na)2(nb)]

(8) = ¿y { [(la) + ca(ma) + co2(na)]2 [(lb) + <o(mb) + <o2(nó)]

+ [(la) + w2(ma) + <o(na)]2[(lb) + <o2(mb) + <ú(nb)] }.

Hence, calling the generators « given-by (ax) and (bx) the double and single

generators respectively, we have

(9) The cubic surface in 23 corresponding by T to a tangent plane of Cs in S3

has the double generator for a double line. It is a ruled surface whose lines run

across the double and single generators, two through every point of the first and one

through every point of the second. Through the points where the double generator

meets a, b, c run the lines to the points where the single generators meet a, b, c

and a', b', c .

If finally (p,x)3 has a triple factor (ax), the surface (1) is (lct)(ma)(na),

i. e., three planes.    Hence

(10) The cubic surface is 23 corresponding by T to the osculating plane of C3

ai (ax') in S3 is the three tangent planes of Q at the points where the K-generator

(ax) meets a, b, c.

In general

(11) To the triply infinite linear system of planes in S3 corresponds by T the

triply infinite linear system of tetrahedral cubic surfaces in 23 having for common

lines the three principal generators a, b, c.

Three general surfaces of this system having in common a curve of degree 3

and class 0 meet further in six points—the 6-point corresponding to the meet

of the three planes in S3.

We take up now the cubic surfaces in S3 defined by ( qpx )3 = 0.    Since

(^f=-^Y{(f^)-(^)}{(^)-(Xx)}{(Xx) -(px)}
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we have on applying T

(qx)3 = L_¿ {(mx) -(nx)} {(nx) - (lx) } {(lx) - (mx)} ;

hence

( mn}3
(12) (qplf = K-YfL{(mpl)-(np1)}{(np1)-(lp1)}{(lp1)-(mp)}.

The transformation, D, [(18), §4] which interchanges a, b, c with a', b', e'

changes (12) into
(m'n )3
~27     ( r^i ) ( m'^i ) ( n'Pi ) '

which is of the same type as (1).    Hence

(13) To the cubic surface (qp^)3 = 0 in S3 corresponds by T in 23, besides the

quadric Q counting three times, a tetrahedral cubic, suiface, the transform of (1)

by the harmonic axial collineation, D, whose axes are H (a, b, c).

In the case of the quadric through C3, (8a)2 = 0, we write

(8x)2=-r^(Xx)2=-^(Xx)2,

or

(&),= -7^{(^) + »(^)+»,(ra)H(^) + ^('l«) + 0,(,w)}
{pv)

= — «y (mn)2 { (lx) + (o(mx) + m2(nx) } { (lx) + co2(mx) + to(nx) } .

If (ax)2 = (cs1x)-(a2x) and (6x)2 = (6,x) • (62x) is apolar to (ax)2 we may

write

(*«)'-¿(»»»),{[(A,)+»('»fti)+«,(n61)][(í61)+»,(m6l)-|-»(«él)

(14)
+ [(»,) + »(me,) + «2(«&2)J [(Ä|) +«,(m&1) + «(«*,)] } •

Hence we have

(15) 2b ¿Ae quadric (8a)2 = 0 ¿n & corresponds by Tin 23, besides Q count-

ing twice, a quadric which intersects Q in H(a, b, c) and the two K-generators

(atx) and (a2x). The two are included in a set of generators « of (15) obtained

by taking the two diagonals of all quadrilaterals formed uñth H (a, b, c) by a

pair of K-generators apolar to (ax)2. Each diagonal pair of generators « correr

sponds to one of the set of generators of (8a)2 = 0 which are chords of C3.*

If (ax)2 has a repeated factor (a{x), (8a,)2 = 0 becomes (he two tangent planes

of Q at the meets of the K-generator (axx) with H( a, b, c).

Finally, since

*For this last see (21) p. 13.
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3 1    / S6
(/xv)2     27 v      ' '

we have

(16) 7b the quartic surface r = 0 in $3 corresponds, by T, Q counting six

times.

This last theorem has a meaning only when we consider both 7 and its

inverse. The indeterminateness of 7 is due partly to the explicit factor

3/(mn)2 and partly to the factor (<tt) = — y — r employed in the definition of

(Xx), (px), (vx). If we consider only the ratios of X, p, v and of l, m, n

we may say that

(17) To every point on a tangent to C3 at (Xtx) corresponds by 7 the three

points of Q in which the K-generator (Xxx) meets a, b, c, while to a point of G

corresponds no definite points in 23.    Inversely to every point of Q on the «-

generator (XjX) corresponds by 7_1 the point (X,x) of C3 except that to a point

on a, b, or c corresponds no definite point of S3.

In connection with the general theorems (5) and (6) of § 3 we have the

following :

(18) A surface of order n in S3 which contains C3 as an m-tuple p-tuply asymp-

totic curve is transformed by T into a surface in 23 of degree v = 3n — 4m — 2p,

the quadric Q which appears 2m + p times being disregarded.

For, according to (6) § 3, the most general surface of the above sort can be

expressed in terms of the special surfaces which occur as the coefficients of

(px)3, (8x)2, (qx)3 and r. And there is at least one (and in fact only one)

term homogeneous of degree n2 in the coefficients of (8x)2, n3 in those of (qx)3

and n4 in r, and such that n2 + n3 + 2n4 = m and n3 + 2w4 = p. From (13),

(15) and (16), Q separates out to a degree 2n2 -4- 3n3 + 6n4 = 2m + p for this

particular term and to a higher degree for the other terms.

Curves in S3 are transformed by 7 into curves in 23 which admit through

every point at least one triple secant for they are made up of 6-points. We

will consider only the lines of S}. A line in general position, the intersection

of two planes, is transformed by 7 into the intersection of two cubic surfaces of

the system (11).    Hence

(19) To a line in general position in S3 there correspond by T a curve of the

sixth order which meets Q in the twelve points common to a, b, c and the four

K-generators defined by the tangents of C3 met by the original line. Through every

point of the curve passes a triple secant whose conjugate line as to Q is another

triple secant, a, b, c are quadri-secants of the curve. If the line in S3 is a tan-

gent line of r = 0 in general position two of the four K-generators coincide.

Since a tangent of C3 at (ax) is the intersection of the planes (pa)2(pb) = 0

and (pa)3 = 0 we have by taking the meet of the two corresponding cubic sur-

faces in 23,
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(20) To a tangent of C3 at (ax) corresponds in 23 the K-generator (ax), count-

ing six times.

A chord of C3 is the pencil of cubics (p¡x)3 + X.(o,x)3 and it meets C3 at

(o-,x) and (tvx).    From the properties of the 6-point it follows that

(21) To a chord of C3 corresponds in 23 the two lines of a 6-point which are

diagonals of the quadrilateral formed by H(a, b, c) and the K-generators ((r,x)

and (tjX) and further these two K-generators each counting twice.

A secant of C3 at (6,x) may be taken as part intersection of the quadric

(8af = 0 and the plane (pbl)(pal)2 = 0, where («,x) is a factor of (ax)2. To

the plane corresponds in 23 a cubic surface with the «-generator (a,x) as a

double line, while to (8a)2 = 0 corresponds a quadric with this generator as a

single line. The remaining intersection due to the secant at (bxx) is a curve

of the fourth order and second kind. In the general curve of this type it hap-

pens four times that triple secants become tangent secants. But triple secants

arising from 6-points cannot so degenerate and in fact the four tangent secants

are replaced by two flex tangents. For let the secant of C3 be given as the

intersection of the two planes (pbl)(pX1)(ppl) = 0 and (pbt)(pX2)(pp2) — 0.

We verify easily that the corresponding cubic surfaces in S3 touch along the

«-generator. The remaining meet, a curve of fourth order, meets Q in eight

points, six of which correspond to the two intersections of the original chord

with r = 0 and lie on a, b, c. The other two are the meets of the «-generator

(6jX) with H(a, b, c). That they are flexes we may deduce from the follow-

ing limit considerations. As the variable point on the chord of C3 approaches

(6,x), its Hessian tends to a limiting value whose factors are (bxx) and the

polar of (btx) as to (ex)2, the pair apolar to both (X1x)(/*Ix) and (X2x)(p2x).

Three of the 6-point cluster around the one point where the «-generator (byx)

meets H(a, 6, c), the other three about the other point, each three however

always lying on a diagonal of the Hessian quadrilateral. In the limit the two

sets of three points coincide at the meets of (bvx) with H (a, b, c); the two

lines of the 6-point become flex tangents and have for limiting positions the

diagonals of the the quadrilateral form by H(a, b, c) and the two «-generators

(¿>jX) and (cbl)(cx).

To a chord of C3 defined by the planes

(A)(PXiXm) = ° and        (Pbi)(P\)(PPt) = 0

corresponds in 23, besides the K-generator (6,x) counting twice, a curve of the fourth

order and second kind with two inflexions. The flex points are the intersections of

(6tx) with H (a, b, c). The flex tangents are the diagonals of the quadrilateral

on Q formed by H (a, b, c) with the two K-generators (btx) and the polar of

(6,x) as to the pair apolar to both (Xix)(plx) and (\x)(p2x).
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§ 7.  7Ae transforms by 7-1 of manifolds in 2S.

For the sake of brevity we shall content ourselves with an examination of the

effect of T~l upon the simpler manifolds, the planes and lines, of 23. The

results obtained will be sufficient to exhibit some of the properties of the alge-

braic group F3.

In general it may be said that a manifold of order n,, M *, in 23 must be

considered in connection with the others obtained by replacing each point by

the 6-point to which it belongs. The 6-M" so obtained rather than the orig-

inal M" alone is transformed by T~l into a manifold, M, in 83. If the order

of M be m, a line cuts it in m points in general position. In 23 then a sextic

curve cuts the 6-Mn in 6m points ; whence 6m = 36n.

(1)  7-1 carries an M" (or also its 6-M") into an M6" in 83.

We should expect then a plane of 23 to be transformed by 7_1 into a sextic

surface.    For convenience, however, we consider the effect of 7 upon the sextic

(2) T1[(m)3]2-L(??1)3]2 = 0.

From the equations of 7, r = (mw)4/27 and from (5;, § 6,

where a, ß, y, 8 are the linear expressions occurring in (5) in the order there

written.    Hence

(3) rrl[(ppl)3Y=-{-^[^ + ß3-y3-83y.

From (12) and (13) of § 6, we have

( YftYl i

( mn V
-Sr Kr*)(» *)(•'»)]

( mn \3
--^[(i'^irn'^Hn'^ + ^'r^rn'r,)^'^)-],

since

(<r1x)3 + (r1x)3 = (?lx)3.

By a change in the sign of ( to ) in (5) of § 6, we have at once for this case

(^)S=(-f^3[«'S + /3'3+7'3 + S"],

in which a' is a written in primed variables, etc.    Therefore

rv \1-12 (mn) ,3 3 ,3 ç.,3-.,

[(Wi)M =-27«   l>   +ß   +?   +S   J>
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since .

a' = (a>2-co)a, ß' = (<o — o>2)/8,

y' = (a>2 — a>)y, 8' = (a>— a>2)8,

(4) [(9?1)3]2=-^6[«3-^H-7s-88]2.

combining (4) with (3) we have

( WÎ71 V

-rrl\ippl?y+ [(??,)3]2=-273   {[^+ßi-f-S3y-[^-ß3+r,-83y}

= ±3(mny(a3-83)(ß3-y3)

= £¡(mnf {(a-8)(wa-a>28)(<o2a-<u8)(ß-y)((uß-m2y)(m2ß-<uy)}.

Since, to within a permutation which does not affect the result, we may write

then

(«-«) = (^T)[(^I) + (^1) + («",)],

(«a - <o28) = (-^-} [(iMl) + (mVl) + („X,)],

and so on for all the six planes of the 6-plane X, px vx. We shall write the pro-

duct of all six as E6(Xlplvl).    Finally since (axt,) = — V — rx, we have

(5) rri[(pPl)3y- [(qql)3y = Tl3 ^-E6(XxpxVx).

The left side of this relation is the desired correspondent by T~l of the

E6(Xxpxvx). For symmetry, however, we write it in a different form by the

use of the reciprocity between the forms px and qx/rx given by Study,* i. e., we

replace px by qx/rx, qx by -px/rx, rx by I/r„ (X,x) by

(x;a!)l.J^_{(Mia!)_(>>ia5)}

and so on for (pxx) and (vxx).    Equation (5) then takes the form

(6) r[(Ml)»]'-rl[(S|»1)»]»-^,r;(«n)'.^(/ii-»1,»l-Xl,Xl-/H).

* Loc. cit., p. 190.
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Disregarding the extraneous factors, we have then

(7) The 6-plane which is the polar as to Q of the 6-point (Xxpxvx), not on Q,

is transformed by 7_1 into the sextic surface in S3 described in (7), § 3, namely

S°(Px) = r[(pqx)3Y-rx[(qpx)3y.

Or if we call two 6-points each of which lies in the polar 6-plane of the

other "conjugate 6-points," then

(8) 7Ae vanishing of r2 [(p2qxYY — -\ [(fi^)3]2 ** ^e condition that the

6-points in 23 corresponding to the points (pxx)3 and (p2x)3 in 83 be conjugate.

A 6-plane in a special position is made up of tangent planes of Q through

the same «-generator ( tx x ).    One plane will have for equation

/»(ft1) + <r(m<1) + T(n<1) = 0,        p + o-+ t = 0,

the others being obtained from this by permuting p, a, t. There are four dis-

tinct cases :

(a) If p : a : r = 1 : a> : a>2, the 6-plane is the two planes determined by

H(a, b, c) with the «-generator (txx) each counting three times.

(6) If p : a : t = 2 ¡ 1 : 1, the 6-plane is the three planes determined by

a, b, c with (^x), each counting twice.

(c) If p : a : t = 0 :1 : — 1, the 6-plane is the three planes determined by

a , b', c  with (txx) each counting twice.

(d) The 6-plane is the six determined by the «-generator (txx) with the six

distinct A-generators obtained by permuting p, a, and t.

From (16), (10) and (14) of § 6 we have, for the first three cases,

(9) 7Ae 6-plane of case (a) is transformed by 7_1 into the cone (8tx)2 = 0

taken three times.

(10) 7Ae 6-plane of case (b) is transformed by 7_1 into (ptx)' = 0 taken twice

(r = 0 being disregarded).

(11) 7Ae 6-plane of case (c)is transformed by 7-1 into (qtx )3 = 0 taken twice.

For case ( d ) we make use of the resolution * of the sextic s2 ■ rp2 + i2 • q2 = 0,

where s and t are arbitrary parameters, into factors ; one factor is

(exR + éxR)(Xx) + (e2R + ¿tM)(px) + (e3R + iaB)(vx)

and the others are obtained by permuting the coefficients of (Xx), (px), (vx)

in all possible ways.    In this

R=V/(82-t2)(s+t)        and R = V(* - t2)(s - t).

Hence, replacing x by tx, we have at once

(12) The 6-plane of case (d) is transformed by 7_1 into a member of the pen-

cil of sextics

*See Study, loo. cit., p. 191.
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(13) *2-r[(ptin+t2-[(qtx)3Y.

For s = t, s = 0, t — 0 this gives cases (a), (b) and (c) respectively.

The doubly infinite system of sextics (13) is not contained in the triply

infinite system S\px) for the obvious reason that these systems as well as the

system Et in 23 are non-linear.

In order not to prolong the discussion unduly we consider only lines of 23 in

general position, i. e., having no particular situation with regard to Q; a, b, c;

a', b', c ; or H(a, b, c). Any line determines five others which form with

it a 6-line. Two 6-points or two 6-planes determine however six 6-lines.

To avoid this ambiguity we take the one line determined by two points

px(Xx), <r1(px), tx(vx) and p2(Xx), a2(px), t2(vx) in which pt and XK are

symbols having an actual meaning only in the combinations pt XK, the conven-

tion for <ri pK and t, vk being the same. The line is then in paramétrai form

(py)(Xx), (ay)(px), (ry)(vx) where yx :y2 is the parameter and the identity

in x and y

(14) (py)(Xx)-r(ay)(px)+(ry)(vx) = 0

holds.    The corresponding locus in 83 is

i. e., a cubic curve which by reason of (14) osculates C3 at the two points for

which y is a root of ( ay ) ( ry ) ( pv ) = 0.    Hence

(15) If a line in 23 cuts Q on the two K-generators (X,x) and (X2x), its trans-

form by 7_1 is a cubic space curve K3 which osculates C3 at the points ( Xx x ) and

(X2x).

As a corollary from this we have

(16) T~l transforms a general manifold in 23 of order n, M" (or also the 6-M" )

into an if6" in 83 which contains C3 as a 2n-tuple 2n-tuply asymptotic curve.

For the 6-3In is cut by a 6-line in 6n 6-poiuts in general position, if6"

is cut by K3 in 18n points only 6n of which can be in general position. The

other 12« must be the six points of K3 lying on C3 each containing 2n times,

i. e., il/6" has C3 as a 2n-tuple curve. If M6n also contains C3 as a p-tuply

asymptotic curve it is transformed by 7 into a manifold of order 18n — 8n — 2p

which must be 6n, the order of the 6-M".    Hence p = 2n.

A translation of some very obvious properties of points, 6-points and 6-planes

gives rise to the following theorems :

(17) Through two given points on C3 and a given point (p¡x)3 passes one cubic

curve K3 which osculates C3 at the given points.

(18) Through two given points (pxx)3 and (p2x)3 pass six curves K3 which

each osculate C3 at two points.

Such a set of six curves will be called a 6-K3(pxp2).

Trans. Am. Math. Soc. »
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(19) Two sextic surfaces S6(px) and 8s(p2) intersect in six curves K3 each of

which osculates C3 at two points.

Such a set of six curves will be called a 6-K3(px, p2). Of this latter set

we can state the theorem

(20) If 86(px) cuts the chord through p2 in the points Pxx and PX2 and S6(p2)

cuts the chord through px in the points P21 and P22, the 6-K3(pxp2) falls into

two sets of three one set all passing through Pxl and P2l, the other through PX2 and

P22. The three pairs of points in which the three curves of one set osculates C3

are in an involution whose double points are the pair apolar to (<t1x)(t2x) and

(<t2x)(txx) ; the involution of the other set has for double points the pair apolar

to (<7,x)(o-2x) and (txx)(t2x).

For if

(tXx) + (mpx) + (nvx) = 0        and        (tX2) + (mp2) + (nv2) = 0

fix the two 6-planes in 23 corresponding to 86(px) and S6(p2), their line of

intersection cuts Q on the two «-generators whose parameters are the factors of

the quadratic

7 =

(X,x)    (pxx)    (vtx)

(X2x)    (p2x)    (v2x)

1 1 1

= (\x)(x;x) + (pxx)( p'2x) + (^xX^x) = 0

We obtain six lines corresponding to the 6K3 by permuting only X2, p2, i>2.

The first partof the theorem follows from the property of the 6-plane lying on two

lines. For the second we have, on adding the even permutations, I, II and

7/7 of /, that / + // -f /// = 0 and hence the three pairs of points are in an

involution. From / + all -f to2/// we can factor out (o"2x) leaving a factor

(o-jx). Similarly / + aril + toIII factors into (txx)(t2x). Hence

(o-,x)(o-3x) and (txx)(t2x) are pairs of the involution. Also from the odd

permutations we derive another involution containing the pairs (axx)(r2x) and

(<t2x)(t1x).

From the duality between point and plane, line and line in 23 we have in

83 a duality between point px and sextic Sfm), between a 6-K3 and a 6-K3.

Since the quadratic / is the same for the parameters of the two «-generators in

which the line joining the point (X,x), •• • and (X2x), • • • cuts Q we have for

the dual of (20)

(21) // through the point px and the chord through p2 pass the two sexties

S6(pxx) and S6(pX2); and if through p2 and the chord throughpx pass the two

sexties S6(p2l) and *S'6(/>22), the 6-K3 through px and p2 is made up of two sets of

three, one set lying on both S6(pxx) and S9(p2X); the other set on both S6(px2)

and S6(p22).    2he six pairs of osculation points on C3 lie in the same two invo-
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lutions described in (20), the double points of the one involution being apolar to

the double points of the other.

As the correspondent of a pair of conjugate lines in 23 we have

(22) For every pair of points on a K3, px and p2, the pair of sexties S6(px)

and S6(p2) have as part of their common curve a definite second K3 which oscu-

lates C3 at the same poiuts as the first.    Two such K3 which are moreover recip-

rocally related to each other will be called " conjugate."

§ 8.   7Ae algebraic group F3.

The equations of this group are given by (3), § 5, but we naturally prefer

to obtain its properties from those of <I>3 [(15), § 4] by means of 7 and T~l.

From § (6) and § (7) the translation is in most cases quite obvious. Unless

definitely stated otherwise the following theorems refer to a general transforma-

tion of F3, denoted by F*

(1) Under the group F3, there is a perfect duality between the point and sextic

surface S6(px)'f; between the 6-K3 and the 6-K3. A pair of conjugate K3's are

self-dual.
(2) A point, px, is transformed by F into six points which lie by threes on two

conjugate K^s, each of which osculates C3 at the two meets of C3 with its chord

through px.

(3) A sextic Se(px) is transformed by F into six such sexties which pass by

threes through two conjugate K^s osculating C3 at its two intersections with its

chord through px.

(4) A K3 through a point px is transformed by F into six K3's, each of which

osculates C3 at the same points as the original K3 and passes through one of the

transforms of'px>

(5) 7Ae system of sexties S6(px) and the system of cubic curves K3 are the

manifolds of lowest degree which are transformed among each other by the trans-

formations of F3.

* This transformation will be viewed in a different manner from that customary in the theory

of Lie. From the equations of the group we see that the coordinates of the transformed point

(p'x)s=r/(Vx){ii' x) (v'x) are six-valued functions of the coordinates of the original point.

These algebraic functions have for branch, points the entire surface r = 0. On every manifold,

then, of dimensions greater than zero will lie some of these singular points. So that it seems—■

at any rate when manifolds are in question — simpler and more in accord with the nature of the

group to consider the various branches of the algebraio funotions simultaneously. This requires

however an extended definition of a group. For if a point is transformed by .Finto six points,

the successive performance of two transformations of the group is equivalent to the simultaneous

performance of a finite number (in the present case generally six) of transformations of thegroup.

Or, using the word transformation in the ordinary sense, we may say that the transformations

of <t>3 fall into sets of six and such a set will be denoted by F.

t We assume of course that the points, curves, and surfaces considered in (1), (2), (3) and (4)

are general, i. e. have no particular situation with regard to r = 0.
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For any surface in S3 is transformed by 7 into a surface of order

3n — 4m — 2p in 23 which has however a particular situation with regard

to the triple of generator a, b, c or its covariants. This special situation

is destroyed by a transformation of <I>3 and the transformed surface is carried

again by T~l into a surface in 23 of degree greater than n.    For example :

(6) A plane in S3 is transformed by F into a surface of order 18 which con-

tains C3 as a six-tuple six-tuply asymptotic curve with seven-tuple points at the

intersections of the original plane with C3.

Hence the required manifolds of lowest degree in S3 arise from general mani-

folds of lowest degree in 23, namely the planes and lines.

In order to characterize more completely the six curves into which a K3 is

transformed by F, we may introduce the doubly infinite system of sexties, (13)

§ 7, any one of which will be denoted by 26 or 26( tx, s ft). On an S6(px) lies

a doubly infinite system of K3, each of which is characterized by its two points

of osculation with C3. On a 26(¿1s/¿) there is also a doubly infinite system

of K3, all of which osculate C3 at (^x). Two 26 intersect also in six K3 and

we have

(7) A K3 osculating C3 at (txx) and (t2x) is transformed by F into six curves

K3 which form the complete intersection of two definite sexties 26(í1s/¿) and

V(t2,s'/t').

These results seem sufficient to demonstrate the value of the canonical forms

employed for the various groups.    For the sake of brevity no reference has

been made to the transformation S as it appears in the space *S3, where, with G3

'and F3, it generates a six-parameter algebraic group.

Bonn, August, 1904.


