
DIFFERENTIAL PARAMETERS  OF THE FIRST  ORDER*

BY

HEINRICH  MASCHKE

The general expression of a differential parameter of the first order is given

in the symbolic representation f by

(U' ■■■ uyK. ■ -f-k)(V ■■■ v\f ■ ■ •/--*),

where U', ■ ■ ■, Uk and V, ■ ■ ■, VK are functions of xx, ■ ■ ■, xn, aadf, ■ ■ ■ ,fn~K

are equivalent symbols of the differential quadratic quantic

n

ds2=  £ «a-^^f
i, *=1

These differential parameters and in particular the equations obtained by putting

them equal to zero play an important rôle in all questions connected with the

study of the orthogonality of directions in higher spaces.

In § 1 I set up four fundamental theorems concerning determinants, using

ordinary (not symbolic) notation. In § 2 the symbolic method is applied to the

construction of four important formulas which are used in the sequel and furnish

at the same time numerous relations between differential parameters. In § 3

the directions orthogonal to all directions in a space of A dimensions given by

the equations U', • ■ ■, Un~h == const, are determined and § 4 contains a general

investigation of the conditions under which one space V, • • •, F"-*1 = const,

contains directions which are orthogonal to all directions of another space

U', • • •, £7"-x = const., and the determination of these directions.

§ 1.  Theorems on determinants.

Designate the determinant | x* | of any p? quantities x, where x* is the element

occupying the place in the ith row and kth column, by

(x'x2-•-x^) ;

* Presented to the Society (Chicago) April 22, 1905. Received for publication September

30, 1905.
t The symbolic method has been explained by me in the paper A symbolic treatment of the

theory of invariants of quadratic differential quantics of n variables, Transactions of the

American Mathematical Sooiety, vol. 4(1903), pp1. 441-469.   I shall quote this paper by I.
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70 H.  maschke:  DIFFERENTIAL PARAMETERS [January

let us further use the abbreviation

(x'x2 ■ • -x*«'w2 • • •) = (x'x2 • • -xxu),

where the number of elements u',u2, • • • is any.

1) If we form the determinant of degree n + 1 the first n rows of which are

a a2 • ■ ■ aku u2 ■ ■ -,
n    n n     n     n *

where the elements ak and uk are any arbitrary quantities, then the determinant

will vanish if we take for the n + 1th row the elements

(a'tf-^b^u), (a2b2---bK-lu), ••-, (akb2- ■ -J*"1«),

(u'b2---bK~lu), (u2b2---bK-lu), •••,

where again the quantities o2, • ■ •, o£_1 are any. But all the terms

(ukb2 ■■ ■ bK_1u) vanish. Thus, expanding the determinant according to its ele-

ments of the n + 1th row, we have

¿ (-iy+l(a"b2 ■ ■■bK-iu)(a'a2 ■ ■ •a*-1a*+1 • • • axw) = 0,
k=l

or, by putting
ax = b',

¿ (_ 1 f+\akb2 • • • 5A-»»)(o' a2 • • • ak-lak+l ■ ■ ■ a^b'u)

= (-iy(a'a2- ■■ak-lu)(b' b2 ■ ■ ■ b^u).

If finally we write A instead of A — 1 and place 6' between a*-1 and ak+l, we

obtain the formula

(1) *£ («*&* ■ ■ -bKu)(a'a2 ■ ■ • a*-l6'a*+1 • ■■aKu)=(a'd2 ■ ■ • aku)(b'b2 ■.. bku).
k=i

This formula is identically true for all the involved quantities ak, bk and uk.

2) We extend formula (1) by putting (p. < A)

a»+k=& (fc = 1)...)A_/i)(

and performing the summation first from 1 to p, then from ß + 1 to A. Thus

we have

¿ (a*62 • • • bKu)(a' ■ ■ ■ a*-1 b'ak+1 • • • a" c' .. ■ c*"" u)

(2) ^
v ' +7L(ckb2---bKu)(a ■■■a»c ■■■ck-1b'ck+l---(*-'iu)

*=i

= (a' ■■■a"-c ■■■cx->Lu)(b' ■■■bKu)
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3) 1 wish to prove the following theorem

(pa2 • ■ • aht), (a'p ■ • ■ aKu), • - -, (a'a2 ■ ■ ■ ai_1^)'ai+l • ■ • aku), ■ • -, (a'a2 • ■ • ak~xp'u)

(p2a2 ■ ■ ■ axu), (a'p2 ■ ■ • a*w), • • -, (a'a2 ■ ■ ■ a<_1/>2a<+1 • • • aKu), ■ ■ -, (a'a2 ■ ■ ■ aK~lp2u)

(pka2 ■ • • aku), (a'pk ■ • ■ axu), ■ • -, (a'a2 • • • ai_1pxai+1 • • -phi), • • -, (a'a2 • ■ ■ aK~,p'>u)

(3)
= (p'p2 ■ • -pxu)(a'a2 ■ ■ ■ orV)*-1,

where all thé quantities ak, p'k, u'k are arbitrary.

We prove by induction from A — 1 to A.

Every term of the minor Pk of the term (pka2 ■ ■ - aku) in the original determi-

nant P contains the element a' which can be placed just in front of the elements

u. The determinant Pk is then of the same type as P, with A — 1 instead of

A, and a', u instead of u, and since the theorem is supposed to be true for deter-

minants of order A — 1, we have

P* = (_ l)*+i+(*-Ds(y .. .p'-ipt+i .. .p*a'u)(a2 ■ ■ ■ aka'uy-2,

or
P* _ (p' • • ./-'oy+t • • • aAw)(a' a2 ■ ■ ■ axM)A_2»

and

P = (a'a2 ■ ■ ■ aKuy~2^,(pka2 • • ■ aKu)(p' ■ ■ pk~la'pk+1 • • -pKu).

k=l

To this sum we can directly apply formula (1) and obtain

P = (p' ■ • -pku)(a'■ ■ ■ aKu)K~l.

Hence the theorem is generally true, since it is true for A = 2, the equation

(p'a2u)(a'p2u) + (p2 a2u)(p'a'u) = (p'p2u)(a'a2u)

being a special case of (1).

4) Let p, v, v2, ■ ■ -, vK, u, u2, • ■ -, «M_x be any functions of the n indepen-

dent variables xx,x2, ■ ■ -, xn, and define further

dp dv* du'

Pk=*~dx~¿        w*"a¡¿'        Uk = dx~k-

then I wish to prove the following theorem on Jacobians

(4) (pv, pv2, • • -, pv*, u)=pK(v'v2■ ■ ■vxu)-rpk-1^Tlvk(v'• ■ -vk~l, p, vk+1 • ■ -v^u),

where on the left side the general element of any one of the first A columns

is dpv*/dxk, the notation otherwise being the same as in the preceding work.

We prove again by induction from A to A + 1.
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We have directly

(pv, •••, pv\ /n>x+1, u) = p(pv', •••, pvk, vk+1, w) + vk+1(pv', •■•, pvk, p,u),

but from (4), by putting the first one of the quantities u equal to vk+l,

(pv', ■ ■ -, pvK, vk+1, u) = pk(v' • • -i>x+1w) + pK~1'£vk(v' ■ ■ ■vk~'ipvk+x ■ • -vk+iu)

and similarly

(pv', ■ • -, pvk, p, u) = pk(v' ■ ■ -vkpu) + pk_1 ^ vk(v' ■ • -vk~lpvk+l • ■ -vkpu).

Each one of the terms of the last sum vanishes, hence

(pv', • ■ ■ pvk&1, u) = pA+1(v' • • -vk+1u) + pk ~T\vk(v' ■ • -vk~lpvk+l • • • vK+1u)

+ /3A(u' • ■ -Vkpu),

or

(pv, •••, pvk+\ u) = pk+1(v' ■ ■■vk+1u) + pk^vk(v' ■•■vk-1pvk+* •• -vk+1u).

k=l

The theorem is true for X = 1, namely

(pv, u) = p'(v, u) + pnv(p, u),

hence it is generally true.

§ 2. Relations between differential parameters.

5) In formula (2) we omit the quantities u, put A = n and write A instead

of p. We let further c , ■ ■ -, cn~k be symbols of a quadratic differential quantic

of n variables and designate them by f , • • •, f"~k. We finally multiply every

term of (2) by some alternating function [_/"', • • ■,f"~kl = \_f\ off , ■ ■ -,fn~k.

Then the general term of the second sum

(fkb2... 5" )(«'•• - akf ■ ■ -f- Vf +1 •. .f'-k) [/]

= (/' b2 - • • 6»)(a' • • - akb'f2 - • -f-k) [/] .

Hence all the terms of this sum are equal arid we have

(5)   tK¿!-6")(«'-«i-I¿'«í+1-oV)[/]=(a'...aY)(6'...i»)[/]

-(n-X)(fb2...b«)(a'...akb'f...f-k)[f\.
6) In (5) we put

b' =Q; b2, • ■ -, 6" = <p2, ■ ■ -, <p" (symbols),

a',...,a* = F',-.., Vk,

take

in = (U'..-ukf),
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and multiply by (P<p), then the second term on the right side of (5) can be

transformed by means of 1(34), namely

(f <t>)(P<p)(U' ■ ■ ■ Ukff ■ ■ -f-k) = (n - 1)! (U' ... UkPf),

so that we obtain the following formula

A

L
k=l

(P<p)(U'...Ukf)^(Vk<p)(V'...Vk-iQVk^...Vkf)

(6)

7) If in (6) we put

= (P<p)(Q<p)(U'. ■ ■ Ukf)(V - -.Vkf)

-(n-X)(n-l)l(U'...UkPf)(V'-..VkQf).

Q= U' = ^(symbol),

then we can apply to the first term on the right side the transformation I (34)

so that
(P<p)(ir<p)(^U2...Ukf) = (n-l)\(PU2...Ukf).

The two terms on the right side of (6) combine then to

(»_x+i)(»-i)i (Pu2--. ukf)(V ■■■ vkf),

and by writing U' instead of P we obtain with a slight change the formula

(u<t>)(u2...ukf)±(-iy+*(vk<p)(V'...vk->vk^...vkf)
k=l

= (n-X+l)(n-l)l(U'..-U\f)(V'...V'f).

8) I wish to prove that

(U'f)    ...    (U™f)

(7)

(U'f) ( Umfm)

mviA) = om(U' ...U-f)(W ...v-f),

where every fk on the left side stands for a set of n — 1 equivalent symbols and

where cm is a numerical constant depending on m. Denote the left side of the

above equation by R.

I prove by induction from m — 1 to m.    Then we have

(Uf2). • .(ip-y2)(uk+f2) ■ ■ .(u~f)

IL(v*f*)
(U'fm) ■ ■ .(Uk-lfm)(Uk+lfm) ■■■( Umfm) \x=2

= cm_x(U'...U"-l,Uk+>...U"f)(V2...V>»f),
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and if we develop the determinant-factor of R according to its elements of the

first row

r = cm_x(vf')(v2■ ■.v-f)£(-1y+\ukf )(U'...uk-1 u*+l ■ ■ u"f),

which reduces by means of (7) to

R=(n-m + l)(n-l)lcm^x(U'...Umf)(V'...V"f).

For m = 1 the theorem is true, and cx = 1.    Hence the theorem is generally

true.    The constant cm is easily determined, namely

c.-(»-l)(«-2)...(n-»i + l)[(»-l)!]-«,
so that

(8)

(U'f').-.(U-f)

(U'f-)..-(U-fm)
U(VT)

_]X»—^p(u' ■•■umf)(V ■■■vmf).
(n — m)!    v •//v J '

§3. Determination of directions orthogonal to all directions

in a given space U.

We define in a general space Rn of n dimensions whose arc-element is deter-

mined by
n

(9) ds2 = J3 ar,dxrdxt
r,i=l

a surface (space) of A dimensions, Rk, by the n — X equations

(10) U' = const., • • •, (7—A = const.,

where the n — X quantities U are functions of xx, • • ■, xn.

The n differentials dxx, ■ ■ ■, dxa satisfying the n — X equations

(ii) £u'téhsr - o,..., ¿ u:~kdxr = o,
r=í r=l

define a certain direction in Rk.    We agree, as always in the following, to

denote differentiation with respect to xr by the lower index r.

In order to solve the equations (11) symmetrically we introduce A arbitrary

functions V, • • •, Vk with the restriction, however, that the Jacobian

(12) D=(V ...VkU' ■■■Un-k)+ 0.
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If the minors of the element Vk in D are denoted by Akr, it is clear that the A

systems of differentials

(13) dxk = pAkl, ...,dxk = pAkn (¡fc = l, ...,a)

satisfy equations (11) and represent A independent (i. e., not contained in a

space of less than A dimensions) directions in Rk. The general direction in Rk

— general solution of (11) — is then given by

(14) dxx = ±PkAk\ ..., dxn = £PkAk\
k=i *=1

where px, • • ■, pk are arbitrary parameters.

If p is any arbitrary quantity we have

(15) Èprdxr =Y.Pk(V'... Vk-lpVk+l •• • VXU),
r=l k=l

and this expression serves conveniently to define the direction dxx, ■ • •, dxn as

the ratios of the coefficients of px, ■ ■ ■, pT. We shall simply call it the direc-

tion p.

The condition that two directions denned by two systems dx and 8x are to be

perpendicular to each other in Rn is

n

£ arja'xrSx> = 0,
r, «=1

or, in symbolic notation,

r=\ i=l

If now the direction Sx in Rn is to be perpendicular to all the directions dx

in Rn it will be necessary and sufficient that Sx is perpendicular to the A inde-

pendent directions defined by (13).

Hence

(17) (V - ■ ■ Vk-lfVk+1 ■ ■ ■ VkU)¿f8x> = 0
«=i

for every k = 1, • • •, A.

To   solve   these   equations   we   adjoin   again   n — X   arbitrary  functions

IF', • • •, Wn~k and form the determinant A of the derivatives of the quantities

W with respect to xx, • • •, xn and the coefficients of the differentials 8xt in (17).

We obtain

A = (IF' ■•• IF-*/' ...fk)fl(V' ...Vk-lfVk+l...VkU)
k=l

and if we permute the equivalent symbols f, ■ • -,fk in all possible ways, add

together and divide by A !,
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A = ±(f---fkW)

(/' v2 ■ ■ ■ VkU) ■ ■ ■ (V ■ ■ ■ Vk~lf Vk+l- ■ ■ VkU) ■ ■ ■( V •. • Vk~lf U)

X.,

(/* v2 ■ ■ ■ VkU) ■ ■ ■ ( V ■ ■ ■ V"-lfk Vk+l ■ ■ ■ Vk U) ■ ■ ■ ( V ■ ■ ■ Vk~lf U)

which reduces according to (3) to

A = £,(/' • • -fW)(f ■ ../*tf)(F* • --v'uy-1.

Denoting now the minor of the element IF" in A by Bar we find the following

n — X systems of solutions of (17) by taking the factor

^-jv... vkuy-1
A. !

into the proportionality-factor a,

8x«x = <7B«(f...fkU),...,8xl=crB™(f...fkU)     (—!,...,.-*)_.

The general expression of any direction Sx in Rn perpendicular to every direc-

tion in Rk is therefore given by

K = (/'•• -fkU)2«vB" ( r=l, •• -, »),

or, using the notation explained in (15),

(19)    ¿ qr8xr = (U' ■ ■ ■ Un-kfY¿ o-a( IF' • • • IF-1 q TF»+1 • • • Wn~kf),
r=l a-1

where crx ■ ■ ■ <rn_k are n — X arbitrary parameters.

By a proper selection of these parameters this expression can be considerably

simplified.    I put
aa = (W'<p)(Uk<p),

where the n — 1 quantities <j> are again symbols of (9).

To (19) we can directly apply formula (6) where now the term

(U'--Un~kPf)

vanishes for P — Uk so that we have

t,qrdxr=(q<p)(Uk4>)(U'...U^kf)(W'.--Wn-kf),

and since we are only concerned with the ratios of the differentials dx we can

omit the factor
(U ■ •• U"-kf)(W■ ■ ■ Wn~kf)
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which admits of actual (not only symbolical) interpretation and have now the

result

(20) ÍlqM = p(Ukf)(qf) (*=i, •..,«-*),
r=\

which defines n — X independent directions in Rn, all of which are perpendicu-

lar to the general direction p (15) in Rk. From (20) we form the general

direction in Rn perpendicular to Rk) namely,

(21) tqM=TlpÁU"f)(qf)>
r=l k=l

where px, • • ■, pn_k are arbitrary parameters.    Thus we have the following

Theorem I.     Given a space of X dimensions Rk by the n — X equations

U' = const., ■ ■ -, Un~k = const.,

contained in the general space Rn of n dimensions defined by (9). Then every

direction 8xx : Sx2 : • • • : 8xn in Rn which is normal at a point P of Rk to every

possible direction in Rk at P is given by the ratios of the coefficients

qx '• q2 '•■•■'• q„ in the expression (21).

A posteriori it is easily verified that the values of Sx taken from (21) or (20)

satisfy equation (17), for

£fM = p(U<p)(f<p),
r = l

and (U<p)(f<p)(V • ■ ■ F*-'/F*+1 • • ■ VkU) = 0 from I (34) for every value of

i and k.

§ 4.   General study of the case where one space V contains directions

orthogonal to all directions of another space U.

If a space F of p dimensions

(22) V, V2, ■ ■ ■, F""" = const.

contains a direction which is normal to all the directions of a space U of A

dimensions

(23) U', U2,---, Un~k = const.,

then the n — p equations

¿F«aX = 0 (i=l,--,n-u)
r=l

must be satisfied by substituting for dxx, • • • dxn the coefficients of q of the

expression

(24) (WOlk(t^),
*=1
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i. e., we must have

(25) (F,*)£p,(t'T**)-0 (i = i,---,n-u).
k=l

Every system of values pk satisfying these n — p homogeneous linear equations

gives us one direction q of the required property.

We treat first the case where the number of equations is less than the num-

ber of unknowns pk, i. e.,

n — p < n — X        or p > A.

Then the general solution of (25) is

(26) Pk = (- 1 )i+1 ([/'•■• D*-1 U"+l ■ ■ ■ U"-kf) ( V ■ ■ • F-" «... a*-*-»/),

where o , •■•, o"~k~l are arbitrary quantities.    Indeed the left side of (25)

reduces by means of (7) to

( U' ■ ■ ■ Un-kf) (V'V ■■■ F*-" o ■■■ û)"-*-1/),

which vanishes for i = 1, •••, n — p.

We obtain the direction q itself by substituting the value of pk (26) into (24)

which gives, again according to (7),

(27) (qV-- VH-» o ■ ■ ■ o»-k-'f)(U' ■ ■ ■ Un~kf).

Hence we have

Theorem II. If a space U defined by U', • • -, Un~k = const., and a space

V defined by V, • • •, Vn~,i = const., have at least one point P in common,

then there exists, provided that p~>X, at every point P always and in gen-

eral (i. e., if no special relations between U and V hold) only oo'i_A_1 (i. e.,

p — X independent) directions in V which are perpendicular to all directions

in U through P. These directions are given by the coefficients of qx ■ ■ ■ q in

the expression (27).

If there shall exist more than p — A independent directions in F normal to

U, then the rank* of the matrix of the coefficients of pk in (25) must be

<n — p. If the rank is n — p — s, then there are p — A + s independent

directions.    Putting in this case for abbreviation

n — p — s + l = a,

we see that every determinant

(FV')--(FV)
(U»f)...(U**f)

(Uk>f)...(U"-f)

* A matrix is of rank r if all its determinants of degree r + 1 vanish, but not all its determi-

nants of degree r.
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must vanish for all values ix, • • •, ia= 1, • • •, n—p., and kx, ■ • •, ka= 1, • • ■ n—A.

Applying now to this determinant formula (8) we have the conditions

(E7*i... Uk*f)(Vk< ■ ■ • F*-/) = °-

If these conditions are satisfied the quantities pk are determined by any (properly

chosen) n — p — s of the equations (25).    We find

Pk = (- 1 )*+l([/"••■ U"-1 Uk+1 • ■ ■ Un~kf)(Ff' • • • F*-1 o ■■■ <*-*-/)

and  the  required  p — A + s  independent  directions  as  the  coefficients  of

(qf;> • • • F'«-1 o ..■ »*-*+-»/) (t7*■ ■ . Un~kf).

We have, then, the following

Theorem III. If a space V(22) and U (23), where p>X, have at least

one point P in common, then the necessary and sufficient conditions that V at

every point P contains ß — A + s independent directions which are perpen-

dicular to all directions U through P are

( <7*> • • • U V) ( F*> • • • FV) = 01

for every set of values

and

h, ••»*. — 1.1 ••-,» — /»«
wAere

a = w — p — s + 1.

These directions are given by the coefficients of qx, • • -, qn in

(qV1 ■ .■Vi»-»->o' ■ ■■o>i-k^-if)(U' ■■• Un~kf).

Applying now similar methods to the discussion of the remaining cases p = A

and p < A, always using equations (7) and (8) for reduction, we are led to the

following theorems.

Theorem IV. If two spaces of equal dimensions U, ■• -, Un~k = const.,

and V, • • •, Vn~k = const, have at least one point in common, then the neces-

sary and sufficient condition that V contains at every point P one direction

normal to all directions in U through P is

(U ■ ■ ■ Un~kf)(V ■ ■ ■ Vn~kf) = 0.

This direction is given by the coefficients of qx- ■  qn in

(qV--- F*-1 F*-1 • ■ • F—*/) ( U' • ■ • Un~kf),
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where k is arbitrary.    In this case there is also one direction in U which is

normal to every direction in V; it is given by

(q TJ', ■ • U"-1 Uk+l ■ ■ • f7—*/) ( V ■ ■ ■ V"-kf).

Theorem V. If a space V (22) and U (23), where p = X, have at least one

point P in common, then the necessary and sufficient conditions that V at

every point P contains s independent directions which arc normal to all direc-

tions in U through P are

(V*--- V*ßf)(Uk>--- Ukßf) = 0

for every set of values

*i> •••» ¿a = 1> ••■•> n — P-,

i ' " ' ' '   s ==    ' ' ' ' ' n —    '
where

ß = n — X — s + 1.

These directions are given by the coefficients of qx- -qn in the expression

( q 7"*» • • • F'«-*-»»' • • • a)-1/) ( U' ■ • • Un~kf).

The University of Chicago,

September, 1905.


