
THE  KRONECKER-GAUSSIAN  CURVATURE OF HYPERSPACE*

BY

HEINRICH MASCHKE

§ 1. Definition of the Kronecker-Gaussian curvature.

Let x , x1, • • -, xn+1 be the coordinates of an euclidean space of n + 1 dimen-

sions, Sn+X, i. e., a space whose arc-element is determined by

(1) rfV = XÎ(aV)2;
A = l

then we define any hypersurface, or, as we shall simply say, any space, of n

dimensions, Rn, contained in Sn+X, by expressing each of the coordinates xk in

terms of n independent variables ux, u2, ■ ■ ■, un.

The arc-element of Rn is given by

n

(2) ds* = X aikdUiduk,

where
^ dxk dxk

(3) ff« = ¿J du, duk '

or
n+l

(4) «a-É«<«ii
A = l

if we agree to indicate differentiation with respect to u. by the lower index i.

It will be sometimes convenient to write simply

52(x) instead of 5Z(œx)iEi
A=l

where (Xa) stands for any quantity involving or defined by xA, e. g.,

(5) ott- 5>W

The w + 1 direction cosines Xk of that direction in S ,, which is normal at a

point P of -ßn to n independent (i. e., not contained in a space of less than n

* Presented to the Society (Chicago) April 22, 1905, under a slightly different title.   Received

for publication September 23, 1905.
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dimensions) directions ds', ■ ■ -, ds" in Rn at P are found to be

(6) xk = (-iy+iß

xx,     • • ■,    X
A-l ™A+1
l     »      *!     '

~A-1 ™A+1 v.n + 1

where ß denotes the reciprocal square-root of the determinant | aik |.    It follows

at once that

(7) £X2 = 1,

(8) £Xx. = 0 (fc=l, 2, ■■;»).

The Gaussian sphere is defined as the surface (space of n dimensions) whose

coordinates are Xk ; its equation is (7).

Let now do be an (w-dimensional) infinitesimal element of R   and dVL the

corresponding element of the Gaussian sphere ; then the quotient

(9) do

is KroneCKEr's extension of the Gaussian curvature* — the Kronecker-Gaussian

curvature of R .
n

To give its analytic expression, we define

(10)
or

(11)

then

(12)

«a = ß

x.

^k=T.Xxik,

»,,

X"
n+l

X
■+l

k  '    •"l    '
r.n+1

K=
*«i

§ 2. Proof that K is expressible in terms of a.

We write symbolically

(13) ctik=fifk=-Exixk.

and introduce the second covariantive derivatives, defined by

uik=uik-efik(f<p)(u<py,

ZXxik = EXxi4 - efik(ftp)Y.X(x<p).
then

•Cf. Killing, Die Nicht-Euclidisihen Baumformen, p. 210.
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But £-X"(x<£) = 0 on account of (8), so that

(14) ^Xxik=-£Xxik.

From (13) we deduce

£«,«" + £x,x'-' -/./" +./;/" = 0

on account of I (84).*

Permuting in this equation i, k, I cyclically we obtain two other equations,

and from these three equations we have

(15) £x,.xw = 0.

Solving now the n + 1 equations

Y.Xxik = a.k, £x1xi* = 0, ..., SXa^-O

for the n + l quantities x'k we obtain

(16) x" = «,X,

(17) x" x** — x" x*r = ( a.r ak¡ — a.s akr ) X2.

Therefore from (7)

(18) airaka - aitakr = £ (xirxk" - xisx") .

The sum in (18) can by (15) be transformed into

£xi(x"r — x"')

which by I (111) combined with

2X(x<¿>) = ^(iH>)
goes into

e(f"-f")(fcp)+k(W).
But since

according to I (34) we have, using formula I (113), finally

(19) £ (x'-V - x"xlr) =frf" -f'fkr,

(20) air ak> - au akr =ff> -f>f,
or

(21) airak,-aisCtkr = (ÍkrS)'

* I quote my paper A symbolic treatment of the theory of invariants of quadratic differential quan-

lics of n variables, these Transactions, vol. 4, pp. 441-469, October, 1903, by I, and my paper

Differential parameters of the first order in this number of the Transactions by D. P.
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where (ikrs) is the quadruple index symbol, a quantity which involves the co-

efficients aik, its first and second derivatives.*

If now n is even the determinant

(22) A = I a„

can directly be expressed in terms of its minors of the second degree. If n is

odd we apply the following general theorems on determinants which can easily

be proved

(23)
*in

Aik, A,

A*m

= A2,

where Aik denotes the minor of a.k in the determinant A. Since every A.k is

again of even degree, we see that A2 can be expressed in terms of the second

degree minors of A. It follows then in general from (12) the well knownf

theorem that

The Kronecker-Gaussian curvature can be expressed in terms of the coeffi-

cients ajk, their first and second derivatives.

I mention in passing an interesting result holding in the case where n is odd

which follows at once by means of the preceding results from the general formula

(24) a  A"-1 =

A.

ln2'

We see here that an itself can be expressed in terms of the coefficients aik.

Therefore, if we call in analogy with the familiar case n = 2, '£aikdujduk the

first, and '£a.kduiduk the second fundamental differential quantic, we have the

theorem :

If n is odd, the coefficients of the second differential quantic are individually

expressible in terms of those of the first differential quantic. The second dif-

ferential quantic is determined by the first one.

§ 3.   The expression of K in terms of aik.

We proceed to compute the determinant of even degree

(26) A;i'2-.. ¿2„ :

*1*2 • ■ • *-2m

<1*1 »l*2m

A*2,»*l Í2m*2m

•Its unsymbolic expression is given, e. g., in BlANCHl's Vorlesungen über Differential-Geometrie,

p. 51.
fFor references on the (older) theory of the Kronecker-Ganssian curvature see Killing,

1. c, p. 263, 264.



1906] CURVATURE   OF   HYPERSPACE

Combining (21) with I (119) we have

85

(27) = ( h h Kh ) = «/<; fi
(/«)*,)  (fa)L.

"•¿2i'l 1 "%ki ■ (/«)!,»   (/<*£

and therefore

A- ■      •   = e'"f-' f2- --f2'

(/«); cao;

(Ä (/«>2m

with the understanding that the n — 1 symbols a appearing in every successive

pair (fa)2k~l and (fa)2k are equal, otherwise distinct.

The same determinant could have been computed by starting from any other

permutation of the rows i with respective change of sign. Adding together all

the expressions so obtained and dividing by ( 2??i ) ! ß2 we have, by finally chang-

ing rows and columns,

(28)    ß2K...t = (-¿T! ((/«OU.« • ■ ■ (/«)£) ifkfl ■ ■ -AZ)-

If now n is even, we have at once the desired result :

1
(29) K=

>![(»-!)!] *((/«)'(/«)'■••(/«)")(/)■

The case where n is odd presents greater difficulties.    In this case we have

to compute A2 given by formula (23).    The degree of the determinant

^A=(-l) Í+A

*1, A-l ' al, A+l »

'»       «i
i—1, A-l ' <—1, A + l '

Ï + 1, 1 ' Í+1, »

a»l 1 ' ' ' 1       an, A-l 1 an, A+2 ' " * »

being even we can apply (28) and obtain, putting n = 2m + 1 and indicating

each determinant by its diagonal term*

m

Aik = (-iy+k^\(fa)2x,(fa)l, ...,(fa)i_x,(fa)iX\, --^(fayi

X   \f 1 ' J 2'   ' ' ■' / A-l» y A+l»   " " '» /nl

and similar expressions for ^4^, ^4i/x and Ak¡í.

By taking according to I (119)
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= (ikxp) = e(fc)'i(<pc)'k(fk<p'ii -/;&)
: "*a »  «*/i

we find

A2=(-iy+v+2(/c); \(fa)\. ■ •(/«)•_,(»;>;■. -| ■(^KMï-. ■(<h)U(4>afkîï-

\fUl--/LiñX\---\,  |#$---<K-ift+!---

In this sum all the terms in which X = p vanish ; we can, therefore, perform the

summation first with respect to A, then with respect to p and divide the result

by 2.
But since

g ( -1 y+1A l A A ■ ■ -/î-i/îîi • • •/;: i = \ff\ ■ • •/:: I - ¿CO

and a similar reduction takes place for the other forms, the sum reduces simply to

¿2[(/'/)(9'9)-(/'9)(9'/)]-

The expression thus obtained for A2 holds for all values of i and k. Taking the

sum of all these and dividing by n2 we have

£4A2 = K2 = ~ {(fc)'(fay(fay ..-(fa)") ((cpcy(<pb)2(<pb)3... (<pby)(30) n

x[(/'/)(9'9)-(/'9)(9'/)].

Here again the n — 1 symbols a in two consecutive terms (fa)2k and (fa)2k+1

are equal, likewise the symbols b in (<f>b)2k and (<pb)2k+i.

To obtain a further reduction of the above expression we apply D. P. (1) to

the product (ff)(<f>'<f>)-
We have

(Z'/)(9'9) = (Z'9)(9/) + ¿ (f<f>)(f ■ • •/*-19'/t+l • • •/")•
k=2

But all the terms of this sum become equal if we multiply by ((fc)'(fa)2 ■ • • (fa)").

For instance in

(/39)(/'/294/4 • • •/") {{A)'(fa)2(fa)3. • -/(a)»)

we can permute/2 with,/"3 and also (fa)2 with (fa)3 because the corresponding

symbols a are equal.

In

(/49)(//2/:i9'/5 • • ■r){(fc)'(fa)2(fa)3 •.. (fa)")

we permute f2 with/4, also f with f and the symbols a in (/a)2, (/a)' with
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those in (fa)4, (fa)\ i. e., (fa)2 with (/a)4 and (fa)3 with (/«)'. In both

cases the two expressions become equal to

(f<p)(f<p'f3--f"){(fc)'(fa)2(fay ■■■(fa)").

Thus we have the final result

K% = nlJn^TyY^ (^WW- • ■(fay){(<l>cy(<pb)2(<t>b)3- • (<H")

(81) x (/'9'/)(/2929)-

§4.   iTAe Kronecker-Gaussian curvature as invariant of a general

differential quantic.

The \n(n + 1) quantities «a considered as functions of ux, ■ ■ -, un are not

independent if n> 2. On account of (4) there must indeed exist \n(n — 1) — 1

relations between them.

Let us, however, consider a differential quantic

(32) ds2=Yiaikduiduk
i, *=1

where the aik are unrestricted. If now we form the quantities K (30) or K2

(31) according as n is even or odd, then these expressions are, as is obvious

immediately from their structure, differential invariants of (32).

This invariant K might properly be called the Kroneckerinvariant of the

differential quantic (32). If the arc-element ds defined by (32) belongs to a

space Rn contained in an euclidean space cfn + 1 dimensions, then K becomes

the Kronecker-Gaussian curvature, and ifn = 2 the Gaussian curvature.

The expressions (30) and (31), especially (31), can be modified in several

ways. I mention only that for n = 3 the invariant K2 is identical (leaving a

numerical factor aside) with the invariant K3 given in I (139).

§5.  The Kroneckerinvariant K of a space of X dimensions Rk represented as

a differential parameter of a space of higher dimensions Rn containing Rk.

As in D. P. § 3 we define in a general space Rn of n dimensions whose arc-

element is determined by

(33) ds2=j^ardxrdx,
r, i=l

a surface (space) Rk of A dimensions by the n — X equations

(34) U' = const., • • -, U"~k = const.
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We shall first determine the arc-element ds of Rk in terms of A independent

variables u,, • • •, u  and then form the Kroneckerinvariant K of ds2.

For that purpose we adjoin, as in D. P. § 3, A arbitrary functions V, • ■ •, Vk

with the restriction that the functional determinant

(35) A=|F', •-., V\U', ...,¿7»-*| + 0.

According to D. P. (14) the general arc-element ds in Rk is then determined

by

(36) dxx = ¿p'Ak\ ..-, dxn = ¿PkA"\
*=i /.=i

where Akr denotes the minor of the element F* in A, and where p , ■ ■ -, pk are

A arbitrary parameters.

On the other hand, the space Rk defined by (34) can also be defined by ex-

pressing its coordinates x in terms of A independent variables ux, ■ ■ -, un. If

we do this, we -have for the differentials dx the expressions

(37) dxr=fs-¿duk (r = l, 2, ••■,»).
*=1 uuk

To make the expressions (36) and (37) equal we write first pkduk instead of

pk in (36) so that

(38) dxr=Yip'Akrduk
*=i

and we have now to set up the integrability-conditions of (38), i. e., the equations

d(piA^)_d(P"A^)

^    ' du. du.
following from

Dt

(40) Sf-^*-

If we denote differentiation with respect to xk by the lower index k we find,

M being any function of x,

and by (40)
dû/" n

(4i) ^j^*

so that (39) becomes

(42) Pk £ (pM»)5.4^ = p< 2 (P*-^).^

which reduces to
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(43) p'pk J2 ( AyAk> — AkrAis ) = p'Akr £) pk A" — pkAir £) p[ A'".

This equation holds for i, k = 1, • ■ •, A and r = 1, • • •, n.

Keeping now i and k fixed we have n equations before us.    Instead of using

this system of n equations, say

(44) P1 = 0, ..-, P„ = 0,

we can use the equivalent system of n equations

(45a) ¿£^P.= 0 (« = i,...,._!),
r=i

(456) ±VkrPr=0 (*=!, ...,*),
>■=!

which follows from (44) and from which conversely (44) follows on account of

(35).
Considering the signification of the quantities Akr, we reduce equation (45a) to

£ U%(A\'Ak' - AkrA") = 0.
r, 8

But this equation is identically true on account of the relations which arise from

differentiating the two equations

53 U* A" = 0        and        £ U"r Akr = 0

with respect to xs.    Thus equations (45a) are satisfied without any further con-

dition.    Applying similar reductions to the equations (456) we obtain

X)(P*A. + p*tA)A* = 0,
s

and this gives us by (41)

¿y a = 0

for every value of i different from k.    We have therefore

p A     '

and by introduction of

F( uk ) duk = du'u

and writing again u instead of u   which amounts to pk = 1/A we can state our

result as follows :
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If a space Rk is given by the equations U' = const., ■ • -, U"~k = const.,

then by adjoining X arbitrary functions V'x ■ ■ • Vk which have only' to satisfy

the condition that the functional determinant

A= \V ■■■VkU' ■■■U'^l + 0,

the differentials dx of Rk can be written

1   k

(46) dxr = -Á£¿*'<fa4 (r=1, ■••,»)
¿* *=i

where Akr denotes the minor of the element Vkr in A.

To find the expression for ds2 in terms of ux ■ ■ ■ un we apply the symbolic

method, introducing symbols for the differential quantic (33) by putting

ar.=AA-
We have then

(47) d^={±frdx^.

To form this expression we deduce from (46), understanding by px, p2, ■ ■ • pn,

any n quantities
n 1     A       n

HPrdXr =aS   T,PrAtrdUk '
r=l Li A=l   r=l

or, performing the summation with respect to r on the right side

ÈPrter = m E (   y  ■ ■ ■   V"-lP Vk+l ■■■VkU) du, .
r=l P** k=l

Hence

ds2 = ~K> t (v ■. - V<-\fV^ ..-VkU)

(48) (V ■■■ Vk~xfVk+x ■■■VkU)du{duk.

Let us introduce also for ds2 as given in terms of ui ■ • ■ uk symbols by writing

(49) aV=(¿^«vY;

then we have

(50) Ft - ¿ ( V . - • F'-1/^1 ■■■VkU).

We now proceed to compute the Kronecker invariant K of the differential

quantic (48) assuming A to be an even number.

In this case we have from (29)

(51) X![(X-1)!]** K= G= ((FA)'(FA)2--.(FA)k)(F' ■■■Fk),

where the invariantive brackets (    ) are to be formed with respect to a*s2.    As
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to notation we shall in all doubtful cases use the index u when reference to ds\

is required.

We have from (41)

dM     1   " 1

and by D. P. (3)

\M' ■■■Mk\u = -~k \M' ■■■MkU' ■■■ U"-k\-\ V ■■■ VkU' •■• f7»-*|*-\

hence

\M'-..Mk\ =\\M' ...MkU' ■■■Un-k\,

and

(53) ^(M)u = pA(M'...MkU).

To compute ßu we apply D. P. (3) to (50) and obtain

l-y)^¡^f-Aü)
which leads by squaring and considering that (F)2t = A! on account of I (17)

to the required value of ß ,

A ! A2

or, denoting the denominator which is differential parameter of ds2x, by AA U,

(54) (f..-fkUy = AkU,

(55) ß^ßA^p.
Thus we find

(56) (M)u=^~(M'...MkU)

and

(57) (Fl=^u(f---AU),
so that we have

((FA)'(FA)2 .-.(FAy)= o(o(faU)', ■ ■ -, o(faU)k, U),

where

By means of D. P. (4) the right side of the above expression becomes
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<ok+1[(faU)',..-,(faUy,U^

(58) a
+ ^T,(faU)k((faU').-.(faUy-\o,(faUy+1...(faUy, u).

ft—1

To form G we have to multiply this by

(F) = o(f...fU).

I wish to show that after this multiplication has been performed each term of

the sum Y,l=i = Tx + T2 + ■ ■■ vanishes.

For that purpose it is sufficient to consider the first term Tx which may be

written more fully

Tt = (/'«2 • - • akU)(ff ■ ■ -fkU){o, (fa2 ■. • akU), ■ • • ),

or, denoting briefly the terms /", U' ■ ■ ■ Un~k by  F,

(59) Tx = (a2 - - ■ a\ V)(f ■. -f, V){o, (fa2 • •. akU), • • •).

By means of D. P. (1) we develop

(a2 • • • ak V) (f ■ ■ -f V) = ( a2/3.. -f V) (fa3 a4 ■■■akV)

+ (a3f...fkV)(a2fa*...akV)

+.

But all the terms of this sum become equal after multiplication with

(o, (fa2 ■ ■ ■ akU), ■ ■ ■) as one sees by permuting, e. g., in the second term

the two equivalent symbols a2 and a3.    We have then

Tx = A(/V ...akV)(a2f ...fV)(o, (f2a2 • • • akU), ■•■).

On the other hand by permuting the equivalent symbols f and a2 in (59) we

have

Tx=-(fa3...akV)(a2f...fV)(o,(fa2...akU),...),

whence Tx = 0. It follows in the same way, that also T2= 0, • ■ •. This

leads to

G = ok^((fauy,.-.,(fauy,u)(f'...fU)

and to the final result

Xik

(6°)    K" (&U)** ((-fr*7")'» • - •» (A«uf, u)(f,...,fu),

where

(/', ■■■,fU) = (f,...,fkU', ■■.,u»-k),
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±kU= (/', ...,/», U)2, (faU)' = (/', a2', . -., á*\ U), etc.

Two sets of symbols a2 • ■ ■ ak are equal in any two successive brackets (faU)2k+l,

(faU)2k, otherwise distinct. All the symbols are symbols of the differential

quantic
n

ds2 = 53 aik dxi dxk •
i, ft=l

The principles which lead to this expression of K for even values of A will

doubtless also be sufficient to solve the more complicated problem for the case

of odd values of n.

Finally I wish to make an interesting application to the case A = 2.    Formula

(60) gives immediately :

m\ 2((fiirU),(WU), U)(f4>U)
{ } (fvuy-(f"<p"uy

Let us first assume also n = 2.    Then the U's disappear and since

(/'9')2 = (/"9")2 = 2

we obtain the ordinary Gaussian curvature

1 /    d2F     d2E    d2G\

(62)   K=H(ff)(^)](f4>)^^w^^Y)[2d^v-w--B^+....

Take now n = 3 and let R3 be the ordinary euclidean space, i. e., au = 1,

aik = 0, if i 4= k. Then we have only one function U, and if we write the equa-

tion U= const, in the form

F(x, y, z) = 0,

an easy computation transforms the expression (61) into the familiar form

(63)    K- KdF\2    (dF\2    (dF\2~\ä*-) + U-) + U-)J

d2F

&?'

d2F

dydx''

d2F

dzdx"1

dF

"öx"'

d2F

dxdy"1

d2F

d2F

dzdy'

dF

d2F

dxdz^

d2F

dydz1

d2F

"äs2"'

dF

dF

dx

dF

dy

dF

~dz

0

so that one and the same formula (61) involves the two apparently so heter-

ogenous expressions (62) and (63) of the Gaussian curvature.

The University of Chicago,

September, 1905.


