THE KRONECKER-GAUSSIAN CURVATURE OF HYPERSPACE*

RY

HEINRICH MASCHKE

§ 1. Definition of the Kronecker-Gaussian curvature.

Let x', x^2, \dots, x^{n+1} be the coördinates of an euclidean space of n+1 dimensions, S_{n+1} , i. e., a space whose arc-element is determined by

(1)
$$ds^{2} = \sum_{k=1}^{n+1} (dx^{k})^{2};$$

then we define any hypersurface, or, as we shall simply say, any space, of n dimensions, R_n , contained in S_{n+1} , by expressing each of the coördinates x^{λ} in terms of n independent variables u_1, u_2, \dots, u_n .

The arc-element of R_n is given by

(2)
$$ds^2 = \sum_{k=1}^n a_{ik} du_i du_k,$$

where

(3)
$$a_{ik} = \sum_{\lambda=1}^{n+1} \frac{\partial x^{\lambda}}{\partial u_i} \frac{\partial x^{\lambda}}{\partial u_i},$$

 \mathbf{or}

$$a_{ik} = \sum_{\lambda=1}^{n+1} x_i^{\lambda} x_k^{\lambda},$$

if we agree to indicate differentiation with respect to u_i by the lower index i. It will be sometimes convenient to write simply

$$\sum (x)$$
 instead of $\sum_{\lambda=1}^{n+1} (x^{\lambda})$,

where (x^{λ}) stands for any quantity involving or defined by x^{λ} , e. g.,

$$a_{ik} = \sum x_i x_k.$$

The n+1 direction cosines X^{λ} of that direction in S_{n+1} which is normal at a point P of R_n to n independent (i. e., not contained in a space of less than n

^{*}Presented to the Society (Chicago) April 22, 1905, under a slightly different title. Received for publication September 23, 1905.

dimensions) directions ds', ..., ds^n in R_n at P are found to be

(6)
$$X^{\lambda} = (-1)^{\lambda+1} \beta \begin{vmatrix} x_1', & \cdots, & x_1^{\lambda-1}, & x_1^{\lambda+1}, & \cdots, & x_1^{n+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n', & \cdots, & x_n^{\lambda-1}, & x_n^{\lambda+1}, & \cdots, & x_n^{n+1} \end{vmatrix},$$

where β denotes the reciprocal square-root of the determinant $|a_{ik}|$. It follows at once that

$$\sum X^2 = 1,$$

(8)
$$\sum Xx_k = 0 \qquad (k=1, 2, \dots, n).$$

The Gaussian sphere is defined as the surface (space of n dimensions) whose coördinates are X^{λ} ; its equation is (7).

Let now $d\omega$ be an (*n*-dimensional) infinitesimal element of R_n and $d\Omega$ the corresponding element of the Gaussian sphere; then the quotient

(9)
$$K = \frac{d\Omega}{d\omega}$$

is Kronecker's extension of the Gaussian curvature*—the Kronecker-Gaussian curvature of $R_{\rm e}$.

To give its analytic expression, we define

$$\alpha_{ik} = \sum X x_{ik},$$

 \mathbf{or}

(11)
$$\alpha_{ik} = \beta \begin{vmatrix} x'_{ik}, & x'_{1}, & \cdots, & x'_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{ik}^{n+1}, & x_{i}^{n+1}, & \cdots, & x_{n}^{n+1} \end{vmatrix},$$

then

$$K = \frac{|\alpha_{ik}|}{|\alpha_{ik}|}.$$

§ 2. Proof that K is expressible in terms of a_i .

We write symbolically

$$a_{ik} = f_i f_k = \sum x_i x_k.$$

and introduce the second covariantive derivatives, defined by

$$U^{ik} = U_{ik} - \epsilon f_{ik}(f\phi)(U\phi);$$

then

$$\sum Xx^{ik} = \sum Xx_{ik} - \epsilon f_{ik}(f\phi) \sum X(x\phi).$$

^{*}Cf. KILLING, Die Nicht-Euclidischen Raumformen, p. 210.

But $\sum X(x\phi) = 0$ on account of (8), so that

$$\sum Xx_{ik} = \sum Xx^{ik}.$$

From (13) we deduce

$$\sum x_{i}x^{kl} + \sum x_{k}x^{il} = f_{i}f^{kl} + f_{k}f^{il} = 0$$

on account of I (84).*

Permuting in this equation i, k, l cyclically we obtain two other equations, and from these three equations we have

$$\sum x_i x^{kl} = 0.$$

Solving now the n+1 equations

$$\sum X x^{ik} = a_{ik}, \ \sum x_1 x^{ik} = 0, \ \cdots, \ \sum x_n x^{ik} = 0$$

for the n+1 quantities x^{ik} we obtain

$$(16) x^{ik} = \alpha_{ik} X,$$

(17)
$$x^{ir}x^{ks} - x^{is}x^{kr} = (\alpha_{ir}\alpha_{kr} - \alpha_{ir}\alpha_{kr})X^{2}.$$

Therefore from (7)

(18)
$$\alpha_{ir}\alpha_{ks} - \alpha_{is}\alpha_{kr} = \sum (x^{ir}x^{ks} - x^{is}x^{kr}).$$

The sum in (18) can by (15) be transformed into

$$\sum x_{k} (x^{isr} - x^{irs})$$

which by I (111) combined with

$$\sum x_k(x\phi) = \psi_k(\psi\phi)$$

goes into

$$\epsilon(f^{isr}-f^{irs})(f\phi)\psi_{k}(\psi\phi).$$

But since

$$\psi_k(\psi\phi)(f\phi) = (n-1)! f_k$$

according to I (34) we have, using formula I (113), finally

(19)
$$\sum (x^{ir}x^{ks} - x^{rs}x^{kr}) = f^{ir}f^{ks} - f^{is}f^{kr},$$

$$\alpha_{ir}\alpha_{ks}-\alpha_{is}\alpha_{kr}=f^{ir}f^{ks}-f^{is}f^{kr},$$

 \mathbf{or}

(21)
$$\alpha_{ir}\alpha_{kr} - \alpha_{ir}\alpha_{kr} = (ikrs),$$

^{*}I quote my paper A symbolic treatment of the theory of invariants of quadratic differential quantics of n variables, these Transactions, vol. 4, pp. 441-469, October, 1903, by I, and my paper Differential parameters of the first order in this number of the Transactions by D. P.

where (ikrs) is the quadruple index symbol, a quantity which involves the coefficients a_n , its first and second derivatives.*

If now n is even the determinant

$$\Delta = |\alpha_{ik}|$$

can directly be expressed in terms of its minors of the second degree. If n is odd we apply the following general theorems on determinants which can easily be proved

(23)
$$\sum_{\lambda,\mu} \begin{vmatrix} \alpha_{i\lambda}, & \alpha_{i\mu} \\ \alpha_{k\lambda}, & \alpha_{k\mu} \end{vmatrix} \cdot \begin{vmatrix} A_{i\lambda}, & A_{i\mu} \\ A_{k\lambda}, & A_{k\mu} \end{vmatrix} = \Delta^2,$$

where A_{ik} denotes the minor of α_{ik} in the determinant Δ . Since every A_{ik} is again of even degree, we see that Δ^2 can be expressed in terms of the second degree minors of Δ . It follows then in general from (12) the well known \dagger theorem that

The Kronecker-Gaussian curvature can be expressed in terms of the coefficients a_{ik} , their first and second derivatives.

I mention in passing an interesting result holding in the case where n is odd which follows at once by means of the preceding results from the general formula

(24)
$$\alpha_{11} \Delta^{n-1} = \begin{vmatrix} A_{22}, & \cdots, & A_{2n} \\ \vdots & \ddots & \ddots \\ A_{n2}, & \cdots, & A_{nn} \end{vmatrix}.$$

We see here that α_{11} itself can be expressed in terms of the coefficients a_{ik} . Therefore, if we call in analogy with the familiar case n=2, $\sum a_{ik} du_i du_k$ the first, and $\sum a_{ik} du_i du_k$ the second fundamental differential quantic, we have the theorem:

If n is odd, the coefficients of the second differential quantic are individually expressible in terms of those of the first differential quantic. The second differential quantic is determined by the first one.

§ 3. The expression of K in terms of a_{ik} .

We proceed to compute the determinant of even degree

(26)
$$\Delta_{\substack{i_1 i_2 \dots i_{2m} \\ k_1 k_2 \dots k_{2m}}} = \begin{vmatrix} \alpha_{i_1 k_1} & \dots & \alpha_{i_1 k_{2m}} \\ \ddots & \ddots & \ddots \\ \alpha_{i_{2m} k_1} & \dots & \alpha_{i_{2m} k_{2m}} \end{vmatrix}.$$

^{*}Its unsymbolic expression is given, e. g., in BIANCHI's Vorlesungen über Differential-Geometrie, p. 51.

[†]For references on the (older) theory of the Kronecker-Gaussian curvature see Killing, l. c., p. 263, 264.

Combining (21) with I (119) we have

$$\begin{vmatrix} \alpha_{i_1k_1}, & \alpha_{i_1k_2} \\ \alpha_{i_2k_1}, & \alpha_{i_2k_2} \end{vmatrix} = (i_1i_2k_1k_2) = \epsilon f_{i_1}'f_{i_2}^{2} \begin{vmatrix} (fa)_{k_1}', & (fa)_{k_2}' \\ (fa)_{k_1}^2, & (fa)_{k_2}^{2} \end{vmatrix},$$

and therefore

$$\Delta_{\substack{i_1 i_2 \dots i_m \ k_1 k_2 \dots k_m}} = \epsilon^m f_{i_1}' f_{i_2}^2 \cdots f_{i_{2m}}^{2m} \left| egin{array}{ccc} (fa)_{k_1}' & \cdots & (fa)_{k_{2m}}' \ & \ddots & \ddots & \ddots \ (fa)_{k_1}^{2m} & \cdots & (fa)_{k_{2m}}^{2m} \end{array} \right|,$$

with the understanding that the n-1 symbols a appearing in every successive pair $(fa)^{2\lambda-1}$ and $(fa)^{2\lambda}$ are equal, otherwise distinct.

The same determinant could have been computed by starting from any other permutation of the rows i with respective change of sign. Adding together all the expressions so obtained and dividing by $(2m)! \beta^2$ we have, by finally changing rows and columns,

(28)
$$\beta^2 \Delta_{\substack{i_1 \dots i_m \\ k_1 \dots k_m}} = \frac{\epsilon^m}{(2m)!} \left((fa)'_{i_1} (fa)^2_{i_2} \cdots (fa)^{2m}_{i_{2m}} \right) \left(f'_{k_1} f^2_{k_2} \cdots f^{2m}_{k_{2m}} \right).$$

If now n is even, we have at once the desired result:

(29)
$$K = \frac{1}{n! \lceil (n-1)! \rceil^{n/2}} ((fa)' (fa)^2 \cdots (fa)^n) (f).$$

The case where n is odd presents greater difficulties. In this case we have to compute Δ^2 given by formula (23). The degree of the determinant

being even we can apply (28) and obtain, putting n = 2m + 1 and indicating each determinant by its diagonal term,

$$A_{i\lambda} = (-1)^{i+\lambda} \frac{\epsilon^m}{(2m)!} \left| (fa)_1^2, (fa)_2^3, \dots, (fa)_{i-1}^i, (fa)_{i+1}^{i+1}, \dots, (fa)_n^i \right| \\ \times \left| f_1^2, f_2^3, \dots, f_{\lambda-1}^{\lambda}, f_{\lambda+1}^{\lambda+1}, \dots, f_n^n \right|$$

and similar expressions for $A_{k\lambda}$, $A_{i\mu}$ and $A_{k\mu}$.

By taking according to I (119)

$$\begin{vmatrix} \alpha_{i\lambda}, & \alpha_{i\mu} \\ \alpha_{k\lambda}, & \alpha_{k\mu} \end{vmatrix} = (ik\lambda\mu) = \epsilon (fc)'_i (\phi c)'_k (f'_\lambda \phi'_\mu - f'_\mu \phi'_\lambda)$$

we find

$$\Delta^{2} = (-1)^{i+k} \epsilon^{n+2} (fc)_{i}^{i} | (fa)_{1}^{2} \cdots (fa)_{i-1}^{i} (fa)_{i+1}^{i+1} \cdots | \cdot (\phi c)_{k}^{i} | (\phi a)_{1}^{2} \cdots (\phi a)_{k-1}^{k} (\phi a)_{k+1}^{k+1} \cdots |$$

$$\times \sum_{\lambda, \mu} (-1)^{\lambda+\mu} \begin{vmatrix} f_{\lambda}^{\prime}, & \phi_{\lambda}^{\prime} \\ f_{\mu}^{\prime}, & \phi_{\mu}^{\prime} \end{vmatrix} \cdot \begin{vmatrix} |f_{1}^{2} f_{2}^{3} \cdots f_{\lambda-1}^{\lambda} f_{\lambda+1}^{\lambda+1} \cdots |, & |\phi_{1}^{2} \phi_{2}^{3} \cdots \phi_{\lambda-1}^{\lambda} \phi_{\lambda+1}^{\lambda+1} \cdots | \\ |f_{1}^{2} f_{2}^{3} \cdots f_{\mu-1}^{\mu} f_{\mu+1}^{\mu+1} \cdots |, & |\phi_{1}^{2} \phi_{2}^{3} \cdots \phi_{\mu-1}^{\mu} \phi_{\mu+1}^{\mu+1} \cdots | \end{vmatrix}.$$

In this sum all the terms in which $\lambda = \mu$ vanish; we can, therefore, perform the summation first with respect to λ , then with respect to μ and divide the result by 2.

But since

$$\sum_{\lambda=1}^{n} (-1)^{\lambda+1} f_{\lambda}' |f_{1}^{2} f_{2}^{3} \cdots f_{\lambda-1}^{\lambda} f_{\lambda+1}^{\lambda+1} \cdots f_{n}^{n}| = |f_{1}' f_{2}^{2} \cdots f_{n}^{n}| = \frac{1}{\beta} (f)$$

and a similar reduction takes place for the other forms, the sum reduces simply to

$$\frac{1}{B^2} [(f'f)(\phi'\phi) - (f'\phi)(\phi'f)].$$

The expression thus obtained for Δ^2 holds for all values of i and k. Taking the sum of all these and dividing by n^2 we have

(30)
$$\beta^{4}\Delta^{2} = K^{2} = \frac{\epsilon^{n+2}}{n^{2}} \left((fc)'(fa)^{2} (fa)^{3} \cdots (fa)^{n} \right) \left((\phi c)'(\phi b)^{2} (\phi b)^{3} \cdots (\phi b)^{n} \right) \times \left[(f'f)(\phi'\phi) - (f'\phi)(\phi'f) \right].$$

Here again the n-1 symbols a in two consecutive terms $(fa)^{2\lambda}$ and $(fa)^{2\lambda+1}$ are equal, likewise the symbols b in $(\phi b)^{2\lambda}$ and $(\phi b)^{2\lambda+1}$.

To obtain a further reduction of the above expression we apply D. P. (1) to the product $(f'f)(\phi'\phi)$.

We have

$$(f'f)(\phi'\phi) = (f'\phi)(\phi'f) + \sum_{k=2}^{n} (f^{k}\phi)(f'\cdots f^{k-1}\phi'f^{k+1}\cdots f^{n}).$$

But all the terms of this sum become equal if we multiply by $((fc)'(fa)^2 \cdots (fa)^n)$. For instance in

$$(f^3\phi)(f'f^2\phi^4f^4\cdots f^n)((fc)'(fa)^2(fa)^3\cdots f(a)^n)$$

we can permute f^2 with f^3 and also $(fa)^2$ with $(fa)^3$ because the corresponding symbols a are equal.

In

$$(f^4\phi)(f'f^2f^3\phi'f^5\cdots f^n)\big((fc)'(fa)^2(fa)^3\cdots (fa)^n\big)$$

we permute f^2 with f^4 , also f^3 with f^5 and the symbols a in $(fa)^2$, $(fa)^3$ with

those in $(fa)^4$, $(fa)^5$, i. e., $(fa)^2$ with $(fa)^4$ and $(fa)^3$ with $(fa)^5$. In both cases the two expressions become equal to

$$(f^2\phi)(f'\phi'f^3\cdots f^n)((fc)'(fa)^2(fa)^3\cdots (fa)^n).$$

Thus we have the final result

(31)
$$K^{2} = \frac{1}{n \left[(n-1)! \right]^{n+2}} \left((fc)' (fa)^{2} (fa)^{3} \cdots (fa)^{n} \right) \left((\phi c)' (\phi b)^{2} (\phi b)^{3} \cdots (\phi a)^{n} \right) \times (f' \phi' f) (f^{2} \phi^{2} \phi).$$

§ 4. The Kronecker-Gaussian curvature as invariant of a general differential quantic.

The $\frac{1}{2}n(n+1)$ quantities a_{ik} considered as functions of u_1, \dots, u_n are not independent if n > 2. On account of (4) there must indeed exist $\frac{1}{2}n(n-1)-1$ relations between them.

Let us, however, consider a differential quantic

$$ds^2 = \sum_{i,k=1}^n a_{ik} du_i du_k$$

where the a_{ik} are unrestricted. If now we form the quantities K (30) or K^2 (31) according as n is even or odd, then these expressions are, as is obvious immediately from their structure, differential invariants of (32).

This invariant K might properly be called the Kroneckerinvariant of the differential quantic (32). If the arc-element ds defined by (32) belongs to a space R_n contained in an euclidean space of n+1 dimensions, then K becomes the Kronecker-Gaussian curvature, and if n=2 the Gaussian curvature.

The expressions (30) and (31), especially (31), can be modified in several ways. I mention only that for n=3 the invariant K^2 is identical (leaving a numerical factor aside) with the invariant K_3 given in I (139).

§ 5. The Kroneckerinvariant K of a space of λ dimensions R_{λ} represented as a differential parameter of a space of higher dimensions R_{κ} containing R_{λ} .

As in D. P. § 3 we define in a general space R_n of n dimensions whose arcelement is determined by

(33)
$$ds^2 = \sum_{r,s=1}^n a_{rs} dx_r dx_s$$

a surface (space) R_{λ} of λ dimensions by the $n-\lambda$ equations

(34)
$$U' = \text{const.}, \dots, U^{n-\lambda} = \text{const.}$$

We shall first determine the arc-element ds of R_{λ} in terms of λ independent variables u_1, \dots, u_n and then form the Kroneckerinvariant K of ds^2 .

For that purpose we adjoin, as in D. P. § 3, λ arbitrary functions V', \dots, V^{λ} with the restriction that the functional determinant

(35)
$$\Delta = |V', \dots, V^{\lambda}, U', \dots, U^{n-\lambda}| \neq 0.$$

According to D. P. (14) the general arc-element ds in R_{λ} is then determined by

(36)
$$dx_1 = \sum_{k=1}^{\lambda} \rho^k A^{k1}, \ \cdots, \ dx_n = \sum_{k=1}^{\lambda} \rho^k A^{kn},$$

where A^{kr} denotes the minor of the element V_r^k in Δ , and where ρ' , \cdots , ρ^{λ} are λ arbitrary parameters.

On the other hand, the space R_{λ} defined by (34) can also be defined by expressing its coördinates x in terms of λ independent variables u_1, \dots, u_n . If we do this, we have for the differentials dx the expressions

(37)
$$dx_r = \sum_{k=1}^{\lambda} \frac{\partial x_r}{\partial u_k} du_k \qquad (r=1, 2, \dots, n).$$

To make the expressions (36) and (37) equal we write first $\rho^k du_k$ instead of ρ^k in (36) so that

(38)
$$dx_r = \sum_{k=1}^{\lambda} \rho^k A^{kr} du_k$$

and we have now to set up the integrability-conditions of (38), i. e., the equations

(39)
$$\frac{\partial (\rho^{i}A^{ir})}{\partial u_{k}} = \frac{\partial (\rho^{k}A^{kr})}{\partial u_{i}}$$

following from

(40)
$$\frac{\partial x_r}{\partial u_k} = \rho^k \Lambda^{kr}.$$

If we denote differentiation with respect to x^k by the lower index k we find, M being any function of x,

$$\frac{\partial M}{\partial u_k} = \sum_{s=1}^n M_s \frac{\partial x_s}{\partial u_k},$$

and by (40)

(41)
$$\frac{\partial M}{\partial u_k} = \rho^k \sum_{s=1}^n M_s A^{ks},$$

so that (39) becomes

(42)
$$\rho^k \sum_{i} (\rho^i A^{ir})_s A^{ks} = \rho^i \sum_{i} (\rho^k A^{kr})_s A^{is}$$

which reduces to

(43)
$$\rho^{i} \rho^{k} \sum_{s} \left(A_{s}^{ir} A^{ks} - A_{s}^{kr} A^{is} \right) = \rho^{i} A^{kr} \sum_{s} \rho_{s}^{k} A^{is} - \rho^{k} A^{ir} \sum_{s} \rho_{s}^{i} A^{ks}.$$

This equation holds for $i, k = 1, \dots, \lambda$ and $r = 1, \dots, n$.

Keeping now i and k fixed we have n equations before us. Instead of using this system of n equations, say

$$(44) P_1 = 0, \cdots, P_n = 0,$$

we can use the equivalent system of n equations

(45a)
$$\sum_{r=0}^{n} U_{r}^{a} P_{r} = 0 \qquad (\alpha = 1, \dots, n-\lambda),$$

(45b)
$$\sum_{r=1}^{n} V_{r}^{k} P_{r} = 0 \qquad (k=1, \dots, \lambda),$$

which follows from (44) and from which conversely (44) follows on account of (35).

Considering the signification of the quantities A^{kr} , we reduce equation (45a) to

$$\sum_{r,s} U_r^a (A_s^{ir} A^{ks} - A_s^{kr} A^{is}) = 0.$$

But this equation is identically true on account of the relations which arise from differentiating the two equations

$$\sum U_r^a A^{ir} = 0 \qquad \text{and} \qquad \sum U_r^a A^{kr} = 0$$

with respect to x_s . Thus equations (45a) are satisfied without any further condition. Applying similar reductions to the equations (45b) we obtain

$$\sum_{s}\left(
ho^{k}\Delta_{s}+
ho_{s}^{k}\Delta
ight)A^{is}=0$$
 ,

i. e.,

$$\sum_{s} \frac{\partial \left(\rho^{k} \Delta\right)}{\partial x_{\bullet}} A^{is} = 0,$$

and this gives us by (41)

$$\frac{\partial \rho^k \Delta}{\partial u_{\cdot}} = 0$$

for every value of i different from k. We have therefore

$$\rho^{\scriptscriptstyle k} = \frac{F(u_{\scriptscriptstyle k})}{\Delta},$$

and by introduction of

$$F(u_{k})du_{k} = du'_{k}$$

and writing again u instead of u' which amounts to $\rho^k = 1/\Delta$ we can state our result as follows:

If a space R_{λ} is given by the equations $U' = \text{const.}, \dots, U^{n-\lambda} = \text{const.}$, then by adjoining λ arbitrary functions $V'_1 \cdots V^{\lambda}$ which have only to satisfy the condition that the functional determinant

$$\Delta = |V' \cdots V^{\lambda} U' \cdots U^{n-\lambda}| \neq 0,$$

the differentials dx of R_{λ} can be written

(46)
$$dx_r = \frac{1}{\Delta} \sum_{k=1}^{\Delta} A^{kr} du_k \qquad (r = 1, \dots, n)$$

where A^{kr} denotes the minor of the element V^{kr} in Δ .

To find the expression for ds^2 in terms of $u_1 \cdots u_n$ we apply the symbolic method, introducing symbols for the differential quantic (33) by putting

$$a_{rs} = f_r f_s$$
.

We have then

(47)
$$ds^2 = \left(\sum_{r=1}^n f_r dx_r\right)^2.$$

To form this expression we deduce from (46), understanding by $p_1, p_2, \dots p_n$, any n quantities

$$\sum_{r=1}^{n} p_r dx_r = \frac{1}{\Delta} \sum_{k=1}^{\lambda} \sum_{r=1}^{n} p_r A^{kr} du_k,$$

or, performing the summation with respect to r on the right side

$$\sum_{r=1}^{n} p_r dx_r = \frac{1}{\beta \Delta} \sum_{k=1}^{\lambda} (V' \cdots V^{k-1} p V^{k+1} \cdots V^{\lambda} U) du_i.$$

Hence

(48)
$$ds^{2} = \frac{1}{\beta^{2} \Delta^{2}} \sum_{i, k=1}^{\lambda} (V' \cdots V^{i-1} f V^{i+1} \cdots V^{\lambda} U) (V' \cdots V^{k-1} f V^{k+1} \cdots V^{\lambda} U) du_{i} du_{k}.$$

Let us introduce also for ds^2 as given in terms of $u_i \cdots u_{\lambda}$ symbols by writing

(49)
$$ds^{2} = \left(\sum_{i=1}^{\lambda} F_{i} du_{i}\right)^{2};$$

then we have

(50)
$$F_{i} = \frac{1}{\beta\Delta} (V \cdots V^{i-1} f V^{i+1} \cdots V^{\lambda} U).$$

We now proceed to compute the Kronecker invariant K of the differential quantic (48) assuming λ to be an even number.

In this case we have from (29)

$$(51) \quad \lambda! \left[(\lambda - 1)! \right]^{\frac{1}{2}\lambda} \quad K = G = \left((FA)'(FA)^2 \cdots (FA)^{\lambda} \right) (F' \cdots F^{\lambda}),$$

where the invariantive brackets () are to be formed with respect to ds_u^2 . As

to notation we shall in all doubtful cases use the index u when reference to ds_u^2 is required.

We have from (41)

(52)
$$\frac{\partial M}{\partial u_i} = \frac{1}{\Delta} \sum_{r=1}^{n} M_r A^{ir} = \frac{1}{\beta \Delta} (V' \cdots V^{i-1} M V^{i+1} \cdots V^{\lambda} U)$$

and by D. P. (3)

$$|M'\cdots M^{\lambda}|_{u} = \frac{1}{\Lambda^{\lambda}}|M'\cdots M^{\lambda}U'\cdots U^{n-\lambda}|\cdot|V'\cdots V^{\lambda}U'\cdots U^{n-\lambda}|^{\lambda-1},$$

hence

$$|M'\cdots M^{\lambda}|_{u} = \frac{1}{\Delta} |M'\cdots M^{\lambda}U'\cdots U^{n-\lambda}|,$$

and

(53)
$$\frac{1}{\beta} (M)_{u} = \frac{1}{\beta \overline{\Delta}} (M' \cdots M^{\lambda} U).$$

To compute β_{u} we apply D. P. (3) to (50) and obtain

$$\frac{1}{\beta_{u}}(F)_{u} = \frac{1}{\beta \overline{\Delta}}(f' \cdots f^{\lambda}U)$$

which leads by squaring and considering that $(F)_{u}^{2} = \lambda!$ on account of I (17) to the required value of β_{u} ,

$$\beta_u^2 = \frac{\lambda! \ \Delta^2}{\beta^2 (f' \cdots f^{\lambda} U)^2},$$

or, denoting the denominator which is differential parameter of ds_x^2 , by $\Delta^{\lambda}U$,

$$(54) (f' \cdots f^{\lambda} U)^2 = \Delta^{\lambda} U,$$

$$\beta_{u} = \beta \Delta \sqrt{\frac{\lambda!}{\Delta^{\lambda}U}}.$$

Thus we find

(56)
$$(M)_{u} = \sqrt{\frac{\lambda!}{\Delta^{\lambda} U}} (M' \cdots M^{\lambda} U)$$

and

(57)
$$(F)_{u} = \sqrt{\frac{\lambda!}{\Delta^{\lambda} U}} (f' \cdots f^{\lambda} U),$$

so that we have

$$((FA)'(FA)^2\cdots(FA)^{\lambda})=\omega(\omega(faU)',\cdots,\omega(faU)^{\lambda},U),$$

where

$$\omega = \sqrt{\frac{\lambda!}{\Delta^{\lambda} I I}}.$$

By means of D. P. (4) the right side of the above expression becomes

$$\omega^{\lambda+1}[(faU)', \cdots, (faU)^{\lambda}, U]$$

$$(58) + \omega^{\lambda} \sum_{k=1}^{\lambda} (faU)^{k} ((faU') \cdots (faU)^{k-1}, \omega, (faU)^{k+1} \cdots (faU)^{\lambda}, U).$$

To form G we have to multiply this by

$$(F) = \omega(f' \cdots f^{\lambda}U).$$

I wish to show that after this multiplication has been performed each term of the sum $\sum_{k=1}^{k=\lambda} = T_1 + T_2 + \cdots$ vanishes.

For that purpose it is sufficient to consider the first term T_1 which may be written more fully

$$T_1 = (f'a^2 \cdots a^{\lambda}U)(f'f^2 \cdots f^{\lambda}U)(\omega, (f^2a^2 \cdots a^{\lambda}U), \cdots),$$

or, denoting briefly the terms f', $U' \cdots U^{n-\lambda}$ by V,

(59)
$$T_1 = (a^2 \cdots a^{\lambda}, V)(f^2 \cdots f^{\lambda}, V)(\omega, (f^2 a^2 \cdots a^{\lambda} U), \cdots).$$

By means of D. P. (1) we develop

But all the terms of this sum become equal after multiplication with $(\omega, (f^2\alpha^2\cdots\alpha^{\lambda}U), \cdots)$ as one sees by permuting, e. g., in the second term the two equivalent symbols α^2 and α^3 . We have then

$$T_1 = \lambda (f^2 a^3 \cdots a^{\lambda} V) (a^2 f^3 \cdots f^{\lambda} V) (\omega, (f^2 a^2 \cdots a^{\lambda} U), \cdots).$$

On the other hand by permuting the equivalent symbols f^2 and a^2 in (59) we have

$$T_1 = -(f^2 a^3 \cdots a^{\lambda} V)(a^2 f^3 \cdots f^{\lambda} V)(\omega, (f^2 a^2 \cdots a^{\lambda} U), \cdots),$$

whence $T_1=0$. It follows in the same way, that also $T_2=0$, This leads to

$$G = \omega^{\lambda+2} ((faU)', \dots, (faU)^{\lambda}, U) (f' \dots f^{\lambda}U)$$

and to the final result

(60)
$$K = \frac{\lambda^{\frac{1}{2}\lambda}}{(\Delta^{\lambda}U)^{\frac{1}{2}\lambda+1}} ((faU)', \dots, (faU)^{\lambda}, U) (f', \dots, f^{\lambda}U),$$

where

$$(f', \dots, f^{\lambda}U) = (f', \dots, f^{\lambda}U', \dots, U^{n-\lambda}),$$

$$\Delta^{\lambda}U=(f',\,\cdots,f^{\lambda},\,U)^2,\,(fa\,U)'=(f',\,a^{2\prime},\,\cdots,\,a^{\lambda\prime},\,U),\,\text{etc.}$$

Two sets of symbols $a^2 \cdots a^{\lambda}$ are equal in any two successive brackets $(fa U)^{2k+1}$, $(faU)^{2k}$, otherwise distinct. All the symbols are symbols of the differential quantic

$$ds^2 = \sum_{i, k=1}^n a_{ik} dx_i dx_k.$$

The principles which lead to this expression of K for even values of λ will doubtless also be sufficient to solve the more complicated problem for the case of odd values of n.

Finally I wish to make an interesting application to the case $\lambda = 2$. (60) gives immediately:

(61)
$$K = \frac{2((f \psi U), (\phi \psi U), U)(f \psi U)}{(f' \phi' U)^2 \cdot (f'' \phi'' U)^2}.$$

Let us first assume also n=2. Then the U's disappear and since

$$(f' \phi')^2 = (f'' \phi'')^2 = 2$$

we obtain the ordinary Gaussian curvature

(62)
$$K = \frac{1}{2} \left[(f\psi)(\phi\psi) \right] (f\phi) = \frac{1}{2(EG - F^2)} \left(2 \frac{\partial^2 F}{\partial u \partial v} - \frac{\partial^2 E}{\partial v^2} - \frac{\partial^2 G}{\partial u^2} \right) + \cdots$$

Take now n=3 and let R_3 be the ordinary euclidean space, i. e., $a_{ii}=1$, $a_{ik} = 0$, if $i \neq k$. Then we have only one function U, and if we write the equation U = const. in the form

$$F(x, y, z) = 0,$$

an easy computation transforms the expression (61) into the familiar form

an easy computation transforms the expression (61) into the familiar form
$$K = -\frac{1}{\left[\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2\right]^2} \begin{vmatrix} \frac{\partial^2 F}{\partial x^2}, & \frac{\partial^2 F}{\partial x \partial y}, & \frac{\partial F}{\partial x \partial z}, & \frac{\partial F}{\partial x} \\ \frac{\partial^2 F}{\partial y \partial x}, & \frac{\partial^2 F}{\partial y^2}, & \frac{\partial^2 F}{\partial y \partial z}, & \frac{\partial F}{\partial y} \\ \frac{\partial^2 F}{\partial z \partial x}, & \frac{\partial^2 F}{\partial z \partial y}, & \frac{\partial^2 F}{\partial z^2}, & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x}, & \frac{\partial F}{\partial y}, & \frac{\partial F}{\partial z}, & 0 \end{vmatrix},$$

so that one and the same formula (61) involves the two apparently so heterogenous expressions (62) and (63) of the Gaussian curvature.

THE UNIVERSITY OF CHICAGO, September, 1905.