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Introduction.

We consider a real function f(x) where x is a real variable. It is assumed

that f(x),f (x), ■■■,f"~1(x) are continuous functions of x on the interval

(a, ß), viz., for

a = x = y3,

and thatyn(x) exists on (a, ß). Let x0, xx, ■■■,xn be points of (a, ß),

which points need not all be distinct. Also let kg, kx, ■ • -, kn be integers such

that
O^A.^n-1 (i = 0,l, ••-,«).

The n + l pairs of numbers

(1) (*«»*<) (i = 0,l, •••,»)

are predicated distinct. Further, if <f>(x) be a, given continuous function on

(a, ß) and if <f>'(x) exists except at a finite number of points, we write

* Presented to the Society February 27, 1904, under the title A general remainder theorem.

Received for publication April 15, 1905, and November 2, 1905.

f This paper develops and applies an important relation (6). I read a paper containing this

relation and the principal theorems at the New York meeting of the Sooiety in February, 1904.

In a later version I added certain applications.

The theorems initially involved the hypothesis of the continuity of tbe nth derivative. This

unnecessary restriction was removed in the final revision of October, 1905, and the theory stated

completely in terms of the differential caloulus, the symbol S denoting the antiderivative D~l

between limits.

I am very grateful to Professor E. H. Moore for his valuable suggestions in connection with

this paper.
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(2) <p(x)=S[<p'(x)].*

This paper is concerned with the connection of the n + l numbers

(3) /*<(x,.) « = 0,1, •••,.)

and f(x).    It is clear that such a connection exists in certain simple cases,

e. g., if

(4) (h, x() = (0, a), (1, a),---, (n-l, a), (0, b),

it is

t(b)=f(a)+f(a).(b-a) + ...+f-1(a)^~lÇ
(5)

+p>>-£^*.

an important known formula, f    Yfevef(x) is taken continuous.

In the notation of this paper the general relation is

(6) t/i'(x,.)-A,.= )Sf[/"(x)-A(x)].
i=0

Here A, B are the end points of the set of points xi. Further the A/s are

numbers and the A(x) a function of x depending on the system of number pairs

(1). If (6) is not to be trivial, a certain restriction must be imposed on the

integers ki.

As far as I am aware, the principal case of the relation (6) heretofore pub-

lished is that given by (4)J. The general formula (6) is important in that it

gives rise to a new mean value theorem, and to a new remainder theorem, having

applications in the fields of mechanical differentiation and mechanical quadrature.

In § 1 is developed the fundamental formula (6) and in § 2 are given certain

important properties of A(x).

* If <p'( x ) is continuous we have

Si<p\x)]=fi>'(x)dx.
It is to be noted that

SJ>i(a)-*i(«)]

exists if S[i>! «)], S[<p2{ a)] exist and <Pz(x) is continuous ; indeed

S[0Í (» )■ 0Í (*)]= M*)-*á (« ) — JVi( «O •*£(*)<**•

We write S* for S[x=j — S|j._y. Then Sj[0' (x)~\ isa definite number. In this paper S is used

always in connection with a <p explicitly given.

t Cf. C. Jordan, Cours d'analyse, vol. 1, p. 245.

i Hermits gives a more general case than (4), where, however, instead of a single real

integral, he has a multiple real integral : Sur la formule d' interpolation de Lagrange, Crelle's

Journal, vol.84 (1877).
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In § 3 is considered the mean value theorem.    Here we write

(1) Ai=0 (i = 0, 1, ...,r-l),

A,. =j=0 (<=r,r + l, •••,«),

properly arranging the A/s, and assume

(8) /*<(*,) = 0 (i = r,r + l, ■•■,»).

The mean value theorem then states that there exist points £t, f2 within (A, B)

such that

(9) /"(£,)-^ •/"(&)-0 (Og^D,

the JS^ being a certain number, the characteristic number, of the system of pairs

(1).    The ordinary mean value theorem is the simplest example.    Of especial

interest are the extreme cases E = 0 and E = 1.

If E = 0 we have

(10) /"(?,) = 0.

For certain systems (k., xi ) of this sort [as for instance (4)], (9) can be proved

by an application of the ordinary mean value theorem tof(x),f(x), ■ ■ ■ ,f"~'(x)

in succession. In general this method of proof fails. A table of the various

new cases E = 0 for n = 3 is given.

If E = 1 the equation (9) is trivial for £, = £2, but in this event it is shown

that we have

(H) /■+A(Ei)-^a/"+X(£2) = 0 (Q=JPa<1),

in case f(x), f+1(x), •••, f"+k~1(x) are continuous and f+k(x) exists on

(A, B).    Here A, Ek are dependent on the system of pairs (k(, x{) and f,, f2

are again points within ( .4., 5 ).    Furthermore in this section a generalization

of Bonnet's extended mean value theorem is given.

In § 4 is given the remainder theorem

(12)    /^)_^K)+^>-_y<*>.qpj

in the principal form ; F(x) is the polynomial in x of degree n — 1 at most,

such that

(13) ^i'(xi)=/i'(xi) « = 1,2, -••,»),

and Z(x) is a polynomial of degree n with leading coefficient 1 such that

(14) Zt«(xi) = 0 (i = l, 2,-•,»).

The theorem (12) is a restatement of (6) after -S'f [/"(x)-A(x)] has been re-
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placed by a mean value. The result Markoff * employs is a particular case of

(12).
Further a more general form for the remainder term is derived which contains,

for the system of type (4), Schlömilch's| general form of the remainder in

Taylor's development.

For the case k0 = 0, F( x„ ) can be considered an interpolation formula for

f(x0): the theorem gives a method of determining limits for the error

f(x0) — F(x0). If k0 — 1, 2, • • •, n — 1, Fk°(x0) is an interpolation formula

for /"'''"(x0), and (12) furnishes a method of computing the error as before.

In § 5 the character of the remainder is considered in some detail for the case

of mechanical differentiation with equal intervals, and the formulae of Encke J

are supplemented in this way.

There is derived in § 6 as a direct case of (12) the remainder theorem for

mechanical quadrature

XpiZ(x)dx

(lo)    ^ fW—Jm Jrwm+'-^-^j-        --—r

where F(x) and Z(x) are defined as before and E is the characteristic number

of the system

(0,px),  (0,p2);  (k.+ l,x{) (« = 1, 2, ...,»).

An obvious generalization obtains for successive quadrature. For practical

purposes the writer determined E for the case of equal intervals n = 2, 3, • • •, 11,

in which cases Cotes computed certain numbers of importance. || Markoff's

remainder theorem § for the system of Gauss is one other case of (15) that has

been treated.^

§1.  Derivation of the fundamental formula.

The function

(i) *i(«)-2lr^(«)-Y,^íjr«
where

(2) I - » - k{ - 1,

* Markoff: Differenzenrechnung, chap. 1 (German translation). This remainder theorem

contains as special cases the remainder theorem of Laorange for Taylor's development and

the remainder theorem of Cauohy for Lagrangk's interpolation formula.

tSCHLÜMILCH : Liouville's Journal, ser. 2, vol. 3 (1858), p. 384.

ÍENCKE :  Über mechanische Quadratur, Gesammelte Abhandlungen, vol. 1.

I Markoff, loc. cit., p. 61.

II Markoff, loc. cit., chap. 5.

If For general related references cf. Encyklopœdie der mathematischen Wissenschaften, IE, ID 3;

HA 2, W<, 11, 13,51, 52,54.



1906] AND   REMAINDER   THEOREMS

is continuous * and

(3) ^{x)=fn{xyi^z^t

on (A, B).    Moreover,

W <Pi(xi)=f<(xi).
By definition, therefore,

(5) *,(«)-/*(<*)- s?(r(x)-&jj^y

Expanding and writing x = A we find

(6) g/~(¿).í^^-^^

where

i = 0, 1, • • •, n.

The n+l equations (6) are linear in the n quantities

f-\A),f~2(A), ...,J(A).

Therefore the determinant f

(x2-A)'*-> (x^-A)'*-*1

('.-1)1    '  '"'   (L-n + l)l

We denote the cofactor of the element

/'•(-,•)- ^(/"(-)-(-^7!^Í)

of this determinant by A{.    The equation (7) is then written

(8) EA,j/'.(íSi)-Aí(/».^')j = 0.

If the discontinuous function et.(x) be defined as follows:

(9) e.(x) = 1 ; x<x,. :    e.(x) = 0 ; x > x{,

*lf h —p is negative we write 1/ ( h —p ) ! = 0, e. g.,

E/»"'«)- ferÇf =/'"«) •(«-*) +/"«) + 0 + 0.
In general the last A-¡ terms of ( 1 ), i. e., those containing/( »'),/'«), " ', fk'~1 ( x ) are

■fThe notation is
«o     6o     • ' '    ei

I ffo j "i i ' ' ', em
ax     bx

am    bm
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S I(yW.ÍS^)_«(/.(.).^.).to^)1

this new S function is the continuous function oV (x) where

$i(x) = <f>i(x) 1 x=v{:    ^i(x) = 0i(x,.);x^xi..

From (8), therefore,

¿A,   {/'.i(xj)-^(/"(x).e,.(x).^=!^)}=0,

and more simply

(io) £/*(»,) a-«r/^*)-A(»)].

where the new S function is Z^o&i35)» so that

(x;-xy
(11) A(x) = £e.(x)-

Z!
•A.

Here A(x) and its derivatives are regarded as not defined at x0, xx, • ■ -, xn. It

is evident that A(x) is made up of polynomial parts of degree at most

n-1.

From (11) we have

(x0-x)'°   (xx-Ay   (x.-Ay-1 (X„-A)'^
A(x) %(x)- u 'J '     (¿2-1)!   '    •  ' (ln-n + l)l

But the function of y,

I < \ (!Co-aî)'° (xi-y)h K-y)'*"1        {xn-y)'"~n+l\

¡eoW-   Z0!       '"    ¿J      '   (¿,-ï)!"' "■' (Z„-n + l)!¡'

is independent of y, the derivative in y of the first and last column being zero,

and of each other column the succeeding one.    Hence

. (x  _ X Vo     x '' x'2—* x'"~™"'"1

(12)     A (x) = | e0(x) •   ~l,-Çf-~ .   ^,.  (^ll)| '  • • ' ' (Zn -n + l)!

Let D  denote the number of pairs of the system (k., x{) for which

k{ = g.
For example, in the system

(0,0), (0,3), (0,4), (1,1), (1,3), (2,3)
we have

Z>0 = 3; Dx = 2; 0,-1; D3 = 0 ; Z>4=0.
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£Z> Sm+2
ff=0

113

(»1 = 0,1, ••■,n-l).

Then no one of the quantities A£ vanishes identically in x0, xx, • • -, xn, as we

prove for A0.

In A0 appear the n pairs

(14) (¿i>*,) (¿ = l,2, ••.,»).

We assume these pairs (14) so ordered that

But for this system from (13)

and therefore

*i = *2 — " * ' *n

EJE>f3Sm + l,

or

and we find

If

M0-    ¿2 = 1>    •".    *.«»-!.

Z. = n — i — 1 + ft ; ft£0,

¿5UI  ô"2       d*"

öXj <5x2       3xn   °

A. = 0

±1.

(i — 0, 1, •••,»),

the relation (10) is a trivial identity, although in all cases there exists at least

one relation of the type of (10). We assume that not all the A¡s are zero. If

this condition and (13) obtain, the system (k., x;) is a normal system.

Existence theorem.    If the derivative function <p(x), defined on (A, B),

and the constants g0, gx, • ■ ■, gn satisfy the relation

(15) £*,A-«[♦(*)•*(«)]

with respect to a given normal system (k{, x{), then there exists precisely one

function f(x) such that
fk'(xi) = 9< (» = 0,1, •••,*),

f(x) = <f>(x).

* Indeed we find on obtaining A0 from (12) that

oui   öm a*.
aif « dx»2     ex»*

(n —1)!   (n —2)!

(n—2)!    (n — 3)1

1 0

Trans. Am. Math. Hoc 8
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Corollary.    If A0 +. 0 for a given normal system, then there exists pre-

cisely one function f( x ) such that

fki(xi) = 9i (¿ = 1,2, ••-,«),

f(x) = <p(x),

oS(x) being a given derivative function on (A, B) and gx, g2, ■ • -, gn being n

arbitrary numbers.

Proof    The argument is simple.    First we note that the numbers

Sl(*(x)'(-Z~?) (¿ = 0,1, •••,*)

are well defined. Write in the equations (6) gi forfk'(xi) and <f>(x) forf(x).

Then the numbers/^ A),f(A), ■••, f"^1 (A) are given uniquely, the determi-

nant of the system vanishing because of (15), while A0 =J= 0. If we determine

f(x) so thaty(x) and its derivatives have these values at A while

f(x) = <fi(x),

f(x) is the required function.

For the corollary we choose g0 so that (15) obtains, noting that A0 4= 0.

§2.  The function A (x).

As of use in the determination of the constants E of the mean value and

remainder theorems, we give here a theorem concerning the number of changes

of sign of A(x) on (A, B). The proof is given in § 7. We first make some

definitions.

A set of pairs of the system ( k., xt )

(1) («,£), («+1.Í), •••, (* + *,*)

are said to form a sequence ; if this is a separate sequence of the system, that is,

if (k — 1, £), (k-\- p + 1, £) are not pairs of the system, then («,.f ) is the first

member of the sequence and (k + ß, £) is the last. It is clear that the system

(&¿, x¡) can be grouped into separate sequences, some perhaps containing but

one pair. For the same sequence the x/s are the same. In the example of the

first section, the sequences are

(0,0);  (1,2);   (0,3), (1,3), (2,3);   (0,4).

In the adjoined scheme of the system an entry p + 1 in the «th

row and the £ column signifies that in the system there is a

sequence (1).

1 = 0,1,3,4

1        3   1

1



1906] AND   REMAINDER  THEOREMS 115

The interval (AXk, Blk) is defined as the interval whose end points are the end

points of the set of points

as,. (fc, = 0, l, •■■,*).

All these intervals are well defined since D0 = 2.    In the above example

(A0, 50) = (0, 3); (Ax, Bt)m(At, B2) = (A3, B3) = (At, Bt)m(0, 4).

It is evident that (An_x, Bn_x) is the same as (A, B). A sequence of pairs

with first member ( k , £ ) is said to be conservative if the point | is at AK_X,

BK_X or without (AK_X, BK_X); also if * = 0. In our example (1, 2) is the

single non-conservative sequence, f = 2 being within (A0, B0) = (0, 3).

A sequence is odd or even according as it contains an odd or even number of

pairs (k{, x{). If there are no non-conservative odd sequences of pairs the

system (k¡, xt) is a conservative system.

Theorem. The number of changes of sign of A(x) cannot exceed the num-

ber of non-conservative odd sequences of pairs.

Corollary 1.    For a conservative system A(x) does not change sign.

Corollary 2. The number of changes of sign of A(x) in no case exceeds

n-1.

§ 3. Mean value theorem.

Let us arrange the A¿'s of the normal system (k{, x.) so that

A=0 (¿ = 0,1,- --.r-l),

(1)
A..+ 0 (<=r,r+l,. .,«>;

in general r = 0, i. e., none of the A/s vanish. For the mean value theorem

we assume that

(2) /**(»i)-0 (¿ = r,r + l,.-.,„).

It is clear that then

(3) ±/*(««)A-°.

We first obtain a mean value for S*[f(x)-A(x)~\ that obtains whether or

not (2) is assumed, and that is important for the remainder theorem. To this

end we need the lemma: If <p(B) — 4>(A) = 0 and further

ûV(x) = h(x) s(x),

where s(x) is a function of one sign on (A, B) or zero defined except at a

finite set of points, and h(x) is defined within (A, B), and ^[^(x)] exists,

then h(%) = 0 where f is some point within (A, B). Proof: It is clear that

the product h(x)-s(x) changes sign within (.4, B), and since in general

s(x) is defined and nowhere changes sign, h(x) must change sign within
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(A, B). Hence S[h(x)] has a maximum within (.4, B) say at £. But

A(x) exists at f.    Hence A(f ) = 0.

Let G(x) denote some function defined and of one sign (not zero) within

(A, B). Also we assume that S[G(x) • A(x)] exists on (A, B).* Deter-

mine Hx and H2 so that

(4)       q{[r(.)--g.-gc)]-A(*)-VA(*)l}-*-

(5) gi{[/.(«)-g,.gW].AW-lAWI}-0.

By the lemma then, since J{A(x)±|A(x)|} does not change sign,

/»(ft)--H¡   £(£,) = <>,

fa2)-H2-G(i2) = Q,

ft, £2, being points within (.4,.B). Adding (4) and (5) after substituting in

the values of Hx, H2 thus obtained we find

(6) ^[/»(x).A(x)] = -Ç||-).p+Ç(|}.^,
where

(nj.-W(0(.).AI^is)l),jy-q(g(.)>(»)-lAC)l).

The relation (6) is obvious if f(x) and G(x) are continuous. We define

i?, the characteristic number of the system with respect to G(x), — P¡Nor

1 or —Ñ/P, according as \P\ <\Ñ\ or | P\ = |iV| or |P|> |JV"|, so that

(8) 0 = ^=1.

It is clear that P and JV are not both zero because A(x) is not altogether zero.

For this section G(x) = 1 and we write

(t)     p.pM+l^MU, jy_jr^(»)-|A(a!)i<fa;

here we call the characteristic number E. From (3) using our fundamental

formula we find

_£|[/»(x)-A(x)]=0,

*If   S[Q( x) ■ A (x )]   exists,   so   does   S[G(x ) ■ ¡ A (x ) |],   since   the   product  function

0{x) • A(r) changes sign but a finite number of times.
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and then, using (6) for G(x) = 1,

/-(ft)P+/(ft)iV-0.
Hence

/»(ft)-i?/"(ft)-0,
the ft, £2 being the same as before or interchanged.

Mean value theorem.    If(ki, xt) is a normal system and if

/*»(«,)-0 (¿ = r,r + l, •••,»),
trfl67l 7/S

(10)   ' /-(ft)-^/-(ft)-0 U<fI,ft<JB)1

where E is the characteristic number of the given system with respect to 1.

A simple example is given here :

n=2; (*., as.)ss (0,x0), (l,Xj), (0,x2)        U<*iOa),

so that xx = A, x2 — B and

eo(x)-(Xi>-x)'   xo>    1

A(x)=   ^(p>)-1, 1,    0

e,(aj)-(x2 —x),x2,   1

whence

A(x)= + (x —x0); x0<x<xl:A(x) = — (x2 —x); xL<x<x2.

í-ía^ar, ,—fi^ar, *-(^)' » (^)*

The theorem states then that, in the case x2 — xx = xx — x0,

/*(*»)-(J^)''^«-0,
If x2 — x, = Xj — x0, so that the statement is trivial for £x = £2, we can infer

by a method given later that

/'(f)-o.
Of especial interest are the extreme cases E = 0 and E = 1.

In the case E=0 the system (&(, x¿) is a simple system. The condition

that a given normal system be simple is that A(x) does not change sign. If a

system is simple and if furthermore

/*•(«,)-0 « = r,r+l,...,»),
then

(11) /"(f)-o

for some point £ within (A, B). The theorem of § 2 makes it clear that con-

servative systems are a special class of simple systems. The ordinary mean

value theorem furnishes a method of proving (11) for conservative systems.
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«lOîOs);

First we infer

and then
(«l<fl<fl<Sd),

(«¡„«^■(O.aO, i0'^)) (O.sb.)

/(«»)-/(«^)-/(«,)-<>•

/'(ft) = o,     /'(ft) = o

/"(ft)-o.
No attempt at a general consideration of simple systems is here made. The

theorem of § 2 is important for this problem. A table of the various simple

non-conservative systems for n = 3 is given herewith. In this table we choose

A= — l,.B= + lso that the four pairs are

(k0, -1), (kx,xx), (k2,x2), (k3, +1),
where

- 1 S x,, x2 = + 1.

Moreover we choose k0 = ks; I-VII are the various non-conservative systems.

I
II

III

IV

V

VI

VII

K~ fC,

0

0

0

0

0

0

0
0

0

1
2

2

0

0

1

2

0

0

E=Q

12x2 - xx | = 1

;=» X2 •£
cx = —ñ— ; cons, if Xj x.

», — 1 ..        _
-*--— ; cons, if x, > x.

2

\Xl-X2

(l-^2)2

An important case of the mean value theorem arises if r has been made a

maximum.    An example of this is the system on which Markoff* makes

depend his remainder theorem for Gauss' scheme of quadrature.!    This system

is
(0,^), (1,«,), (2,ax), (l,a2), ..., (l,aj, (2, aj, (0, as,),

which is conservative.    Here n = 2m +• 1.    The

quantities a,, a2, •• -, am are the m roots of the    ~7~

equation

¿{(x-x1)-(x-x2r} = o. 2
2    2

It can be proved then that
A.= 0;   ki = 2,

* Markoff, loo. cit., chap. 5.

t GAUSS, Methodus nova integralium valores per approximationem inveniendi, Werke, vol. 3.
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m of the 2m + 2 A.'s thus vanishing.    Hence in this case, if

/(»,)-/'(«.)-/'<«,)-• ••/'(«.)-/te)-o,
of necessity

/*»+!(£) = 0

for some point £ within (xn x2).

If E = 1, the mean value theorem is

/-(ft)-/-(ft)-o,
which is trivial for ft = ft.    In this case the fact is that f(x) need not vary

at all, although the conditions (2) obtain : that is, there exists a polynomial

P(x) of degree n such that

Pk>(xi) = 0 «=o,i, •••,»),
for then

±Pk<(xi)=S*[P"(x)A(x)]

is satisfied (P + jV = 0), and accordingly there is a P(x) by the existence

theorem.    The condition E=0 or

J   A(x)dx =

can be written

mM-1 a-'i 3.'«-"+1

(12) (Z0+l)!'   ^'       '   (ZB-n + l)!
= 0.

Let  us assume  that f(x), fn+1(x), etc., are  continuous.    Integrating

S* [/"(x) • A(x)] by parts we obtain

Si[f(x)-A(x)-\ = [f(x)-A-1(x)yA-SBA[f^(x)-A-1(x)],

which holds since

A-'(x)= f A(x)o*x

is continuous.    But A-1 ( A ) == 0 and A-1 ( B) = 0.    Hence

S*[f(x)-A(x)-\=-S*if+1(x)-A-1(x)-i.

f A~1(x)dx = 0,

it is proved in a similar way that

S»[f(x)A(x)] = -S*\_f+1(x)A-1(x)] = SA-[f+2(x)-A-2(x)-\,

where

A-2(x)=  f A-'(x)dx.
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If it is possible to proceed A steps in this way we obtain

(13) ^[/»(x)-A(x)]=(-l)^[/"+*(x)-A-*(x)],
where

A-'(x)=  f A-'+1(x)dx « = 1,2, ••■,*);

here f (x), f+1 (x),  ■ • ■, fl+k~1 (x) are continuous and fn+k(x) exists on

( A, B).    Assuming (2) to hold we see that

Si [/•+*(*) A-*(!8)]-0,
whence

(14) /"+A(ft)-^-/"+X(ft) = 0 (A<ÍX,Í,<B),

where Ek depends on A_A(x) just as does Eon A(x).

Of course, here

0 = ^<1.
The A+l conditions

(15) f A(x)rtx= f  A-*(x)dx=..- f A-*(x)«x = 0

can at once be written as the vanishing of A + 1 determinants like (12).

We proceed  to formulate   the  extended  form of the Bonnet's  theorem.

Consider the determinant function

4»(x)=|^(x),^(x0),^(x1),---,fc2(xn)|

dependent on n + 2 functions <f> whose nth derivatives exist on (A, B).    This

function 3>(x) satisfies the conditions

**(*«)-<> «=o,i,...,»),

and therefore, since <ä>"(x) exists on (A, B),

<&»(£)-i?-<I>»(ft) = 0,

where E is the characteristic number of the given normal system, or, in determi-

nant form,

(i6)     |^(ft)-is,^(ft),^te),^te),.--,^+ite)|-o,
the extended form of the Bonnet's theorem.    This theorem states that

Itt(ft). *.te). *,te)i •••> *„+ite)l = o.*

* Pbano : Lezioni di analisi infinitesimale, vol. 1, p. 107.
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i=0 \
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§ 4.  The remainder theorem.

In this section it is assumed that

(1) f"(xi) = 9i (¿=l,2,..-,»),

where gx, g2, ■ ■ ■, ga are known and also that

(2) Ao + 0.

The fundamental formula (10) of § 1 is written then

Let F(x) be the polynomial in x of degree n — 1 or less such that

(4) Fk'(x.) = gi «=1,S, •••,»),

there being a polynomial of this sort by the corollary to the existence theorem.

If ( 3 ) be applied to this polynomial we find

(5)
whence from (3)

the remainder theorem with exact remainder term.

As an example we consider the system

(*;,«) «—0,1, ••,*»),

(k",ß) (1=0, 1, •■■,»),

where p + v + 1 = n.    This system is conservative.    Furthermore A(x) and

its derivatives are continuous within (a, ß) and in fact on this interval

A(x) = cP(x)

where P(x) is a polynomial in x of degree n — 1 with leading coefficient 1

such that
Pk(a) = 0 (k + n-k'i-1),

Pk(ß) = 0 (k + n-k'l-l).

In this system both (0, a), (0, ß) must occur.    We write the theorem for

(A0,x0) = (0,£),

ff(x)P(x)dx
f(ß) = F(ß) + c

\
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If k\ = i, k'¡ = i we have more explicitly

f(ß) = F(ß)

f f(x)(x-ay(x-ßy

We proceed to the derivation of the general remainder theorem.

If we write G(x) = a"(x) in the mean value relation (6) of last section so

that gn(x) exists and is of one sign within (A, B), while S[gn(x)-A(x)]

exists on (A, B), we find

(7) SUrWM*)l-Ç$yP + Ç^yX-

If the pairs with greatest k. for x{ = A and xi = B are respectively

(KX,A),(K2,B),
then A(x) is of the form

(x-Ay-^-^p^x),     (x - By-*-1 ■ p2(x)

near these points, where Px(x) and P2(x) are polynomials ; f Kx, K2 are said

to be the exponents of the system ( k{, xi ). Hence g" ( x ) is defined within

(A, B), of one sign, and S\_g"(x)A(x)~\ exists on (A, B), if

A(x)
(8) 9n(x) = >x_ Ay-Ky-i rx _ By-x,-i.

where X(x) and ^[^(x)] exist on (A , B), and X(x) is of one sign but not

zero within (A, B).    We assume then that #"(x) is of this character (8).

If g"(x) be defined at A and B and thus is finite, then by the corollary to

the existence theorem, g(x) exists such that

(9) S^te)-0 « = i,2,..-,»)
and further by (6)

w    s      S[g(x)A(x)](10) g*»(x„)=     Ly^     k   n.

If, however, gn(x) has the more general form (8) there still exists a unique

g(x) which satisfies (9); for this g(x), (10) is also satisfied.

*Cf. Heemite's article : Sur la formule d'interpolation de Lagrange, Crelle's Journal, vol.

84 (1877).
t Near B, A ( x ) is identical with

XfmM U !

which is obviously of the stated form [see (11) § 1]. A similar remark applies near x = A

when one notes that
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In order to prove these two statements we write

,(a-i »«.-»+ »

9(x)-¿o- 9(x), ¡y (^ii)p •••'(¿n_M+i)

where <?(x) satisfies the conditions

£»(x) = a»(x):^(x) = £'(x)-£->(*) = 0,

x being within (A, B).    Here

g\x) (¿ = 0, !,•••, n)

are finite at x;; (a) within (A, B) of course ; (b) at 4 because ^^'(x) is con-

tinuous at x = A ; (c) at B for a similar reason. Then it is clear that g(x)

satisfies the required conditions (9). Moreover if e(x|) also satisfies these con-

ditions then d (x) = g (x) — e(x) has the properties

dn(x) = 0:dk<(x.) = 0 (¿=1, 2, •••, n).

But if d(x) = 0, these conditions are satisfied.    Hence by the existence the-

orem d(x) = 0 so that g(x) is indeed given above.

Consider further the function gx (x) such that

ff?(x) = ff»(»)

and that g*(x) is zero otherwise, and such that

(¿ + *<s<fl — e)

X,1     X
„i«-n+l

where ^ is defined with respect to a, as ^ was with respect to g.    Applying (6)

we find

»u-»+»

9l W)' lx\,(li-l)r       '(¿B_n + 1)!

¿?*[q?(x)-A(x)]

As e approaches zero gki ( x( ) approach gki(xi) and SA[_g1(x) • A(x)~] approaches

yS^ [an(x) • A(x)].    In the limit then

which we wished to prove.

From (10) then, if P + J? =|= 0,

(H)
1 ^_ 9k°(xo)_

\    P + W'
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On substituting from (7) and (11) in (6), (6) becomes

/"(ft)   p , /'(ft)   N

f^(x0) =^°(x0) + —(g,)    P + S"~-^^

or

/"(ft)      E   /"(ft;

/*»(*„)=^»(x0) + i^l__X(M .^(Xo)

where ft, £2 are the same as before or interchanged.

General remainder theorem. Let (k¡, x.) be a normal system for which

A0 =f= 0 and let f(x) be a function such that f(x), f (x), • • ■, f-1 (x) are

continuous and f(x) exists on (A, B). Further let g(x) be a function

such that g(x), g'(x), ■•■, gn~1(x) are continuous on (A, B),

g"'(xi) = 0 (¿ = l,2, •••,»),
and

_A(x)_
3\x> - (a, _ A)"-jr'-1 (x - By-**-1

Kx, K2 being thfi exponents of the system, X(x) and S[X(x)~\ existing on

(A, B), X(x) being of one sign (not zero) within (A, B).    Then

/*(ft)     E  /-(ft)
(12) /*°(x0) = ^(x0)+yn(^)i_-yW(^)-^(x0)

where ft, f2 are points within (A,B), and F(x) is the polynomial of degree

n — 1 at most such that

Fk'(xi)=f"(xi) (¿ = 1,2,...,»),

and E is the characteristic number of the system with respect to gn(x).*

A convenient form for computation is

(13) /*»(x0) = Fk°(x0) + 6 ■ l±|.£i^.^(a%)

where | $ \ = 1.

In the special case E=0, when A(x) does not change sign, (12) is

(14) /*»(x0) = Fk°(x0) +-^|] • S*K).

For the conservative Taylor system

(O»*,))' (°» »i)» (It »i). •••»(» —1»«^)

*For definition of normal system, cf. p. 113, of exponents, cf. p. 132, characteristic number, of. p.

116.
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"the exponents are 0 and n — 1 so that

125

A(x)

The theorem is then

/te)-(/(*1)+/*(^te-^+-"+/--,te)(-^^)+^fl'(av)

and in this form can be at once identified with the Schlömilch general remain-

der theorem * in Taylor's development

/K)-(/te)+/'te)-te-^) + ---+/--H»l)^r^r)

F'(x) = X(x)

In fact we have

and, therefore,

9(x«)= ^Í9n(x)(x<¡-xr^ = S*xl[F'(x)]=F(xx)-F(x0)

as the required transformation. The conditions imposed are the same as

Schlömilch's : F(x) = S[X(x)~\ is continuous, jP'(x) = A(x) exists on

(A, B) and is of one sign (not zero) within (xx, x0).

Themost important case of (12) is obtained by setting a"(x) = l so that

E= E. If we denote by Z(x) the polynomial in x of degree n with leading

coefficient 1 such that
Zk<(xi)=Q (¿ = 1,2, •■■,»),

then

Therefore,

><-)-*&■

(15)        /.<«„) . ^k) +£ífií£*£tt) Eisa
ni

which is the principal form of the remainder theorem.

Example.    Hermite's f remainder theorem.

n = ax + a2-\-\-am,

/(x)=JP(x)+/"(f)
(x-x,)'V (x-x2)" • ■ • (x-xmy

xx, x2. x_, X

<V a2, • ••» a„» 1

The system is conservative for all values of x.

* Schlömilch, Liouville's Journal, ser. 2, vol. 3 (1858), p. 384.

t Sur la formule d'intirpolalion de Lagrange, Crelle's Journal, vol. 84 (1878).
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Case 1.    Taylor's development with Lagrange's remainder term,

/te)-/te)+/'te)(*-«,) + ---+/-(5)-^ir^« o n    1

Taylor's series is obtained by increasing n in this system.

Case 2.   Lag range's interpolation formula with remainder term of Cauchy.

fix )- fix ) •  (x-x*)-(x-x>)---(x-x»)
TKxo)-JKxx)   {xl-xa)-(x1-xa)---(xl -xj

,. , -s (as — x.)(x — x„) • • • (x — x„) 0

+ ••■+/"(*)--——3r—- ■

x\ » as2, • • •, Xm, x

1, 1, ••■, 1, 1

Example.    (0,x), (0,x0), (l,x,), (2,x2), (3,x3), •••, (n — l,xn_x).

Here the system is conservative if

as, x0, xx, - • •, Xn        or x, x0, xx, • ■ •, xn

are in order.    We assume

Xi=X0 + n(Xn-Xo) (¿=1,2,   ■•-,»).

Then we have

/(x)=/(x0)+/'(x1)(x-x0)+/"(x2)
(x-x0)(x-x2)

(x-x„)-(x-xn)-2

(»-1)1
+/•(*)

from which a well known development of Abel's* arises.

Example.    (0, x) , (0, x0), (1, x,), (2, xj • • -(n — 1, x0) or (n — 1, x,).

This system is conservative if x is on ( x0, xx ).    Here choosing x0 = 1, x, = 0

we have
/y»2  _   Orp iy& _  ÖX

jP(x)=/(0)+/'(l).x+/"(0).—2l-+/"'(0).-TT-+...etc.

If

E— Ex=-= Ek_x = 1,

when our theorem does not hold, we apply the simplification of (8), § 3,

^[/''(x)-A(x)]=(-l)^f[/^(x)-A-^(x)]

under the assumptions there stated.    From the exact remainder theorem (6) then,

S*[f+k(x)-A-k(x)]
(16) f°(x0) = Fk°(x0) +

•Abel ; Sur les fonctions génératrices et leur déterminantes, Oeuvres, vol. 2, p. 67.
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Let Zk(x) be a polynomial of degree n + A with leading coefficient 1 such that

Zk<(xi) = Q (¿=l,2,...,»),

z*(x)=(^r-.pk(*),

where

Pk(x) = Xa + axx*-~l + a2xk~2 +-\-ak,

ax, a2, • • -, ak being arbitrary.    Applying (16) to this polynomial we find

|   (n + A)! A^(x)ax
, Jazk°(x0) = (-iy

A
so that

(17)

0

i_    (-iy   zk°(x0)

\     P, + ^'n + A!'
Also as in (6) § 2,

(18) (-l)^[/^(x).A-A(x)] = (-l)^.[/^(f1)JPA+/^(ft).iVA].

Substituting these values in (16) we get

(19,       /■■(*,) - FHKt +/"(M-y (6). jgsj.

By the aid of this reduction we obtain a remainder theorem in the excep-

tional cases.

It remains to consider the case

A„ = 0.

If A0 = 0 theny4°(x0) is arbitrary although/'(x) be subjected to the conditions

(20) /*<•)-♦<■).

fi(xi) = 9i (¿ = l,2,...,„).

For, if A0 = 0, by the existence theorem there exists a polynomial M(x) such

that

Mk°(x0) = 1 : M\xt) = 0 (¿=i, 2, .... »),

of degree less than n , \. e., M"(x) = 0.

Then

fx(x)=f(x) + t.M(x)

satisfies the required conditions   (20) while fk"(x0) has the  arbitrary value

/*(*.) + *•



128 birkhoff:   general mean value [January

§ 5. Mechanical differentiation.

The preceding section admits of direct application to mechanical differentia-

tion as stated in the introduction.    For this case k > 0.

We give here the application to the case of mechanical differentiation of the

first order when the values of the function are given at n points.    The system is

x0, x,, x2, ■ • •, xn

1, l.-.-.l

1

(l,x0), (0,x,), (0,x,), .-., (0,xn)

where -
x,<x2<..-xn. 0

This includes the important case of equidistant points. 1

In the notation of § 4

f<">-|^>>-")<an-(»,)

where
n(x) = (x-x1)-(x-x2).-.(x-xj,

whence F'(x) can be at once computed.    The formula (15) of § 4 is here

(1)       yw.irW+ííí^^a}.!rj¡tí.

It is clear that E = 0 if x0 lies without the interval (xt, xn) and also if

X0 = X; (¿ = 1,2, •••,»),

since in these cases the system is conservative. Moreover from the theorem con-

cerning the changes of sign of A(x) we infer that A(x) changes sign at most

once. If x0 is within (xx, xn), the necessary and sufficient condition that A(x)

changes sign is

(2) (-,ijaa<o-
For, near xx and xn from (11) § 1, A(x) is

^       >     (n-1)!       »
and

te-»)-1 A
(n-l)!       «'

x0 within  (xx, xn).*    If then (—l)nAt and An are of opposite sign A(x)

* This is clear near x„.    Near xx

J(.)-g..(.).<î^î>5.4,=|l«-lii_i^^4„

whence the statement since

j:(xi-x)'i^o
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changes sign; if (— l)"Aj and An are of the same sign A(x) does not change

sign. For if it did it would either change sign an even number of times or be

discontinuous. Applying the fundamental formula (10) of § 1 to the pair of

functions

Fx (x) = (x - x2)(x - x3) • • • (x - xj,

we have

whence

But

F„(x) = (x - x,)(x - x2) • • • (x - xn_,),

Fx(xx)-Ax-rF[(x0).Ati=0,

^.teOA + ̂ teOA-o,

a a    ^iteV^te) A2
'•   »-Fx(xxyFn(xn)    *••

(-iy-1Fx(xt)>0; Fn(xn)>0,

so that the condition (2) becomes

F[(x0)F:(x0)>0.

The equation

^;te)-^:te)-o
has precisely 2n — 4 roots, one in each of the intervals (x,, x2), (xn_15 xn) and

two in each of the remaining intervals (x{,xj+x). Moreover these 2n — 4

roots are distinct, for if F'x (x) = 0 and F'n (x) = 0 had a common root at X,

then

T(x) = F„(X)-Fx(x)-Fx(X)-Fn(x)

would be a polynomial not identically zero of degree less than n with n roots since

T(x2)=T(x3)=...= T(xn_2) = 0;   T(X) = T'(X) = 0.

If the roots of F[ (x0) ■ F'n (x0) = 0, in order, are

6X, 02l, 022, d3X, 032, •-., 0n__x
we have

xx<0x<x2< 02X < 022 < x3 < ■ • • 0n_x < xn.

Since E = 0 for
X0=Xi (¿=1, 2, •••,»).

A(x) does not change sign on the intervals

(0X,02]), (022,03X), •••, (0n-22,0n-J,

where then E=0. Moreover for the n—1 roots of n'(x) = 0, we have

E= 1 from the condition (12) of § 3. At these points we can use the remain-

der theorem of (19) §4. At points x0 where E =%= 0 or 1, to compute E one

must determine the position of the root of A(x) = 0. These same methods

can be extended.    Encke* has given difference formulae for obtainingF'(x) in

* ENCKE :  Über mechanische Quadratur, Gesammelte Abhandlungen, vol. 1, p. 21.

Trans. Am. Hath. Sou. 9
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the case of equal intervals. The method here indicated gives rigorously the

character of the remainder.

§ 6. Mechanical quadrature.

Consider a normal system (Te., x¡) of the type

(1) (O,*). (O.ft);  (*4 + l,aj4) (¿ = i,2,...,,),

where the A0 corresponding to ( 0, px ) does not vanish. Then the AQ of the

system

(k0,x0), (k.,x() «=1,2,.-.,»)

does not vanish for here

A0 = (-1)».A0.

Write now

/(*)- f*A*)dx,¿pi
then F(x) satisfies the conditions

F(p2)=f(p2)=0:Fk^ (x,.) =f'(xi) (¿ = l,2, ■••,»),

whence it appears that

F(x)=  f F(x)dx,

where F( x ), as before, is the polynomial of degree n — 1 at most such that

F*(xt) -f\xt) (¿ = i,2,.•-,„).
Similarly

Z(x) = (n + 1)- f Z(x)dx,

where Z(x) is defined as in § 4.    Thus we obtain, by substituting these values in

JKPx)     *KPi)+ n_= (n + l)!'

that
/'pi

(2)    £f(x)dx = £F(x)dx + CíLhJyZÜ. L^x)

the remainder theorem for mechanical quadrature. Here Ë is the character-

istic number of the system (1) with respect to 1. If E = 1 we can obtain

another expression as in (19) § 4.

Of especial practical importance in single quadrature is the system

(0,xJ, (l,xj, (l,x2), ..., (l,x„), (0.x„),
where

x2     x, = x3 —r x2 = • ■ • xn     xn_x = h.

dx

l
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Cotes * determined the members BT'n for n = 2, 3, ••-, 11 where

£>(x)0'x = (x„-X1)|:^/(xi+i^1)

for practical use in mechanical quadrature. On actually constructing A(x)

with the aid of these numbers for n=2,3,.--,llT found that for n = 2,

4, 6, 8 , 10, E = 0 so that the remainder is

(3) f(^).£^-^^-nf-^X-^dx,

and that if n = 3, 5, 7, 9, 11, E=l, Ex = 0 so that using (19) § 4 we

could write the remainder

<v       /•»(»• r<—*h—?>"-("=3J,fa.

Another system of interest is Gauss's system.    For this system

(0,c), (l,ax), (2,ax), (1,«2), (2,«2),  •••, (1,«J, (2,aJ, (0,d),

where ax, a2, ■••, am are roots of

dw

dx
the formula is

{(x — c)m(x — d)m) =0;

£/(x)dx = v/te) + <>,/(«,) + • • • + <u/(*J

<d — c)2m^   j       1-2-8  -»i        } /2m(£) t
+ 2w + 1        I m + 1 • wi + 2 • • • 2m j      2m !

§ 7. Proof of the theorem of § 2.

We first consider the discontinuities of A(x) and of its derivatives.    The

kth derivative of any term of A(x) in the expression (11) of § 1 is

^(»).(-.iyA («--*)•
0 «*<*).

In the first and last case, this derivative has nowhere a discontinuity ; in the

second case there is a discontinuity at xi providing Ai =f= 0.

*Cotes, Harmonía mensurarum ; Markoff, loo. cit., pp. 60, 61.

t Maekoff, loo. oit., p. 68.
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Accordingly A*(x), A*+l(a;), • • -, An~1(x) have their discontinuities at the

points

as¡; k.= 0, 1, ...,n — k — 1 (a< + 0);

these points lie on the interval (Ak, Bk)* where we write in general

k~ = n — k — 1.

It is to be noted that A(x) vanishes everywhere without (A, B). Hence

A*(x) vanishes everywhere without (Ak, Bk), A*(as) being of polynomial form

and neither itself or its derivatives having discontinuities without (A¿, Bk).

Also A*(as) does not vanish just within (A-k, Bk), if none of the A/s are zero.

We first make our proof for a special case assuming

(a) none of the A('s are zero,

(ß)Ak(x) has no zero stretch within (A%, Bt) for k = 0, 1, •••, n — 1.

It is to be noted that A ( x ) and its derivatives are not defined at x0, xx, ■ ■ ■, xn.

Further, Al(x) is said to be continuous at a point if the same value is

approached on opposite sides of the point. On account of (ß), Ak(x) changes

sign at points but not along stretches. Let Zk denote the number of changes

of sign of A*(x) continuous or discontinuous according as A*(x) is continuous

or discontinuous at the point.

The following table gives a classification of the discontinuities of A*(x) at a

point according simultaneously to the position of the discontinuities and to the

change or permanence of sign at a discontinuity, with a notation for the number

of discontinuities of each class.

Position

x=A-k    A-k<x^AkVx-\    ^*^i<x<JB¿TIt

or or

x =Blc     BWxSx< Bk

~F> Ôk À

Oí C'k P'k

ox ox p'k
* For definition of ( At, Bk ), see \ 2.

t Here ( An, Ba) is not defined and we write

•fn-l = Pn-l = Pn—l = °>

and because A"—« (a;) is constant except at discontinuities

Zn-\ = Cb-i •

Also En—i = 2, there being a discontinuity at either end.

JThe zero entries are due to the fact A* (a;) is zero without (An, Bk) and A*—' (*) zero with-

out (.4f.fi, Afi ).

Number

of points of discontinuity

of A*(as)

Permanence of A*(x)

Change of Al(x) with

(a) permanence of At+1(x)

(b) change of A*+.'(x)
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We can now proceed. First the number of continuous changes of sign of

A*(as) is

Zt-(C'k + P'h + Pl),

the sum C'k + P'k + P"k being the number of discontinuous changes of sign.

Also the function A*(x) tends to zero at 2 — Ek points Ak, Bk.

Between any adjacent two of these

(1) {Zk-(C'k + P'k-rP"k)) + {2-Ek}

points there is either

I) a change of sign of Ak+1, Ak(x) not changing sign, or

II) a change of sign of Ak(x), Ak+1 (x) not changing sign.

That one or the other of these changes does occur is evident from the fact

that the product function A*(x) : A*+1 (x) changes sign between two such zero

values. The total number of changes of sign of A4+I(x) is Zk+X. The num-

ber of these changes at which Ak(x) also changes sign is P", for if A*(x)

changes sign at such a point it must do so discontinuously. Hence Zk+X — P'k is

the number of changes I.

Moreover since A*(x) does not change sign continuously at the intermediate

points, P'k is the number of changes II.

There are

(2) {Zk-(C'k + P'k + P"k)} + {2- Ek] -\

pairs of adjacent points ; * hence

{Zk+x-Pk} + P'k^{Zk-(C'k + P'k + P'k')} + {Z-Ek}-l

or more simply

(3) Zk+x+2P'k+C'k+Ek    -l^Zk     (*=o,l,...,.-9).

Therefore since also

w c:_x        =zn_x,

(5) 2P',_1 =0,

(6) En_x-2 = 0,

we have adding (3), (4), (5) and (6)

2ZP; + 2c7; + g^-(n + i) = z0.
*=0 *=0 *=0

Or if we write in general
n-l

\ZTk=T
k=0

we have
Z„ = 2P' + C' +E-(n + l).

* If there are no pairs of points this sum is 0 or — 1.
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But since the enumeration of discontinuities is complete and no A/s are zero

E+C+C' + P + P'+P" = n + 1.
Hence

(7) Z0^P' -(C+P + P"),

an inequality affording a method for determining a superior limit to the number

of changes of sign of A(x).

Now consider the discontinuities ofA(x),A'(x),-., AB_1(x) all of which

can be grouped into separate sequences of discontinuities as of

A*(x), A*+1(x), •••, A"(x)

at f, corresponding to which we have the inverted separate sequence of pairs

(Üf),(l-l,{),.-.,<5,{).

Here Ak(x) at £ is the first discontinuity of the sequence and A"(x) at f is

the last discontinuity. In such a sequence a discontinuity of type P'k cannot

be directly succeeded by one of type P'k+X, C'k+X or Ek+X. For if A*(x) has a

P'k discontinuity at £, A*+l(x) does not change sign at £, excluding types

P;+1and C;+1,and

excluding type Fk+X. Hence to every discontinuity P' not the last member of

its sequence we have a succeeding discontinuity of type C, P or P".

Let us consider the discontinuities as grouped in separate sequences t.    Un-

less then in such a sequence a P' discontinuity terminates the sequence

p;-(C( + p, + p;') = o.

Moreover when t is terminated by a discontinuity P'

p;-(c\ + pf + p;') = i.

Let t' be a sequence of ß terms in which

(8) Pt,-(CI, + P, + P"tl) = l.

Let the final discontinuity be of A"(x) at £ corresponding to the initial pair

(v, f ) of the sequence of pairs.    Then

(9) A-V_x = A^x < ? < B^x = B-V_x,

this discontinuity being of type P. Hence the sequence of pairs is non-conser-

vative.   Also no preceding discontinuity can be of types C, C' or E.   Therefore,

p(, + p(, + p;„ = £,
and from (8)

p;,-(p, + p;'0 = i.
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Adding these last equations we find

p,      0 + 1

so that the sequence, besides being non-conservative, is odd. If IF be the num-

ber of non-conservative odd sequences, then from (7) and (8)

ZomW,
which is the theorem.

We proceed to the proof for the case when not both (a) and (ß) hold, by

considering the effect of a slight variation of the x4's.

Let

(10) (KX,XX) (K2,X2), .-., (K,X)

be the s leading pairs of the sequences of pairs written so that

(11) xx^x2^x3...^x.
and so that if

Xa = Xa+X,
then

if Xa <A0, and

if Xa > Bg.    By the definition of conservative and non-conservative sequences,

it is clear that if we vary Xx, X2, • • •, Xt in the system of pairs, preserving the

order relation (11), that conservative sequences remain conservative.

Choose now e so that for

(12) \X.-X„\<e (. = 1.2,-,.)

the transformed A(x) changes sign at least as often as A (as). Let us then

make any slight change in the Xx, X2, ■ ■ ■, Xt of the system in accordance

with (11) and (12). This change does not increase the number of non-conser-

vative odd sequences of pairs IF. If then (a) and (ß) hold for some such

sequence we have for A(x)

E0£W,
and hence for A ( x )

Z0 = Z0 = IF,
which we desired to prove.

But the conditions (a) and (ß) do hold for some such variation system unless

one of the conditions

(13) A<=0 (¿ = 0,i,....n),

or

(14) A*(x) = 0 (Ä*£X9<x<Xr+l£Bl)
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holds identically in Xx, X2, ■ ■ ■, Xt.    That none of these do hold can be proved

thus.    Rearrange the leading pairs (10) in

te> ft)> («2» ft)' •••' te'ft)
where

*#—; *»+i (" = 0,1, ••-,«),

and consider the highest term of (13) and (14) in

(15) x, ft, ..., ft

as it appears formally.    The coefficient of this term is not zero.

For in the expression Ak(x), the x coefficient of this "highest formal term is

some A{. It suffices then to prove that none of the conditions (12) can obtain,

say that

\ + o.

The argument of page 113, § 1, shows that A0 does not vanish formally, i. e.,

that no rows or columns are made up of zeros.    First differentiate A0 in ft to

the highest formal power.    We obtain a number of determinants, each  the

same, and we have

d"1
^Aa = dx-ux.

We then proceed in the same way for f2, £3, ■ • ■, ft in order and find

d"i   d"2        dv-

dft1  d%"2*       dQ    ° 1     2 "   "

Precisely as on page 113, § 1,

Un =   ± 1 •

Hence A„=£ 0 in ft, ft, •••, £,.
The University of Chicago,

October 31, 1905.


