DETERMINATION OF THE ABSTRACT GROUPS OF ORDER $p^{2} q r$;

p, q, r BEING DISTINCT PRIMES*

OLIVER E. GLENN

Since the publication \dagger in 1899 of Professor Miller's "Report on recent progress in the theory of groups of finite order," Western \ddagger has published his determination of the groups of order $r^{3} q$, and Le Vasseur§ has discussed the order $p^{2} q^{2}$. This paper is devoted to the determination of all groups of the order $p^{2} q r$. It thus completes the discussion of the problem of groups whose orders are products of four primes. ||

With the exception of the group of order $2^{2} \cdot 3 \cdot 5$, simply isomorphic with the icosahedron-group, all groups of order $p^{2} q r$ are solvable. The maximal selfconjugate subgroups will therefore serve as the basis of classification. The twelve possible arrangements of the factors of composition are
(1) $p p q r$,
(2) $p p r q$,
(3) $p q p r$,
(4) $p q r p$,
(5) $p r p q$,
(6) $p r q p$,
(7) $q p p r$,
(8) $q p r p$,
(9) $q r p p$,
(10) rqpp,
(11) rppq, (12) rpqp.

If for a given type of group precisely the arrangements $(i),(j),(k), \cdots$, of the factors of composition are possible, then we symbolize \mathbb{T} the group (i, j, k, \cdots). Two groups having distinct symbols cannot be simply isomorphic.

The group G always contains a maximal invariant subgroup** of order $p^{2} q$, and may contain maximal subgroups $\dagger \dagger$ of order $p^{2} r$ and $p q r$. We shall discuss

[^0]in detail in this paper only two classes of groups: those possessing invariant subgroups of both the types $H_{p^{2} q}$ and $H_{p^{2} r}$, and those possessing maximal invariant subgroups of the type $H_{p^{2} q}$ only. A detailed summary of the results obtained in the other classes is given at the end. We shall thus be concerned principally with the subgroups $H_{p^{2} \sigma}(\sigma=q, r)$ all types of which are given in the following table, in which τ denotes the number of distinct types, while (p) signifies (modulo p):

$H_{p^{2} \sigma, i}$	$S_{3}^{-1} S S_{3}$	$S_{3}^{-1} S_{1} S_{3}$	$S_{3}^{-1} S_{2} S_{3}$	$S_{2}^{-1} S_{1} S_{2}$	Parameters	τ
$i=I$	S	\cdot	\cdot	\cdot		1
$I I$	\cdot	S_{1}	S_{2}	S_{1}		1
$I I I$	\cdot	S_{1}^{a}	S_{2}	S_{1}	$\alpha^{\sigma} \equiv 1(p), p \equiv 1(\sigma)$	1
$I V$	S^{a}	\cdot	\cdot	\cdot	$\alpha^{\sigma} \equiv 1\left(p^{2}\right), p \equiv 1(\sigma)$	1
V	\cdot	S_{1}^{a}	$S_{2}^{a n}$	S_{1}	$\alpha^{\sigma} \equiv 1(p), p \equiv 1(\sigma) 1$ or $\frac{1}{2}[\sigma+1]$	
$V I$	\cdot	S_{2}	$S_{1}^{-1} S_{2}^{(p+\iota}$	S_{1}	$* \iota^{\sigma} \equiv 1(p), p \equiv-1(\sigma)$	1
		$\sigma=q, r ; S^{p^{2}}=1, S_{1}^{p}=S_{2}^{p}=1, S_{3}^{\sigma}=1$.				

§ 1. Determination of $\rho_{\Omega, h}$.

By Sylow's theorem, $\dagger N_{\sigma}=q r / \sigma, p, p^{2}, p q r / \sigma, p^{2} q r / \sigma$ or 1. If $N_{\sigma}^{\prime}=1$ then $\rho_{\Omega, \sigma}=1, \Omega$ being any operator of prime order in G. When $N_{\sigma}>1$, the result of transforming the single conjugate set of N_{σ} subgroups

$$
g_{1}, g_{2}, g_{3}, \cdots, g_{N_{\sigma}}
$$

by Ω is to permute them among themselves. Hence

$$
\Omega^{-1}\left(g_{1}, g_{2}, \cdots, g_{N_{\sigma}}\right) \Omega=\binom{g_{1}, g_{2}, \cdots, g_{N_{\sigma}}}{g_{i_{1}}, g_{i_{2}}, \cdots, g_{i_{N_{\sigma}}}}=J_{\Omega, \sigma}
$$

It follows that $J_{\Omega, \sigma}^{\omega}=1$ and

$$
\begin{equation*}
N_{. \sigma}-\rho_{\Omega, \sigma} \equiv 0(\bmod \omega) ; \rho_{\Omega, \sigma} \geqq 1 \tag{1}
\end{equation*}
$$

Next let $\omega=\sigma$. Then $N_{p}=\left(p^{2}-1\right) /(p-1)=p+1$, and

$$
\begin{equation*}
p+1-\rho_{\mathbf{a}, p} \equiv 0(\bmod \sigma) \tag{2}
\end{equation*}
$$

Hence either $\rho_{\mathrm{a}, p}=0$ or else $\rho_{\mathrm{a}, p} \geqq 2(\omega=q, r)$. Now if the subgroup $Y_{p^{2}}$ of $H_{p^{2} \sigma, i}$ is cyclical the order of its group of isomorphisms is

$$
I=\phi\left(p^{2}\right)=p(p-1)
$$

[^1]If $I_{p^{2}}$ is of type $[1,1]$ its group of isomorphisms is simply isomorphic with the congruence group $\left\{S_{1}, S_{2} \cdots\right\}$ of order $I=p(p-1)^{2}(p+1)$, where S_{1} is

$$
y_{1} \equiv a_{11} x_{1}+a_{12} x_{2}, \quad y_{2} \equiv a_{21} x_{1}+a_{22} x_{2}(\bmod p)
$$

$$
S_{1}=\left(a_{11} x_{1}+a_{12} x_{2}, a_{21} x_{1}+a_{22} x_{2}\right) .
$$

Since Ω corresponds to an isomorphism of $G,\{\Omega\}$ corresponds to a subgroup of the group of isomorphisms of G and ω divides I. Hence when $I_{p^{2}}$ is cyclical, or when $I_{p^{2}}=[1,1]$ and $p \equiv 1(\sigma), \rho_{\mathrm{\Omega}, p} \geqq 2$. But when $p \equiv-1(\sigma)$ and p is odd, $\rho_{\mathrm{a}, p}=0$. Also since $\rho_{\mathrm{a}, \sigma} \geqq 1, J_{Q, \sigma}$ and $J_{R, \sigma}$ may be permutable. If

$$
S_{2}=\left(b_{11} x_{1}+b_{12} x_{2}, b_{21} x_{1}+b_{22} x_{2}\right)
$$

the necessary and sufficient conditions that $S_{1} S_{2}=S_{2} S_{1}$ are
(3) $\delta_{12}=\left|\begin{array}{cc}a_{12} & b_{12} \\ a_{11}-a_{22} & b_{11}-b_{22}\end{array}\right| \equiv 0, * \quad \delta_{12}^{\prime}=\left|\begin{array}{cc}a_{21} & b_{21} \\ a_{11}-a_{22} & b_{11}-b_{22}\end{array}\right| \equiv 0$,

$$
d_{12}=\left|\begin{array}{ll}
a_{12} & a_{21} \\
b_{12} & b_{21}
\end{array}\right| \equiv 0
$$

$$
\text { § 2. Class }(9,10), p>q>r .
$$

We now consider the groups whose symbol is $(9,10)$, having the maximal subgroups $H_{p^{2} q, i}$ and $H_{p^{2} r, j}(i, j=\mathrm{IV}, \mathrm{V}, \mathrm{VI})$. Since $I_{p^{2}}$ is invariant in G the existence of a subgroup of type IV excludes the possibility of a subgroup of type V or VI, and vice versa. There are thus five cases to consider.
[1] $i=j=\mathrm{IV}$. Here $I_{p^{2}}=\{P\}$ is cyclical and P may be regarded as the. generator of order p^{2} in both H-sub-groups. Since $\rho_{Q, r} \geqq 1$, we may choose $\{R\}$ permutable with Q and, since $q>r, Q R=R Q$, so that G is defined by $P^{p^{2}}=Q^{q}=R^{r}=1, \quad Q^{-1} P Q=P^{a}, \quad R^{-1} P R=P^{\beta}, \quad Q R=R G ;$ or for brevity $G=(\alpha: \beta: 1)$, where

$$
\alpha^{q} \equiv 1, \quad \beta^{r} \equiv 1\left(p^{2}\right), \quad p \equiv 1(q r), \quad \tau=1
$$

[2] $i=j=\mathrm{V}$. Let $H_{p^{2} q, i}=\left\{P_{1}^{\prime}, P_{2}^{\prime}, Q\right\}, H_{p^{2}, j}=\left\{P_{1}, P_{2}, R\right\}$, wherein $Q R=R Q$. We may write

$$
\begin{gathered}
R^{-1} P_{1} R=P_{1}^{a}, \quad R^{-1} P_{2} R=P_{2}^{\beta}, \quad a^{r} \equiv 1(p), \quad \beta \equiv \alpha^{\Lambda} . \\
Q^{-1} P_{1} Q=P_{1}^{a_{11}} P_{2}^{a_{21}}, \quad Q^{-1} P_{2} Q=P_{1}^{a_{11}} P_{2}^{a_{2}},
\end{gathered}
$$

and from the permutable isomorphisms of $I_{p^{2}}$

$$
J_{Q}=\binom{P_{1}^{x_{1}} P_{2}^{x_{2}}}{P_{1}^{a_{11} x_{1}+a_{12} x_{2}} P_{2}^{a_{21} x_{1}+a_{22} x_{2}}}, \quad J_{R}=\binom{P_{1}^{x_{1}} P_{2}^{x_{2}}}{P_{1}^{x_{1}} P_{2}^{\beta x_{2}}},
$$

[^2]\[

$$
\begin{equation*}
\delta_{12}=a_{12}(\alpha-\beta) \equiv 0, \quad \delta_{12}^{\prime}=a_{21}(\alpha-\beta) \equiv 0 \tag{4}
\end{equation*}
$$

\]

Reserving for later treatment the ambiguous case $h=1$, we deduce $a_{12} \equiv a_{21} \equiv 0$. Suppose next that

Then

$$
R^{-1} P_{i}^{\prime} R=P_{1}^{b_{1 i}} P_{2}^{b_{2 i}} \quad(i=1,2)
$$

$$
\begin{gather*}
(R Q)^{-1} P_{1}^{\prime}(R Q)=P_{1}^{a_{11} b_{11}} P_{2}^{a_{22} b_{21}}=(Q R)^{-1} P_{1}^{\prime}(Q R)=P_{1}^{\gamma b_{11}} P_{2}^{\gamma_{21} b_{21}} \\
b_{11}\left(a_{11}-\gamma\right) \equiv 0, \quad b_{21}\left(a_{22}-\gamma\right) \equiv 0, \quad \gamma^{q} \equiv 1 \\
b_{12}\left(a_{11}-\delta\right) \equiv 0, \quad b_{22}\left(a_{22}-\delta\right) \equiv 0, \quad \delta \equiv \gamma^{k} \tag{5}
\end{gather*}
$$

Thus when $h \neq 1, k \neq 1$ we have one of the two equivalent results

$$
a_{11} \equiv \gamma, a_{22} \equiv \delta \quad \text { or } \quad a_{11} \equiv \delta, a_{22} \equiv \gamma
$$

In case $h \neq 1, k=1$, the set (5) becomes

$$
\begin{array}{ll}
b_{11}\left(a_{11}-\gamma\right) \equiv 0, & b_{21}\left(a_{22}-\gamma\right) \equiv 0 \\
b_{12}\left(a_{11}-\gamma\right) \equiv 0, & b_{22}\left(a_{22}-\gamma\right) \equiv 0
\end{array}
$$

and there are three possibilities to consider, viz.,

$$
\begin{equation*}
a_{11} \neq \gamma, \quad b_{11} \equiv 0, \quad b_{12} \equiv 0, \quad b_{21} \neq 0, \quad b_{22} \neq \stackrel{i}{0}, \quad a_{22} \equiv \gamma ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
a_{11} \equiv \gamma, \quad a_{22} \equiv \gamma, \quad b_{21} \equiv b_{22} \equiv 0, \quad b_{11} \neq 0, \quad b_{12} \neq 0 ; \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
a_{11} \equiv \gamma, \quad a_{22} \equiv \gamma \tag{iii}
\end{equation*}
$$

Case (i) implies

$$
\begin{gathered}
R^{-1} P_{1}^{\prime} R=P_{2}^{b_{21}}, \quad R^{-1} P_{2}^{\prime} R=P_{2}^{b_{22}} \\
R^{-1} P_{1}^{\prime b_{22}} R=R^{-1} P_{2}^{\prime b_{21}} R \quad \text { or } \quad P_{1}^{b_{29}}=P_{2}^{b_{21}}
\end{gathered}
$$

contrary to the independence of P_{1}^{\prime} and P_{2}^{\prime}. Likewise, case (ii) is excluded. Hence $a_{11} \equiv a_{22} \equiv \gamma$.

In a similar manner, when $h=1, k \neq 1$, we get $a_{11} \equiv a_{22} \equiv \alpha$.
Next let $h=1, k=1$, so that

$$
R^{-1} P_{i} R=P_{i}^{a}, \quad Q^{-1} P_{i} Q=P_{i}^{\gamma} \quad(i=1,2)
$$

One of the operations $P_{1}^{\prime}, P_{2}^{\prime}$ must be independent of $P_{1} . ~ A s \gamma^{q} \equiv 1(\bmod p)$, we may assume that P_{1} and P_{2}^{\prime} are independent. These will generate $I_{p^{2}}$, so that

$$
Q^{-1} P_{1} Q=P_{1}^{a_{11}} P_{2}^{\prime a_{21}}, \quad R^{-1} P_{2}^{\prime} R=P_{1}^{b_{12}} P_{2}^{\prime b_{22}}
$$

The abelian conditions from J_{Q} and J_{R} are [Eq. (3)]

$$
\delta_{12}=b_{12}\left(a_{11}-\delta\right) \equiv 0, \quad \delta_{12}^{\prime}=a_{21}\left(b_{22}-\alpha\right) \equiv 0, \quad d_{12}=a_{21} b_{12} \equiv 0
$$

Thus three possibilities arise, viz.,

$$
\begin{equation*}
a_{21} \equiv 0, \quad b_{12} \equiv 0 \quad a_{11} \equiv \delta \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
a_{21} \neq 0, \quad b_{12} \equiv 0, \quad b_{22} \equiv \alpha \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
a_{21} \equiv 0, \quad b_{12} \equiv 0 \tag{iii}
\end{equation*}
$$

For (i), let $P_{1}^{\prime}=P_{1}^{x} P_{2}^{\prime y}, P_{2}=P_{1}^{z} P_{2}^{\prime \prime 0}$, whence

$$
\begin{gathered}
Q^{-1} P_{1}^{\prime} Q=P_{1}^{r \gamma} P_{2}^{\prime y \gamma}=P_{1}^{\delta x} P_{2}^{\prime \delta y} \\
R^{-1} P_{2} R=P_{1}^{z \beta} P_{2}^{w, \beta}=P_{1}^{a z+b_{12} v} P_{2}^{b_{22} w} \\
(\gamma-\delta) x \equiv 0, \quad(\gamma-\delta) y \equiv 0 \\
w\left(b_{22}-\beta\right) \equiv 0, \quad z(\alpha-\beta)+b_{12} w \equiv 0
\end{gathered}
$$

Hence $\gamma \equiv \delta$ and $k=1$; but as P_{1}, P_{2} are independent, $w \neq 0, b_{22} \equiv \beta$, $\alpha \neq \beta$ and $h \neq 1$, contrary to hypothesis. Since (ii) is likewise exclüded, we have $a_{21} \equiv b_{12} \equiv 0$,

$$
\begin{gathered}
Q^{-1} P_{1} Q=P_{1}^{a_{11}}, \quad R^{-1} P_{2}^{\prime} R=P_{2}^{h_{22}} \\
x\left(a_{11}-\gamma\right) \equiv 0, \\
: z(\beta-\alpha) \equiv 0, \quad y(\delta-\gamma) \equiv 0 \\
w\left(b_{22}-\beta\right) \equiv 0
\end{gathered}
$$

where $x \neq 0, w \neq 0$. Hence when $\alpha \equiv \beta, \delta \equiv \gamma$ there results $a_{11} \equiv \gamma$, $b_{22} \equiv \alpha$. We are thus led to a single set of defining relations:

$$
\begin{gathered}
P_{1}^{p}=P_{2}^{p}=Q^{q}=R^{r}=1, \quad P_{1} P_{2}=P_{2} P_{1}, \quad Q^{-1} P_{1} Q=P_{1}^{\gamma} \\
Q^{-1} P_{2} Q=P_{\gamma^{k}}^{P^{k}}, \quad R^{-1} P_{1} R=P_{1}^{2}, \quad R^{-1} P_{2} R=P_{2}^{a^{h}}, \quad R Q=Q R \\
\alpha^{r} \equiv 1(p), \quad \gamma^{\eta} \equiv 1(p) \quad(h=1,2, \cdots, r-1 ; k=1,2, \cdots, q-1)
\end{gathered}
$$

or, briefly, say $G=\left(1: \gamma 0: 0 \gamma^{h}: \alpha 0: 0 \alpha^{h}: 1\right)$. Proceeding to the determination of τ we observe that there are, by hypothesis, two subgroups, $\left\{P_{1}\right\},\left\{P_{2}\right\}$, both permutable with Q and R. In any isomorphism of G with itself either $\left\{P_{1}\right\} \sim\left\{P_{2}\right\},\left\{P_{2}\right\} \sim\left\{P_{1}\right\}$ or else $\left\{P_{1}\right\} \sim\left\{P_{1}\right\},\left\{P_{2}\right\} \sim\left\{P_{2}\right\}$. Hence there are two choices of generators of order p. Every element of G is of the form $\Omega=R^{x} Q^{y} P_{1}^{u} P_{2}^{v}$. Hence $\Omega^{s}=R^{s x} Q^{v y} P_{1}^{u_{s}} P_{2}^{c_{c}}$, so that Ω is of order r only when $y \equiv 0(\bmod q)$ and of order q when $x \equiv 0(\bmod r)$. Thus the most general operator of order q is $Q_{0}^{\prime}=Q^{y} P_{1}^{n} P_{2}^{v}$, which transforms G in the same manner as $Q_{0}=Q^{y}$. Similarly $R_{0}=R^{x}$. Employing the new generators R_{0}, Q_{0}, $P_{1_{0}}=P_{1}, P_{2_{0}}=P_{2}$, we get

$$
\left(1: \gamma 0: 0 \gamma^{k}: \alpha 0: 0 \alpha^{h}: 1\right) \sim\left(1: \gamma^{y} 0: 0 \gamma^{k y}: \alpha^{x} 0: 0 \alpha^{k x}: 1\right)
$$

Hence any set of relations involving arbitrary primitive roots ($\alpha^{n}, \gamma^{\prime \prime}$) can be transformed into the original set. Next let $P_{10}=P_{2}, P_{20}=P_{1}$. Then

$$
\left(1: \gamma 0: 0 \gamma^{k}: \alpha 0: 0 \alpha^{h}: 1\right) \sim\left(1: \gamma^{k y} 0: 0 \gamma^{y}: \alpha^{h x} 0: 0 \alpha^{x}: 1\right)
$$

if

$$
\begin{equation*}
k y \equiv 1(\bmod q), \quad h x \equiv 1(\bmod r) \tag{6}
\end{equation*}
$$

The group characterized by [h, k] is thus isomorphic with [x, y] when (6) is satisfied. Further τ equals the number of distinct solutions of (6), e. g., when $r=2, \tau=\frac{1}{2}(q+1)$, and when r is odd, $\tau=\frac{1}{4}(q r+q+r+1)$.
[3] $i=\mathrm{VI}, j=\mathrm{V}$. When $h \neq 1$ we have $Q^{-1} P_{j} Q=P_{j}^{a_{j}}(j=1,2)$. Assuming that

$$
R^{-1} P_{1}^{\prime} R=P_{1}^{x} P_{2}^{y}, \quad R^{-1} P_{2}^{\prime} R=P_{1}^{z} P_{2}^{10}
$$

we derive

$$
\begin{aligned}
a_{11} x-z \equiv 0, & x-\left(\iota^{p}+\iota-a_{11}\right) z \equiv 0 \\
a_{22} y-w \equiv 0, & y-\left(\iota^{p}+\iota-a_{22}\right) w \equiv 0
\end{aligned}
$$

The elimination of x, y, z, w gives

$$
a_{j j}^{2}-\left(\iota^{p}+\iota\right) a_{j j}+1 \equiv 0 \quad(j=1,2)
$$

whence $a_{j j}=\iota^{p}$ or ι. Hence a_{11}, a_{22} are galoisian imaginaries* and G, for $i=\mathrm{VI}, j=\mathrm{V}$, does not exist.

Before considering the ambiguous case $h=1$ a few general results must be 'established.

Let S and T be any set of generators of $I_{p^{2}}$, so that $G=\{S, T, Q, R\}$. We may write

$$
\begin{gathered}
P_{1}^{\prime}=S^{x} T^{y}, \quad P_{2}^{\prime}=S^{z} T^{\iota 0} \\
Q^{-1} S Q=S^{a_{11}} T^{a_{21}}, \quad Q^{-1} T Q=S^{a_{12}} T^{a_{22}} \\
Q^{-1} P_{1}^{\prime} Q=P_{2}^{\prime}=S^{z} T^{w}=S^{a_{11} x+a_{12} y} T^{a_{21} x+a_{22} y} \\
Q^{-1} P_{2}^{\prime} Q=P_{1}^{\prime-1} P_{2}^{\prime \iota+\iota}=S^{-x+(\iota p+\iota) z} T^{-y+(\iota p+\iota) w}=S^{a_{11} z+a_{12} w} T^{a_{21} z+a_{22} w}
\end{gathered}
$$

Hence
whence results the eliminant

$$
D=\left|\begin{array}{cccc}
x & y & z & w \\
a_{11} & a_{12} & -1 & 0 \\
a_{21} & a_{22} & 0 & -1 \\
1 & 0 & a_{11}-t & a_{12} \\
0 & 1 & a_{21} & a_{22}-t
\end{array}\right| \equiv 0(\bmod p)
$$

where $t=\iota^{p}+\iota$. Its expansion gives

$$
D_{12}^{2}-t\left(a_{11}+a_{22}-t\right) D_{12}+a_{22}^{2}-a_{11}^{2}+t\left(a_{11}-a_{22}\right)+2 a_{12} a_{21}+1 \equiv 0
$$

Now assume $S=P_{1}$. Then, since $p \equiv-1(\bmod q), \rho_{Q, p}=0$ and we may take $Q^{-1} P_{1} Q \equiv U$ as T. Then

[^3]\[

$$
\begin{gathered}
J_{Q}=\binom{P_{1}^{x_{1}} U^{x_{2}}}{P_{1}^{a_{11} x_{2}} U^{x_{1}+a_{22} x_{2}}}, J_{Q}^{q}=1 \\
D_{12}^{q}=\left|\begin{array}{cc}
0 & a_{12} \\
1 & a_{22}
\end{array}\right|^{q} \equiv\left(-a_{12}\right)^{q} \equiv 1(\bmod p)
\end{gathered}
$$
\]

Now - a_{12} cannot be a primitive root of this congruence; for, if so $p \equiv 1(\bmod q), \quad$ whereas $p \equiv-1(\bmod q)$ and $q>r$. It follows that $a_{12} \equiv-1(\bmod p)$ and

$$
D \equiv\left(a_{22}-t\right)^{2} \equiv 0, a_{22} \equiv t \equiv \iota^{p}+\iota
$$

This gives $I_{p^{2}}=\left\{P_{1} U\right\}$ and

$$
\begin{array}{cc}
Q^{-1} P_{1} Q=U, & Q^{-1} U Q=P_{1}^{-1} U^{\iota p+\iota}, \\
R^{-1} P_{1} R=P_{1}^{a}, & R^{-1} U R=P_{1}^{\xi} U^{\eta}, \tag{7}\\
\delta_{12}=\left|\begin{array}{cc}
-1 & \xi \\
-\iota^{p}-\iota & \alpha-\eta
\end{array}\right| \equiv 0, \quad \delta_{12}^{\prime}=\left|\begin{array}{cc}
1 & 0 \\
-\iota^{p}-\iota & a-\eta
\end{array}\right| \equiv 0,
\end{array}
$$

and thus, when $h=1, \eta \equiv \alpha, \xi \equiv 0(\bmod p)$.
Inversely let $P_{2}=P_{1}^{\xi^{\prime}} U^{\eta^{\prime}}$. Then

$$
R^{-1} P_{2} R=P_{1}^{\xi^{\prime} a^{\Lambda}} U^{\eta^{\prime} a^{\kappa}}=P_{1}^{\xi^{\prime} a} U^{\eta^{\prime} a}
$$

and hence $h=1$. Thus when $h=1$ there exists a group

$$
G=\left\{P_{1}, U, Q, R\right\}=\left(1: 01:-1 \iota^{p}+\iota: \alpha 0: 0 \alpha: 1\right)
$$

where $\alpha^{r} \equiv 1(p), p \equiv 1(r), \tau=1 . \quad$ Also $p \equiv-1(\bmod q)$ and, in the $G F\left[p^{2}\right], \iota^{q} \equiv 1(\bmod p)$.
[4] $i=V, j=V I$. Since r is necessarily an odd prime, the argument of [3] again gives for G a single type, $G=\left(1: \gamma 0: 0 \gamma: 01:-1 \iota^{p}+\iota: 1\right)$, with $\gamma^{q} \equiv 1(p), p \equiv 1(q), \tau=1 . \quad$ Likewise $p \equiv-1(\bmod r) ;$ and $\iota^{r} \equiv 1(\bmod p)$ in the $G F\left[p^{2}\right]$.
[5] $i=\mathrm{VI}, j=\mathrm{VI}$. Employing as in [3] the theory of the determinant D we are led to the same equations (7), viz.,

$$
Q^{-1} P_{1} Q=U, \quad Q^{-1} U Q=P_{1}^{-1} U^{t_{1}^{p}+\iota_{1}}, \quad \iota_{1}^{q} \equiv 1(p)
$$

Let us assume that

Then

$$
R^{-1} P_{1} R=P_{2}=P_{1}^{x} U^{y}, \quad R^{-1} U R=P_{1}^{z} U^{w}
$$

$$
\delta_{12}=\left|\begin{array}{cc}
-1 & z \\
-\iota_{1}^{p}-\iota_{1} & x-w
\end{array}\right| \equiv 0, \quad \delta_{12}^{\prime}=\left|\begin{array}{cc}
1 & y \\
-\iota_{1}^{p}-\iota_{1} & x-w
\end{array}\right| \equiv 0
$$

$$
d_{12}=\left|\begin{array}{cc}
-1 & 1 \\
z & y
\end{array}\right| \equiv 0, \quad D_{12}=\left|\begin{array}{cc}
x & z \\
y & w
\end{array}\right| \not \equiv 0 .
$$

Thus

$$
z \equiv-y, \quad w \equiv x+\left(\iota_{1}^{p}+\iota_{1}\right) y, \quad D_{12} \equiv x^{2}+\left(\iota_{1}^{p}+\iota_{1}\right) x y+y^{2} .
$$

Since

$$
R^{-1} P_{2} R=P_{1}^{-1} P_{2}^{p_{2}^{p}+\iota_{2}}, \quad \iota_{2}^{r} \equiv 1(p),
$$

so that

$$
R^{-1} U^{y} R=P_{1}^{-y^{2}} U^{x y+\left(c_{1}^{p}+\iota\right) y^{2}}=P_{1}^{-\left(x^{2}+1\right)+\left(\iota_{2}^{p}+\iota 2\right) x} U^{-x y+\left(c_{2}^{p}+\iota\right) y} .
$$

Since P_{1} and P_{2} are independent, $y \neq 0$; hence

$$
\begin{gather*}
2 x+\left(\iota_{1}^{p}+\iota_{1}\right) y-\left(\iota_{2}^{p}+\iota_{2}\right) \equiv 0 \tag{8}\\
y^{2}-x^{2}+\left(\iota_{2}^{p}+\iota_{2}\right) x-1 \equiv 0 \tag{9}
\end{gather*}
$$

From the latter we at once derive

$$
\begin{gather*}
D_{12}=x^{2}+\left(\iota_{1}^{p}+\iota_{1}\right) x y+y^{2} \equiv 1, \\
\left(\iota_{2}-\iota_{1}^{2} \iota_{2}\right)^{2} x^{2}-\left(1-\iota_{1}^{2}\right)\left(\iota_{2}-\iota_{2}^{3}\right) x+\left(1-\iota_{1}^{2} \iota_{2}^{2}\right)\left(\iota_{2}^{2}-\iota_{1}^{2}\right) \equiv 0, \tag{10}\\
\left(\iota_{1}-\iota_{1}^{p}\right)^{2} y^{2}-\left(\iota_{2}-\iota_{2}^{p}\right)^{2} \equiv 0 . \tag{11}
\end{gather*}
$$

There always exist integral solutions of (10) and (11), $x=\epsilon_{j}, y=\sigma_{j}(j=1,2)$. Thus

$$
R^{-1} P_{1} R=P_{1}^{\epsilon_{1}+\left(c_{1}^{p}+\iota_{1}\right) \sigma_{j}} U^{-\sigma_{j}}, \quad R^{-1} U R=P_{1}^{\sigma_{j}} U^{\iota_{j}} .
$$

Theorem. The two general types of G characterized by the two distinct sets of solutions of (10) and (11), viz. $\left[\epsilon_{1}, \sigma_{1}\right]$ and $\left[\epsilon_{2}, \sigma_{2}\right]$ are simply isomorphic.

In proof, $\sigma_{2} \equiv-\sigma_{1}$, and congruence (8) gives

$$
2 \epsilon_{2}-\left(\iota_{1}^{p}+\iota_{1}\right) \sigma_{1}-\left(\iota_{2}^{p}+\iota_{2}\right) \equiv 0, \quad \epsilon_{2} \equiv \epsilon_{1}+\left(\iota_{1}^{p}+\iota_{1}\right) \sigma_{1} .
$$

Hence the two types of G are characterized by

$$
R^{-1} P_{1} R=P_{1}^{\varepsilon_{1}+\left(\rho_{1}^{p}+\iota_{1}\right) \sigma_{1}} U^{-\sigma_{1}}, \quad R^{-1} U R=P_{1}^{\sigma_{1}} U^{\epsilon_{1}}
$$

and

$$
R^{-1} P_{1} R=P_{1}^{\mathrm{e}_{1}} U^{\sigma_{1}}, \quad R^{-1} U R=P_{1}^{-\sigma_{1}} U^{\mathbb{e}_{1}+\left(c_{1}^{+}+\iota_{1}\right) \sigma_{1}}
$$

Let us select a new operation of order q from $\{Q\}$, e. g. $Q^{\prime}=Q^{-1}$. Then $Q^{\prime} R=R Q^{\prime}, Q^{\prime-1} U Q^{\prime}=P_{1}$,

$$
Q^{\prime-1} P_{1} Q^{\prime}=U^{r_{1}} P_{1}^{r_{2}}=U^{-1} P_{1}^{1_{1}^{p}+\iota_{1}}, \quad r_{j}=\frac{\iota_{1}^{(q-j) p}-\iota_{1}^{q-j}}{\iota_{1}^{p}-\iota_{1}}
$$

The result of selecting Q^{\prime} and $\left(\epsilon_{2}, \sigma_{2}\right)$ is thus to interchange P_{1} and U and to reproduce the relations given by Q and $\left(\epsilon_{1}, \sigma_{1}\right)$. Hence $\left[\epsilon_{2}, \sigma_{2}\right] \sim\left[\epsilon_{1}, \sigma_{1}\right]$.

The quantities t_{1} and t_{2} are marks of the $G F\left[p^{2}\right]$ and in that field appertain
respectively to the exponents q and r. Let ρ be any primitive root in the $G F\left[p^{2}\right]$. It is easy to show that $\tau=1$ and hence we may select*
thus

$$
\iota_{1} \equiv \rho^{\left(p^{p}-1\right) / q}, \quad \iota_{2} \equiv \rho^{\left(p^{2}-1\right) / r},
$$

,

$$
G=\left(1: 01:-1, \iota_{1}^{p}+\iota_{1}: \epsilon+\left(\iota_{1}^{p}+\iota_{1}\right) \sigma,-\sigma: \sigma \epsilon: 1\right),
$$

where

$$
\begin{gathered}
\iota_{1} \equiv \rho^{\left(p^{2-1}\right) / q}, \iota_{2} \equiv \rho^{\left(p^{2}-1\right) / r}, \rho^{p^{2-1}} \equiv 1 ; \quad p \equiv-1(\bmod q r), \tau=1, \\
\left(\iota_{1}-\iota_{1}^{p}\right)^{2} \sigma^{2}-\left(\iota_{2}-\iota_{2}^{p}\right)^{2} \equiv 0, \quad 2 \epsilon+\left(\iota_{1}^{p}+\iota_{1}\right) \sigma-\left(\iota_{2}^{p}+\iota_{2}\right) \equiv 0 .
\end{gathered}
$$

§ 3. The generating function $[k]$.
Consider the relation $R^{-s} P_{1} R^{z}=P_{1}^{u_{s}} U^{v_{0}} \quad$ From it

$$
\begin{gathered}
u_{x+1}-\left(2 x+t_{1} y\right) u_{s}+\left(x^{2}+t_{1} x y+y^{2}\right) u_{x-1} \equiv 0, \\
u_{x+1}-t_{2} u_{s}+u_{x-1} \equiv 0 \quad\left(t_{j}=t_{j}^{p}+y ; j=1,2\right),
\end{gathered}
$$

These recurring formulæ give
where

$$
u_{k} \equiv[k]_{2} x-[k-1]_{2}, \quad v_{k}=[k]_{2} y
$$

$$
[k]_{j} \equiv \frac{l_{j}^{k_{j} p}-l_{i}^{k}}{\iota_{j}^{p}-\iota_{j}} .
$$

Following are some of the properties of the generating function $[k]_{j}$.

$$
\begin{gather*}
\frac{[k+1]_{j}}{[k]_{j}}=\frac{1}{t_{j}}+\frac{1}{t_{j}}+\frac{1}{t_{j}}+\cdots k \text { terms, } \tag{12}\\
{[k]_{j}^{2}-[k+1]_{j}[k-1]_{j}-1 \equiv 0,} \tag{13}\\
{[0]_{j} \equiv 0, \quad[1]_{j} \equiv 1, \quad[-k]_{j} \equiv-[k]_{j},} \tag{14}\\
{[k+1]_{j} \equiv[2]_{j}[k]_{j}-[k-1]_{j},} \tag{15}\\
\left\{[k+1]_{j}-[k-1]_{j}-[2]_{j}\right\} c_{j}^{k} \equiv\left(c_{j}^{k+1}-1\right)\left(c_{j}^{k-1}-1\right) . \tag{16}
\end{gather*}
$$

§4. Class (10), $p>q>r$.
We shall consider next groups possessing a single maximal self-conjugate subgroup $H_{p^{2}, i, i}$ of non-abelian type ($i=\mathrm{III}, \mathrm{IV}, \mathrm{V}, \mathrm{VI}$). It is readily shown that class $(10,12)$, with $i=I I I$, must contain an invariant subgroup $H_{p^{2}}$. Class (10) remains to be considered.
[1] $i=$ IV. Here $H_{p^{2} q, \text { IV }}=\{P . Q\}$ and since $\{P\}$ is self-conjugate in $G, R^{-1} P R=P^{\beta}$. Since $\rho_{R, q} \geqq 1$ [Eq. (1)], $R^{-1} Q R=Q^{\gamma}$. Hence

$$
\begin{gathered}
(Q R)^{-1} P(Q R)=P^{a \beta}=\left(R Q^{\gamma}\right)^{-1} P\left(R Q^{\gamma}\right)=P^{\beta a^{\gamma},} \quad \alpha^{q} \equiv 1\left(p^{2}\right), \\
\alpha \beta\left(\alpha^{\gamma-1}-1\right) \equiv 0\left(\bmod p^{2}\right), \quad \gamma \equiv 1(\bmod q) .
\end{gathered}
$$

[^4]Trans. Am. Math. Soc. 10

Hence $\left\{P_{1}, P_{2}, R\right\}$ is self-conjugate in $\left\{P_{1}, P_{2}, Q, R\right\}=G$, contrary to hypothesis.
[2] $i=\mathrm{V}$. Let $H_{p^{2}, \mathrm{v}}=\left\{P_{1}^{\prime}, P_{2}, Q\right\}$. Assuming that
we deduce

$$
\begin{array}{cc}
R^{-1} P_{1}^{\prime} R=P_{1}^{a_{11}} P_{2}^{a_{21}}, & R^{-1} P_{2} R=P_{1}^{a_{12}} P_{2}^{a_{21}}, \\
a_{11} \alpha\left(\alpha^{\gamma-1}-1\right) \equiv 0, & a_{21}\left(\beta^{\gamma}-\alpha\right) \equiv 0, \\
a_{22} \beta\left(\beta^{\gamma-1}-1\right) \equiv 0, & a_{12}\left(\alpha^{\gamma}-\beta\right) \equiv 0,
\end{array}
$$

where $\alpha^{q} \equiv 1(p), \beta \equiv \alpha^{n}$. Now $\gamma \neq 1(\bmod q)$. Hence

$$
\begin{array}{rlrl}
a_{11} \equiv 0, & a_{22} \equiv 0, & \alpha^{\gamma h} \equiv \alpha, & \alpha^{\gamma} \equiv \alpha^{h}(\bmod p) \\
\gamma \equiv h(\bmod q), & \alpha^{2} \equiv \alpha(\bmod p), & \gamma^{2} \equiv 1(\bmod q)
\end{array}
$$

But γ appertains to the exponent r modulo q, and therefore $r=2$ and $\gamma \equiv-1(\bmod q)$. Thus

$$
R^{-1} P_{1}^{\prime} R=P_{2}^{a_{11}}, \quad R^{-1} P_{2} R=P_{1}^{a_{11}}, \quad a_{12} a_{21} \equiv 1(\bmod p) .
$$

Then $P_{1}=P_{1}^{\prime a}, P_{2}, Q, R$, generate a group of order $2 p^{2} q$, viz., $G=\left(1: \alpha 0: 0 \alpha^{q-1}: 01: 10:-1\right)$. Also $p \equiv 1(q), \tau=1$.
[3] $i=\mathrm{VI} . ~ I t ~ h a s ~ b e e n ~ s h o w n ~[§ 1], ~ t h a t ~ p \equiv \pm 1(\bmod r)$.
(a) First let $p \equiv 1(r)$. Then $\rho_{R, p} \geqq 2$ and two subgroups $\left\{P_{1}\right\},\left\{P_{3}\right\}$ may be selected which are permutable with R. If

$$
Q^{-1} P_{1} Q=P_{2}, \quad Q^{-1} P_{2} Q=P_{1}^{-1} P_{2}^{1, p+\iota},
$$

then

$$
R^{-1} P_{1} R=P_{1}^{\beta}, \quad R^{-1} Q R=Q^{\gamma}, \quad \gamma \neq 1(\bmod q) .
$$

Since $I_{p^{2}}$ is invariant in G we may assume that

$$
P_{3}=P_{1}^{z} P_{2}^{w}, \quad R^{-1} P_{2} R=P_{1}^{x} P_{2}^{y},
$$

Hence

$$
\begin{gathered}
(Q R)^{-1} P_{1}(Q R)=P_{1}^{x} P_{2}^{y}=\left(R Q^{\gamma}\right)^{-1} R_{1}\left(R Q^{\gamma}\right)=P_{1}^{-\beta[\gamma-1]} P_{2}^{\beta[\gamma]}, \\
(Q R)^{-1} P_{2}(Q R)=P_{1}^{-\beta+[2] x} P_{2}^{[2] y}=\left(R Q^{\gamma}\right)^{-1} P_{2}\left(R Q^{\gamma}\right)=P_{1}^{-[\gamma-1] x-[\gamma] y} P_{2}^{[\gamma] x+[\gamma+1] y}, \\
x \equiv-[\gamma-1] \beta, \quad y \equiv[\gamma] \beta, \\
{[\gamma]^{2} \equiv[\gamma-1]^{2}+[2][\gamma-1]+1,} \\
{[\gamma]\{[\gamma+1]-[\gamma-1]-[2]\} \equiv 0 .}
\end{gathered}
$$

Now $[\gamma]$ 丰 $0(\bmod q)$. Since $[-k] \equiv-[k]$ and

$$
[\gamma+1]-[\gamma-1]-[2] \equiv\left(\iota^{\gamma+1}-1\right)\left(\iota^{\gamma-1}-1\right) \equiv 0[\text { Eq. }(16)]
$$

there results $\gamma \equiv-1(\bmod q), \gamma^{r} \equiv(-1)^{r} \equiv+1(\bmod q)$, whence $r=2$. If $R^{-1} P_{3} R=P_{3}^{a}$, then $\alpha \equiv \pm 1(\bmod p)$,

$$
\begin{gathered}
w(y \mp 1) \equiv 0, \quad x w+z(\beta \mp 1) \equiv 0 \\
w(-\beta \mp 1) \equiv 0, \quad[2] \beta w+z(\beta \mp 1) \equiv 0
\end{gathered}
$$

First let the upper sign hold. If $\beta \equiv 1$, then $w \equiv 0$ which is impossible, since P_{1}, P_{3} are independent. Hence $\beta \equiv-1, x \equiv-[2], y \equiv+[1] \equiv+1$. Likewise if we use the lower sign, $\beta \equiv+1, x \equiv+[2], y \equiv-[1] \equiv-1$. We thus obtain the two sets of defining relations:

$$
\left(1: 01:-1 \iota^{p}+\iota: \mp 10: \iota^{* p}+\iota^{\mp 1}, \pm 1:-1\right) .
$$

To determine τ, let $Q_{0}=Q^{x}, R_{0}=R, P_{1_{0}}=P_{1}, P_{2_{0}}=P_{1}^{-[x-1]} P_{2}^{[x]}$; there results
$\left\{P_{1_{0}}, P_{2_{0}}, Q_{0}, R_{9}\right\}=\left(1: 01:-1 i^{x p}+i^{x}: \mp 10: \pm[x-1] \mp[2][x], \pm[x]:-1\right)$.
But

$$
\pm[x-1] \mp[2][x] \equiv \mp[x+1] \equiv \mp\left(\iota^{x p}+\iota^{x}\right) \mp[x-1]
$$

[Eq. (15)]. Hence
$\left\{P_{1_{0}}, P_{2_{0}}, Q_{0}, R_{0}\right\}=\left(1: 01:-1 \iota^{x p}+\iota^{x}: \mp 10: \mp\left(\iota^{x p}+\iota^{x}\right), \pm 1:-1\right) \sim G$.
Thus the same defining relations are reproduced with ι replaced by ι^{x}, and so $\tau=1$.

It will now be proved that these two types are simply isomorphic. Select new operators as follows:

$$
q_{1}=Q, r_{1}=R, p_{1}=P_{1}^{a} P_{2}^{b}, p_{2}=P_{1}^{-b} P_{2}^{a+[2] b}=q_{1}^{-1} p_{1} q_{1}
$$

Then using the first set of defining relations we will have
if

$$
\begin{gathered}
q_{1}^{-1} p_{2} q_{1}=p_{1}^{-1} p_{2}^{\iota p+\iota}, r_{1}^{-1} p_{1} r_{1}=p_{1}, r_{1}^{-1} p_{2} r_{1}=p_{1}^{\iota p+\iota} p_{2}^{-1}, r_{1}^{-1} q_{1} r_{1}=q_{1}^{-1} \\
2 a+[2] b \equiv 0(\bmod p)
\end{gathered}
$$

Hence when a new operator $p_{1}=P_{1}^{a} P_{2}^{b}$ is selected, where a and b are solutions of $2 a+\left(\iota^{\nu}+\iota\right) b \equiv 0(\bmod p)$, the first type is transformed into the second. They are therefore isomorphic.
(b) When $p \equiv-1(r), r$ odd, $\rho_{R, p}=0$. As before, we deduce

$$
\begin{array}{rll}
Q^{-1} P_{1} Q=P_{2}, & Q^{-1} P_{\Sigma} Q=P_{1}^{-1} P_{2}^{2_{1}^{p}+\iota_{1}}, & \iota_{1}^{q} \equiv 1(p) \\
R^{-1} P_{1} R=P_{3}, & R^{-1} P_{3} R=P_{1}^{-1} P_{3}^{l_{2}^{p}+\iota_{2}}, & \iota_{2}^{r} \equiv 1(p)
\end{array}
$$

Let $P_{3}=P_{1}^{x} P_{2}^{y}$ and $R^{-1} P_{2} R=P_{4}=P_{1}^{x} P_{2}^{x}$. Then

$$
\begin{equation*}
R^{-1} P_{2}^{y} R=P_{1}^{-\left(x^{2}+1\right)+[2]_{2} x} P_{2}^{y[2]_{2}-y x}=P_{1}^{-[y-1]_{1} x y-[y]_{1} y^{2}} P^{[y]_{1} x y+[y+1]_{1} y^{2}} \tag{17}
\end{equation*}
$$

In addition to the latter, but not independent of them, we have the congruences derived from

$$
\begin{equation*}
(Q R)^{-1} P_{2}^{y}(Q R)=\left(R Q^{\prime}\right)^{-1} P_{2}^{y}\left(R Q^{\prime}\right) \tag{18}
\end{equation*}
$$

The equations (17) and (18) give us the dialytic eliminant

$$
\Delta_{12}=\left\{\iota_{2}^{p}+\iota_{2}\right\}\left\{[\gamma]_{1}^{2}-\left(c_{2}^{2 p}+\iota_{2}^{2}\right)[\gamma]_{1}+1\right\}\left\{\left(c_{1}^{\gamma+1}-1\right)\left(c_{1}^{\gamma-1}-1\right)\right\}^{2} \equiv 0 .
$$

Now $[\gamma]_{1}$ is an integer, and since $r \neq 2$, and $\gamma \neq 1$, it follows that $\gamma \equiv 1(\bmod q)$, contrary to hypothesis. Hence when $p \equiv-1(\bmod r)$ and r is odd, no corresponding group G exists.

The results of this section may be summarized in the following
Theorem. A group $G_{p^{2} q r}(p>q>r)$ always contains a maximal selfconjugate subgroup H of order $p^{2} q$. If H is the only maximal invariant subgroup of G and if r is odd, then $N_{q}=1$ and H is necessarily abelian. If r is even $(r=2)$ and $p \equiv 1(\bmod q)$ there exists one type whose subgroup $H_{p^{\prime} q}$ is non-abelian, and if r is even and $p \equiv-1(\bmod q)$ there exists a second type possessing a non-abelian $H_{p^{\prime} q}$. These two types of G contain respectively q and $p q$ operators (and subgroups) of order 2, and in each type $N_{q}=p^{2}$. Moreover, with exception of the two types just described, every group of order $p^{2} q r(p>q>r)$, in which $N_{r}=0(\bmod q)$, possesses an abelian maximal self-conjugate subgroup $H_{p^{1} q}$.

A general summary of all the existent types of G follows. Except for ι and ρ, every parameter occurring in the tables is an integer ; while ι and ρ are marks of the $G \boldsymbol{F}\left[\boldsymbol{p}^{2}\right]$. See footnote on the second page of the paper.

Case (b). $\quad R^{-1} Q R=\boldsymbol{Q}^{\boldsymbol{\lambda}} ; \boldsymbol{r}^{\prime} \equiv \mathbf{1}(q)$.

Clmas.	$Q^{-1} P_{1} Q$	$Q^{-1} P_{2} \mathcal{L}$		$E^{-1} P_{8} R$	Parameters.	Arith. rel.	τ
[258101112]	P_{1}	P_{2}	P_{1}	P_{2}	$h=1$	$q=$	1
"	P_{1}		P_{1}		$h=1$	$q=1(r)$	1
[56101112]	P_{1}	\boldsymbol{P}_{2}	$P_{\text {a }}$	P_{3}	$\begin{gathered} h=1,2 \ldots r-1 \\ \alpha^{r}=1(p) \end{gathered}$	$p \equiv q \equiv 1(r)$	$r-1$
[101112]	\boldsymbol{P}_{1}		P_{1}		$\begin{gathered} h=1,2 \cdots r-1 \\ a^{r} \equiv 1\left(p^{2}\right) \end{gathered}$	$p \equiv q \equiv 1(r)$	$r-1$
"	\boldsymbol{P}_{1}	P_{3}	P_{1}	$\boldsymbol{P}_{2}{ }^{\boldsymbol{k}}$	$\begin{gathered} h, k=1,2 \cdots r-1 \\ \alpha^{r} \equiv 1(p) \end{gathered}$	$p \equiv q \equiv 1(r)$	$\left\lvert\, \begin{gathered} 1 \text { or } \\ \frac{1}{2}\left(r^{2}-1\right) \end{gathered}\right.$
"	\boldsymbol{P}_{1}	\boldsymbol{P}_{2}	\boldsymbol{P}_{2}	${ }_{1}^{-1} P_{2}^{p+c}$	$\begin{gathered} h=1,2 \cdots r-1 \\ i^{r}=1(p) \end{gathered}$	$p \equiv-q \equiv-1(r)$	$r-1$
[10]	P_{1}	$P_{2}{ }^{\text {ar-1 }}$	\boldsymbol{P}_{2}	P_{1}	$\begin{gathered} h=1, y=-1 \\ a^{q}=1(p) \end{gathered}$	$\begin{gathered} r=2 \\ p=1(q) \end{gathered}$	1
"	\boldsymbol{P}_{2}	$\boldsymbol{P}_{1}^{-1} \boldsymbol{P}_{2}^{\text {ap+ }}$	P_{1}^{-1}	$\boldsymbol{P}_{1}^{\text {co+ }}{ }^{-1} \boldsymbol{P}_{2}$	$\begin{gathered} h=1, \gamma \equiv-1 \\ c^{q} \equiv 1(p) \end{gathered}$	$\begin{gathered} r=2 \\ p \equiv-1(q) \end{gathered}$	1

Table 2. $q>p>r$.
I_{2} non-cyclical ; $P_{i}^{p}=Q^{q}=R^{r}=1(i=1,2), P_{1} P_{2}=P_{2} P_{1}, R P_{2}=P_{2} R$, $I_{r^{2}}$ cyclical ; $P_{1}^{p_{1}^{2}}=Q^{c}=R^{r}=1, R P_{1}=P_{1} R$.

Clase.	$P_{1}^{-1} Q_{1}$	$P_{2}^{-1} Q_{2}$	$R^{-1} Q^{2}$	$E^{-1} P_{1} R$	Parameters.	Arith. Rel.	ז
[1234561112]	Q^{*}		Q	P_{1}	$a^{p} \equiv 1(q)$	$q \equiv 1(p)$	1
[12511]	Q^{*}	-	\boldsymbol{Q}	P_{1}	$a^{p}{ }^{2}=1(q)$	$q=1\left(p^{2}\right)$	1
[1112]	Q^{*}	-	$Q^{\prime \prime}$	P_{1}	$\alpha^{p}{ }^{\text {\# }} \gamma^{\prime}=1(q)$	$q \equiv 1(p r)$	1
[11]	Q^{*}		Q^{\prime}	P_{1}		$q \equiv 1\left(p^{3} r\right)$	1
[1251112]	Q	Q^{-}	Q	P_{1}	$a^{p} \equiv 1(q)$	$q \equiv 1(p)$	1
[2511 12]	Q	Q^{*}	Q^{*}	P_{1}	$\gamma^{p} \equiv \alpha^{\prime}=1(q)$	$q=1(p r)$	1
[4561112]	Q	Q^{*}	Q	$P_{1}^{\text {s }}$	$\begin{aligned} & a^{p} \equiv 1(q) \\ & \delta^{r} \equiv 1(p) \end{aligned}$	$\begin{aligned} & q \equiv 1(p) \\ & p \equiv 1(r) \end{aligned}$	1
[581112]	Q	Q^{*}	Q^{*}	P_{1}^{8}	$\begin{gathered} \alpha^{p} \equiv \gamma^{\gamma} \equiv 1(q) \\ \delta^{\prime} \equiv 1(p) \end{gathered}$	$\begin{gathered} q \equiv 1(p r) \\ p \equiv 1(r) \end{gathered}$	$r-1$

Table 3. $q>r>p$.
Case (a).
$I_{p^{2}}$ non-cyclical ; $P_{i}^{p}=Q^{q}=R^{r}=1(i=1,2), P_{1} P_{2}=P_{2} P_{1}, \quad R Q=Q R$, $I_{p^{2}}$ cyclical $; \quad P_{1}^{p^{2}}=Q^{q}=R^{r}=1, \quad Q R=R Q$.

Case (b). The simple group $G_{551}, p=2, q=5, r=3$.

$$
Q^{5}=1, \quad P^{2}=1, \quad(Q P)^{3}=1, \quad[R=Q P] .
$$

[^0]: * Presented to the American Mathematical Society (New York) February 25, 1905. Received for publication July 1, 1905.
 \dagger Bulletin, American Mathematical Society, vol. 1 (1899), p. 227.
 \ddagger Proceedings of the London Mathematical Society, vol. 30 (1899), p. 209.
 §Annales Toulouse, 1903, p. 63. Comptes Rendus, vol. 128 (1899), p. 1152, and lithographed book.
 $\|$ Hölder, Mathematische Annalen, vol. 43 (1893), p. 335. Burnside, Finite Groups, p. 81. Hölder, Göttinger Nachrichten (1895), p. 211.

 II Additional abbreviations used throughout are the following : P, Q, \cdots, operations of order $p, q, \cdots ; H_{h, i}$, a maximal invariant subgroup of G, order h and type $i ; \rho_{\Omega, h}$, number of subgroups of G, order h, permatable with $\Omega ; N_{h}$, number of subgroups of G of order h.
 ** Frobenious, Berliner Sitzungsberichte, vol. 1 (1895), p. 170.
 $\dagger \dagger$ Hölder, loc. cit., Cole and Glover, American Journal of Mathematics, vol. 15 (1893), p. 202 Burnside, Theory of Groups, p. 63.

[^1]: * Throughout the paper t denotes a non-integral mark of the $G F^{\prime}\left[p^{2}\right]$. Thus $\iota \sigma=1(p)$ is an abbreviation for $\iota \sigma \equiv \mathrm{J}(\operatorname{modd} p, P), P$ being any quadratic function irreduoible modulo p. \dagger SYLow, Mathematische Annalen, vol. 5 (1872).

[^2]: * All congruences are taken modulo n unless otherwise indicated

[^3]: *Serret, Cours d'Algebre Superieur, cinq. ed. (1885), tome 2, sec. 3, chap. 3. See also Dickson, Linear Groups, pp. 14-19.

[^4]: * Dickson, Linear Groups, p. 13.

