DETERMINATION OF THE ABSTRACT GROUPS OF ORDER p¢r;
p, g, » BEING DISTINCT PRIMES*

OLIVER E. GLENN

Since the publication in 1899 of Professor MILLER’s ‘“Report on recent
progress in the theory of groups of finite order,” WESTERN ] has published his
determination of the groups of order p*¢, and LE VAsSEUR § has discussed the
order p?¢*. This paper is devoted to the determination of all groups of the
order p?qr. It thus completes the discussion of the problem of groups whose
orders are products of four primes. ||

With the exception of the group of order 22- 3 -5, simply isomorphic with the
icosahedron-group, all groups of order p?qr are solvable. The maximal self-
conjugate subgroups will therefore serve as the basis of classification. The
twelve possible arrangements of the factors of composition are

1) ppgrs (2) pprg, (3) pgpr, (4) pgrps  (5) prpg, (6) prep,

(M) gpprs (8) ¢prps (9) grpp, (10) rgpp, (11) rppg, (12) rpgp.

If for a given type of group precisely the arrangements (i), (j), (k), ---,
of the factors of composition are possible, then we symbolize § the group
(¢, j» k&, ---). Two groups having distinct symbols cannot be simply
isomorphic.

The group (¥ always contains a maximal invariant subgroup ** of order p’g,
and may contain maximal subgroups 11 of order p?r and pgr. We shall discuss
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138 GLENN: DETERMINATION OF THE ABSTRACT GROUPS [January

in detail in this paper only two classes of groups: those possessing invariant
subgroups of both the types A, and H,. , and those possessing maximal in-
variant subgroups of the type /. only. A detailed summary of the results
obtained in the other classes is given at the end. We shall thus be concerned
principally with the subgroups ., (o = ¢, ») all types of which are given in
the following table, in which 7 denotes the number of distinct types, while ()
signifies (modulo p):

H,, /8788, 87'8,8, §;'8,8, S;'8,8, Parameters T
i=1 8 . 1
17 . S, S, S, 1
Irr, . Nh S, S, ac=1(p), p=1(o) 1
v, & . . . ac=1(p%, p=1(0) 1
v - Se N S, a'=1(p)p=1l(s)lor}[o+1]
Vi, . S, 878y 8, *e=1(php=-1() 1

o=¢q,7; S”=1, S’f= S’;=1, Sg=1.

§ 1. Determination of pg, .

By SyLow’s theorem,t N, =gr/o, p, p*, pgr/c, p’qrfcor1l. If N =1
then p; , =1, Q0 being any operator of prime order in G. When &, > 1,
the result of transforming the single conjugate set of V, subgroups

9159293 - 2 9w,

by Q is to permute them among themselves. Hence

_ 9 y,w--,g,v,)
Q 1 ) 9y ﬂ= =J a°
(gl 72 ch) (9.-,, gi,a"'9guv, &
It follows that J3 , =1 and

@ N, —pq,,=0(mod @); p5 , = 1.
Next let w=0. Then N,=(p*—1)/(p—1)=p+1,and
@) p+1—p;,=0(mod o).

Hence either p, , = 0 orelsep, , =2 (0 =g, r). Now if the subgroup 71, of
H,, . is cyclical the order of its group of isomorphisms is

. I=4(p*)=p(p—1).
* Throughout the paper.: denotes a non-integral mark of the GF [ p*]. Thus:w =m1(p) is

an abbreviation for (v = 1 (modd p, P), P being any quadratic function irreducible modulo p.
tSyLow, Mathematische -Annalen, vol. 5 (1872).
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If I, is of type [1, 1] its group of isomorphisms is simply isomorphic with the
congruence group { S, S,---} of order I=p(p —1)*(p + 1), where S, is
Y= 0, % + @, 05, Y = 4, %, + a2, (mod p),

or say
S, = (@, 2, + 0,,%;, 0@, + a,7,).
Since {) corresponds to an isomorphism of G, {1} corresponds to a subgroup
of the group of isomorphisms of & and wdivides /. Hence when 7, is cyclical,
orwhen 7, =[1,1] andp=1(0), py, , = 2. But when p= —1(o) and
pisodd,p, ,=0. Alsosincep, ,=1,J, , and J , may be permutable. If
8, = (b, + by, by, + byya,)

» Y21

the necessary and sufficient conditions that S, S, = &, .S, are

a b a. b
@) 8,=| Tol=0x 8= O * =0,
a,—a, b,—b, ay,—a, b,—b,
d _ al2 azl _ 0
* 12 bzl

§2. Class (9,10), p>g>r.

We now consider the groups whose symbol is (9, 10), having the maximal
subgroups H,, ,and H,, , (i,j=1IV,V, VI). Since I, is invariant in G the
existence of a subgroup of type IV excludes the possibility of a subgroup of
type V or VI, and vice versa. There are thus five cases to consider.

[1] ¢=j=1V. Here I,= { P} is cyclical and P may be regarded as the,
generator of order p® in both H-sub-groups. Since p,, = 1, we may choose
{ R} permutable with @ and, since ¢ > r, QR = R, so that G is defined by
PP=@QF=R=1, Q'PQ = P, R-'PR = P#, QR =R(;
or for brevity @ = (a:8:1), where

=1, B =1(p*), p=1(gr), T=1.
[2] i=j=V. Let H;,zq,¢= {.P;, P;, Q}, Hp,,.,j= {Pl’ P,, R},
wherein QR = R@Q. We may write
R'P R=P:, RP,R= P8, o =1(p), B = a.
QPQ=PnPyr,  QP,Q=PpPp,
and from the permutable isomorphisms of Z,

Pp Py Pp Py
JQ = P;luzl'i'auzg Pgﬂll"l'ae’zg ’ JR = P‘llzl szi ’

* All congruences are taken module » unless otherwise indicated
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4) d,=a,(a—B)=0, 8,=a,(a—RB)=0.

Reserving for later treatment the ambiguous case A=1, we deduce ¢, = a, =0.

Suppose next that
R'P; R = P)P (i=1,2).
Then )
(RQ)'P(RQ)= PPy = (QR)"P(QR) = Py Py,

) b (a,—v)=0, b, (a,—v)=0, =1,
b,(a,—8)=0, by(a,—8)=0, S = o*.
Thus when %2 4= 1, &k 4= 1 we have one of the two equivalent results
a,=v, a,=239 or a, =39, a,=v.
In case 2§ 1, k=1, the set (5) becomes
b,(a,—v)=0, by(ay,—v)=0,
b,(a,—v)=0, by(a,—v)=0,
and there are three possibilities to consider, viz.,
@ e,Fv, b,=0, b,=0, b, %0, bzzais('), Ay =7;
(ii) a, =9, auFkvy, by=0b,=0, b, %0, b,%£0;
(iii) a,=rv, a,=1.

Case (i) implies
R'P R = Pl», R-'P,R= Pl»,

R7P"R=R"P/"R or P™=P;",

contrary to the independence of P and P;. Likewise, case (ii) is excluded.
Hence a, = a,, =
In a similar manner, when A =1, k 4 1, we get ¢, = a,, = a.
Nextlet A =1, %k =1, so that
R-'P.R = P:, Q'P.Q =P (i=1,2).

One of the operations P|, P, must be independent of P,. As 4?=1(modp),
we may assume that P, and P, are independent. These will generate Z,,, so
that '

Q"P,Q=PuP", R-P,R= PwpP™.

The abelian conditions from J/, and ./, are [Eq. (3)]
8, =b,(a,—98)=0, 8y =0y(by—a)=0, d,=a,b,=0.

Thus three possibilities arise, viz.,
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() =0, b,=0 a, = &;
(ii) a, %0, b,=0, b, = a;
(i) a, =0, b,=0.

For (i), let P, = P; P, P,— P: P.", whence
Q-'P,Q = PP = PP,
R-P,R= PPy = Pyriomp™,
(v—=98=z=0, (v—2¥8y=0,
w(b,—B)=0, 2(a—B)+buw=0.

Hence y =3 and k= 1; but as P, P, are independent, w % 0, b,, = 8,
az Band % = 1, contrary to hypothesis. Since (ii) is likewise excluded, we
have ¢, = b,,=0,

Q'P,Q= P, R-'P,R= D)=,
z(a,—v)=0, y(8—nvy)=0,
2(B—a)=0, w(b,—B)=0,
where %0, wf 0. Hence when a= 8, § =1+ there results ¢, = v,
b,,=a. Wae are thus led to a single set of defining relations :
P';=Pg=Qq=Rr=1’ P|P2=P2P1' Q-ll)1Q=PT’
Q'P,Q = Py, R'P R = P:, R-'P,R = P, RQ=QR,

=1(p). Y=1(p) (h=1,2,r—1;k=1,2,:,¢—1),
or, briefly, say G = (1:70:09":a0:0a*:1). Proceeding to the determination
of 7 we observe that there are, by hypothesis, two subgroups, { P, }, { P,},
both permutable with ¢) and 22. In any isomorphism of G' with itself either
(P}~ (P} (P}~ {P}orelse (P}~ {P},{P}~{P} Hence
there are two choices of generators of order p. Every element of G is of the
form Q = R*Q'P:P;. Hence Q' = R*Q7P1P;, so that  is of order r only
when y = 0(mod ¢) and of order ¢ when 2 = 0(mod ). Thus the most gen-
eral operator of order ¢ is @, = Q¥ P; P;, which transforms G in the same man-
ner as @), = @*. Similarly Z, = . Employing the new generators 2, ¢,
P, =P, P,=P,, we get

(1:90:09*:a0:0a*:1) ~ (1:970:09:070: 00" :1).
Hence any set of relations involving arbitrary primitive roots (a®, v") can be
transformed into the original set. Next let P = P,, P, = P . Then

(1:90:09%:a0:00": 1) ~ (1:9470:097:a*0:0a7:1)
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if
6) ky =1 (mod g), he =1 (mod r).
The group characterized by [ 4, k] is thus isomorphic with [«, 3] when (6) is
satisfied. Further 7 equals the number of distinct solutions of (6), e. g., when
r=2,7=3(9g+1),and whenrisodd, 7= }(gr + g+ r+1).
[8] i=VI,j=V. When A1 we have Q7'P,Q@ = P» (j=1, 2).
Assuming that
R'P R= P; Py, R-P,R = P; P},
we derive
a,c—2z=0, r—(P+it—a,)z=0,

ayy—w=0, y—(P+it—a,)w=0.
The elimination of =, y, z, w gives
a,—(P+)a;+1=0 (i=1,2),

whence @, =¢ or ¢. Hence g, , a,, are galoisian imaginaries* and G, for
i="VI, j =V, does not exist.
Before considering the ambiguous case 2 =1 a few general results must be
*established.
Let S and 7' be any set of generators of 1, so that G = (S, T, @, R}.
We may write
P = 81", P,= 8T,

Q'SQ = ST, Q- TQ= SexTon,
Q—‘P; Q = P; = ST = Senztony Penz+any,
Q-IP;Q = P;_IP;"*‘ = Szt 0z P-y+(w+ow . Qanztagw Ponztemw

Hence

whence results the eliminant

x y 2 w
a, a, -1 0

D=|% % 0 -1 = 0(mod p),
1 0 aq,—t a,
0 1 a, a,—t

where ¢ = ¢ + ¢. Its expansion gives
D}, —t(a, + ay —t) Dy, + 0, — af, + t(a,, —ay) + 20,0, +1 = 0.

Now assume S = P,. Then, since p = — 1(mod ¢), py , = 0 and we may
take Q' P, Q= U as T. Then

*SERRET, Cours d’ Algebre Superieur, oinqg. ed. (1885), tome 2, sec. 3, chap. 3. See also
DICKSON, Linear Groups, pp. 14-19.
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JQ=( P‘;IUH ),J%=1,

P‘llul‘: O artonx
0 al2 lq
D1, = | =(—a,)=1(mod p).
1 a,
Now —a,, cannot be a primitive root of this congruence; for, if so
p=1(modg), whereas p = —1(modg) and ¢>r. It follows that

a,= —1(mod p) and
D=(a,—t)l=0,a,=t=0"+..
This gives 7, = { P,U} and
¢ 'PQ=U, QUQ = P U,

7
@ R'PR=P:, R'UR=PiU",
-1 E 1 0
8.2= EO, 8;2= EO,
—P?—t a—7q —F—tL a—1,

and thus, when A=1,9=a, £= 0 (mod p).
Inversely let P,= P{'U". Then

R'P,R = P{*Un* = P{*U
and hence 2 = 1. Thus when %~ =1 there exists a group
G={P,U,Q,R}=(1:01: —1" +::a0:0a:1),

where o =1(p), p=1(r), 7=1. Also p= —1 (modg) and, in the
GF[p*], =1 (mod p).

[4] i=V, j= VI. Since r is necessarily an odd prime, the argument of
[3] again gives for G a single type, G'=(1:90:0y:01:— 1 + ::1), with
v=1(p). p=1(gq), 7=1. Likewise p= —1 (mod ); and v=1 (mod p)
in the GF [ p*].

[6] ¢= VI, j= VI. Employing as in [38] the theory of the determinant
D we are led to the same equations (7), viz.,

QPQ=U, @QUQ=PPU,  qg=1(p).
Let us assume that

R-'P,R=P,= P;U", R'UR = P:U".
Then

8, =

12

l—l z | 1 y

—— -
C—y T—w
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xr 2

=0, D,= % 0.

12

(—1 1'

z oy y w

Thus
2= —Y, w=w+ (4+4)y, D,=a"+ (& + ) oy + 3.

Since
that R-'P,R = P'Pits,  g=1(p),
so tha
RIUVR = Py Ua+ i+ 00 — Pr@+0i(gt e [T-w+Gituy,

Since P, and P, are independent, y £ 0; hence
®) % + (4 +4)y— (3 +4) =0,
9) Y-+ (5 +4)e—1=0.
From the latter we at once derive
D,=2"4 (4 4)ey+y' =1,
10)  (,—du)e’—(1—d)(4—g)e+ (1 -gg)(4—4)=0,
(11) (o =&)Yy — (4, — 4)=0.
There always exist integral solutions of (10) and (11),z =¢,y =0, (j =1, 2).

Thus
R'P R = P;f‘“(‘f*“)"i U-9s, R7'UR = PiiUs.

THEOREM. The two general types of G characterized by the two distinct
sets of solutions of (10) and (11), viz. [¢,, 0,] and [¢,, o,] are simply
isomorphic.

In proof, o, = — o, and congruence (8) gives

2, — (& 4+ )o,— (4 +4)=0, =€+ (& +¢)0a,.
Hence the two types of G are characterized by
RP R = Pyt(itweiJ-a, R'UR = P'U=,

and
R_IP, R = P:‘ U=, R'UR = Pl""’l U atGi+we,

Let us select a new operation of order ¢ from { @},e. g. @ = @~'. Then
QR=RQ,QTUQ =P,
Q7 'P,Q =UnPp=U-Pity, r =

j "l"— L

(@—7p . (9—F
4 4

The result of selecting @’ and (,, o,) is thus to interchange P, and U and to
reproduce the relations given by @ and (¢, o,). Hence [¢,, 0,] ~ [¢, o, ].
The quantities ¢, and ¢, are marks of the GF [p*] and in that field appertain
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respectively to the exponents ¢ and r. Let p be any primitive root in the
GF[p*]. Itis easy to show that 7 =1 and hence we may select *

¢ = P’.P’—l)/q, (= P(P’—l)/r,
thus
G=(1:01:-1,8+¢:e+ (& +¢)o, —0:0e:1),
where
= P, P, =15 pm —1(med gr), T=1,

(=)= (4= gF =0, et (F+u)o—(5+s)=0.
§ 8. The generating function [k].
Consider the relation B—*P, R*= P U*. From it
Uy — (22 + 4iy)w, + (& + by + y*)u,, =0,
Upy = L%, + U =0 t=d +y;5=1,2),
These recurring formule give
w=[kl,z— [k—1],, o=[k]y,

P
Y .
[%],= =y

Following are some of the properties of the generating function [%],.

[#+1], 1 1 1

where

(12) [k]j _t;+2;+?j+n~kterms,
(18) [#);—[*,+1]),[k—1],—1=0,
(14) [0],=0, [1],=1, [—%],=— [#],,
(15) [&+ 1], = [2]/[k]j_ [k—1],,

1) {[k+1],— [k—1],— [2],}§= (4" - 1)(47 = 1).

§4. Class (10), p>g>r.

We shall consider next groups possessing a single maximal self-conjugate
subgroup H,,, , of non-abelian type (i = III, IV, V, VI). It is readily shown
that class (10, 12), with i = III, must contain an invariant subgroup H, .
Class (10) remains to be considered.

[1] ¢=1V. Here H,, v = { P. Q} and since { P} is self-conjugate in
G, R'PR = P?. Sincepy,=1[Eq.(1)], R'QR = Q. Hence

(QR)'P(QR)=P* =(RQ)"P(RQ) =P, a=1(p),
aB(ar1—1)=0 (mod p?), y=1(modg).

* DICESON, Linear Groups, p. 13.
Trans. Am. Math. Soc. 10
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Hence {P,, P,, R} is self-conjugate in {P, P,, @, R} = G, contrary to
hypothesis.
[2] ¢=V. Let H, yv={P;, P,,Q}. Assuming that
R'P,R = P;"™ P, R-'P,R = P P,
we deduce
a,a(a'—1)=0, a,(Br—a)=0,
a,B(B'—-1)=0, a,(ar—B)=0,
where a?=1(p), B=a*. Now y sz 1 (modg). Hence
a,=0, a,=0, at=a, a'=a* (modp),
y=h (modyg), ar'=a (modp), ¥*=1 (mod gq).

But ¢ appertains to the exponent » modulo ¢, and therefore r=2 and
y=—1 (modg). Thus

R'P,R=P#», R'P,R=P"™, a,a,=1(modp).

Then P,=P;™, P,, Q, R, generate a group of order 2p’q, viz.,
G=(1:a0:0a7":01:1G: —1). Alsop=1(g),r=1.

[8] i=VI. It has been shown [§1], that p = =1 (mod ).

(a) Fivst let p = 1(r). Then pp, =2 and two subgroups { P, }, { P,}
may be selected which are permutable with £. If

QP Q="r, Q'P,Q= Pipyr,
R-'P R = P%, RQR= ¢, v% 1 (modg).
Since Z, is invariant in G we may assume that

P,—P:P:, R'PR=P:P,

then

Hence
(QR)'P\(QR)= P P;=(RQ )R (RQ)=P*r1pin,
(@R)'Py(QR)=P#+E=PPy=(R Q)" P,( RQ )= Pty Plr=+lytty,
v=—[v—1]8, =[v]8,
[(vI’'=[v-11+ [2][v—-1]+1,
[v]{[v+1]—[v—1]—[2]}=0.
Now [7] #% 0 (mod ¢g). Since [— %] = — [%] and
[v+1]—[v—1]—[2] =(o*'—1)(o7'—1) = 0 [Eq. (16)],

there results y = —1(mod ¢),y" = {(—1) = + 1 (mod ¢), whence » = 2. 1If
R'P,R =P, thena= =1 (modp),
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w(yx1)=0, xw+2(Bx1)=0,
w(—Bx1)=0, [2]Bw +2(B+1)=0.

First let the upper sign hold. If 8=1, then w = 0 which is impossible, since
P,, P,are independent. Hence 8= —1, z=—[2], y=+ [1] = +1.
Likewise if we use the lower sign, 8= + 1,2 = + [2],y=—[1] = —1.
We thus obtain the two sets of defining relations:

(1:01: -1+ 210077+, £1:—1).

To determine 7, let @, = @, B =R, P, = P,, P, = P;='1PFl; there
results

{Pyys P> Qs By} =(1:01: =1 4=: 3 10 : = [x—1] ¢ [2] [«], = [«]: —1).

But
x[z2—-1]F[2][z]=F|le+1]=F("+¢)F[x—-1],

[Eq. (15)]. Hence
{Py, Py Qs By} =(1:01: =17+ #:x10: (P + ), £1: —1)~G.

Thus the same defining relations are reproduced with ¢ replaced by %, and so
T=1.

It will now be proved that these two types are simply isomorphic. Select
new operators as follows :

W= Q’ r= R, n= P';P;’ Py= P;bP;H-p]b = ql_lp1%'
Then using the first set of defining relations we will have
9T P =PRSS P =Dy TR = P e =g
2a+ [2]5=0 (mod p).

Hence when a new operator p, = P} P; is selected, where a and b are solutions
of 2a + (¢ + ¢)b = 0 (mod p), the first type is transformed into the second.
They are therefore isomorphic.

() When p = — 1(r), 7 odd, pg ,=0. As before, we deduce

Q'PQ="P, Q'P.Q=PPits, g=1(p),
R'P,R=P, RP,R=P7Pis, =1(p),

Let P,= P:P}and R-'P,R = P,= P: P:. Then

(17) R-'PyR = P+t Pyith-ve o Prliy=thm—{rlw? Pilev+ v+,

In addition to the latter, but not independent of them, we have the congruences
derived from
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(18) (QR)'P}(QR) = (RQ)Py(RQ).
The equations (17) and (18) give us the dialytic eliminant

Ap={g+oH{vI—(@+a) v+ 1 H{{E" —1) (0 —=1)}* = 0.

Now [v], is an intéger, and since r 4= 2, and vy — 1, it follows that
o = 1 (mod ¢), contrary to hypothesis. Hence when p = — 1 (mod ») and » is
odd, no corresponding group @ exists.

The results of this section may be summarized in the following

TrEOREM. A group G, (p > q>r) always contains a maximal self-
conjugate subgroup H of order p’q. If H is the only maximal invariant
subgroup of G and if r is odd, then N, =1 and H is necessarily abelian.
If ris even (r=2) and p = 1 (mod q) there exists one type whose subgroup
H, is non-abelian, and if r is even and p = — 1 (mod q) there exists a
second type possessing a mon-abelian H, . These two types of G contain
respectively q and pq operators (and subgroups) of order 2, and in each type
N,=p’. Moreover, with exception of the two types just described, every
group of order plqr(p>g>r), in which N,= 0 (mod ¢), possesses an
abelian maximal self-conjugate subgroup H, .

A general summary of all the existent types of G follows. Except for ¢
and p, every parameter occurring in the tables is an integer ; while ¢ and p are
marks of the GF [ p*]. See footnote on the second page of the paper.
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Case (). R'QR=Q"; v =1(q).
Class, Q'PQ Q'P,¢ R'PR R'P,R Parameters. Arith. rel. T
(358101112)| P, P, P, P, h=1 gm1(r) 1
“ P, P, h=1 g=1(r) i
h=1,2...r—1
{se101112)| P, P, Py P, o - l(p'; pmgml(r) |r—1
h=1,2...r—1
[101113] | P, P cml(pt) P=¢= 1(r) [ r=—1
hy k=1,2...r -1 lor
“ P, P, Py P o =m1(p) pmgml(r) 1(*—1)
“ P, P, P, PP+ A ",1;21‘('};;‘1 pm—gqm—1(r)| r—1
- hA=1,ym—1 r=2
por B BAT B B aml(p) pmi(g) | !
- h== 1, LA 1 r=2
i A T 1(p) pm—1(g) |

TABLE 2. ¢>p>r.
I’, non-cyclical; P“’BQ'-R'=1 (i-l, 2), .PIP,=-P,.P“ RP,-P,R,
I, cyclical; PP = Q=R =1, RP,= P,R.

Clase. P'QP, P;QP, R-'QR R-'P,R| Parameters.  Arith. Rel. |
(1234561112) | @Q* Q P, a*m1(g) gml(p) | 1
[1251] Q@ Q@ P | o'ml(g) g¢ml(ph)| 1
[1112] Q- @ P |e=my=l(q) ¢=l(pr)| 1
(11 ¢ . Q@ P |Fmy=l(g) ¢g=l(pr)| 1
(1251112) | Q e @ P, a*ml(g) g=1{p) | 1
[251112) Q Q Q P, |y=ma=l(g) qml(pr)| 1
a*=1(q) q=1(p)

[4561112] Q Q@ Q P} =1(p) p=l(r) 1
o=y=1(g) q=l(pr)|

[661112) Q Q- Qe P F=1(p) pml(r) | 1




1906] OF ORDER p’qr; p, ¢, r BEING DISTINCT PRIMES 151

TaBLE 8. ¢>r>p.
Case (a).
I,non-cyclical; P?=@'= R =1(i=1,2), P, P,=P,P,, RQ=QR,

I, cycical; Pr=@Qi=R =1, QR=RQ.
Class. |P'QP, P{'QP, P'RP, P;'RP,| Parameters.  Arith. Rel. r
[12345678) | @ Re a?=1(r) r=1(p) 1
[1237)] Q Re =1(r) r=1(p) 1
a®
[123456] Q Re* B’:igg; ¢g=r=1(p)|p—-1
N F=1(g) g¢=1(s")
(125] s k* Br=1(r) r=1(p) -1
. o *=1(q) r=1(p") |,_
g | € R Fai() g=1(p) 777
=1 ~
[12] Q R ﬁ»: 1((3)) g=r=1(p")|p'-1
[12345678] | @ @ R R |&@=1(r) r=1l(p) | 1
a? =1
[123] Q ¢ R R® B’: 123; gsr=1(p)|p-1
= 1(r
[1235) Q Q R R 3’: lgq)) ¢g=r=1(p)| 1
Case (b). The simple group Gy, p=2, ¢g=5, r=38.

@=1, PP=1, (QP)=1, [R=QP].



