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In the fragment Zwei allgemeine Sätze über lineare Differentialgleichungen

mit algebraischen Coefficienten numbered XXI in his collected works, Riemann

laid the foundation of the modern theory of linear differential equations by

regarding the solutions as a linear family and studying the substitution group

of such a family. The importance of his results will perhaps lend interest to an

investigation of theorems of a converse character. The present paper is not,

however, concerned with the two theorems from which Riemann's fragment

takes its name, but with two others from which they are deduced.

Although the paper referred to discusses only differential equations all of

whose singular points are regular, we add no new difficulties to our problem if

we generalize the results there obtained to the case of n + 1 linear families of

the nth order, ym, ym, • • -, 2/("+1), all analytic in the same »i-tuply connected

region T , and having the same substitution group (Monodromiegruppe) in T .

The term basis will be used here to designate any system of n linearly indepen-

dent members of a family. If bases chosen from different families have the

same group of substitutions they will be said to correspond, and homologous

members of such bases will be called corresponding branches. With this ter-

minology the two theorems of Riemann which we here consider may be stated

as follows :

A. If in the matrix
y(„       fl>       ...       yin + V    I

*?'   ^   •••  î4"+1) I

II^ tf  ■••  ^'+1)!l
the columns are corresponding bases of the families ym, ym, • ■ -, y<-n+1) respec-

tively, the n + l determinants formed by striking out in succession each column

in the above matrix are functions which have the same substitutions. These

substitutions are merely multiplicative, the multiplier for any circuit in Tm

* Presented to the Society April 29, 1905.    Received for publication October 20, 1905.
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being the determinant of the substitution undergone by the columns of the

matrix.

B. Every set of corresponding branches tfV, y{2), •■ -, y^+l) satisfies a linear

relation

a,yf+a2yf + • • • + a„+1 ̂ +l>=0 (¿ = l,2,   ••,»)

whose coefficients are single-valued and analytic in Tm.

In what follows we will suppose given a part, or all, of what appears in the

conclusions above, deducing therefrom criteria that different families have the

same group.

§ 1.   Theorems converse to A.

We now proceed to invert the order of theorem A, obtaining thereby criteria

in terms of certain determinants that two families of the nth order, y and z,

have the same group. With the family y we associate n — 1 other families

y(')) y(2)5 ...^ y(-n-l'> which are known to have the same group as y, and which

are analytic in the same region T^

We now form the matrix

Let z also be analytic in this region.

(1)

2/i'}

fi0

2/Í

2/r1}

y.  ^ 2/(„"-n

in which each column is a basis of its respective family, the last n being corre-

sponding bases. By Z, Y, Ym, • • -, Yin~1} we shall designate the determinants,

taken with alternate positive and negative signs, formed by striking out in suc-

cession the columns of (1).    Our first theorem, then, is :

If there is no set of branches (not identically zero) f,, Ç2, ■••, fH of the

family z, which, substituted for the first column of Y, causes the resulting

determinant to vanish, then the families y and z will have the same group

provided Y has the same group as Z. In this case corresponding bases are

furnished by the columns of (1).

To prove this theorem, continue Y and Z analytically about any circuit C,

denoting the final values of the functions concerned by dashes over the„former

symbols.    We shall have

(2)

(3)

\ = £ aA

k=n

Vi = Z ßnVk

(i=l,2,•••,«);

with equations similar to (3) for the families ym, yiV, ■ ■ -, y("_1).   If we denote

by A the determinant of substitution (3) we have
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z = xz,

so that if Y and Z have the same group the equation

(4) Y-XY=

must be satisfied, where

fln-\)

frl)

SCO
v n

r/»-Df:

= 0

^ = E(/3W-«WK (i=l,2, •••,»).

If aH were not equal to ßki for all values of k and i analytic continuation back-

ward over C would change (4) into an equation

I?. vV

£    2/!(I)
#2

„en
«7 H y;

(»-!)

= 0,

which is contrary to our first hypothesis.    Hence for every circuit in Tm substi-

tutions (2) and (3) must be the same, as required by our theorem.

Let us now discard the first condition of the previous theorem, but add the

hypothesis that Z does not vanish identically. The reason for introducing this

restriction will appear in what follows, but we may notice here that if Z = 0,

the n families y, y'<i) y_1) satisfy among themselves a relation given by

theorem B.*    Our next theorem is:

If, for analytic continuation over every circuit in Tm, Y(i), Ym, ■ • -, Yin~l

undergo the same substitutions as Z, then either there exists a relation

*i = PVi (¿ = l,2, •••,»),

between bases of the families z and y, where d/dx log p is single-valued in

Tm; or else z has the same group as y, the columns of (1) being composed of

corresponding bases.

To establish this, continue analytically over any circuit C the n relations

(5) z,Z + ViY+ yf^ + • • • + yc-»r<"-« = 0    (,: = i, 2, .... »).

Using the same notation as before, we obtain from linear combinations of the

resulting equations and the original set (5) the system

*For if we associate with y, y<l\ ■ ■ -, jt"-1) a family j/"> having the same group, and by a

suitable change of notation adapt the formulae of theorems A and B to this case, we shall have

± yo» — z. But the coefficients of the equation of B are shown by RlEMANN to be proportional

to the determinants Y, r<l>, •••, F<">, so that if Z=0, theno„=0.
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(6) z'iXZ + yi(Y-XY) = 0 (»=1,2, .-.,»),

since by hypothesis FCi> = XY(k) (k = 1, 2, ■ ■ -, n — 1).

If the substitutions (2) and (3) are always the same, the second conclusion of

our theorem holds good ; it remains then to consider the case where (2) and (3)

are not the same for at least one circuit. In this event (z'x, z'2, ■ ■ -, z'n) must

be a basis, for otherwise a suitable linear combination of equations (6) would

give the relation

gc,.y|.[F-Ar]=0.
¡-.i

But the branches yi are linearly independent, being analytic continuations of

à basis, so that £cfy; cannot vanish. The same is true of the expression

Y — XY, for in equations (6) Z, by hypothesis, does not vanish, nor can the

determinant A, while the vanishing of all the branches z\ is impossible since

they are linear combinations, in which the coefficients are not all zero, of the

basis (zx, z2, ■• -, zn).    The equation above is therefore inadmissible.

If we continue equations (6) backward over C the result can be written in

the form

(7) < = P2/< («•=!,2, •■•,n).

We can now show that p undergoes only multiplicative substitutions in Tm, i. e.,

that d/dx log p is single-valued. To prove this, let the independent variable

describe any circuit in Tm ; p will take on a value p, and from (7) will result a

system of equations

(8) Z7X = PË\2/* (f = l, 2,...,»),
*=i *=i

where the determinants of the two substitutions (7) and (8) cannot vanish.

Combining (7) and (8) we have

S(p%i-p^)yk = o (f=i, 2, ••-,»).
*=i

The determinant of the coefficients of yx, y2, ■ • ■, yn in this system of equations

must vanish, and since p ^ 0 we have thus an equation of degree n in p/p with

constant coefficients. This equation cannot be illusory since two of its coeffici-

ents are the determinants of (7) and (8), one of these being multiplied by

( — 1 )". We therefore have p = icp, where k is some constant, so that the sub-

stitutions of p are in fact all multiplicative.

With two families of the second order it becomes unnecessary to introduce a

third.    If the determinant
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is multiplicative, its multipliers being the determinants of the substitutions on

(yx, y2), then the consequences of our theorem follow.

§ 2.  Theorems converse to B.

In deciding whether linear families which satisfy a relation of the type given

in theorem B have the same group, the question of reducibility assumes such

importance that a brief reference to that subject may be advisable. A linear

family of given order is said to be reducible when it includes all the members

of a linear family of lower order. A family thus contained within another we

shall refer to as a subfamily of the first. If a family of order n contains a

member ya having only p •< n — 1 analytic continuations which, with itself, are

linearly independent, these p + 1 branches form a basis of a subfamily (not

necessarily irreducible) of order p + 1. The branch ya cannot belong to any

other subfamily of order as small as p + 1.

In the case of two linear families y,zof order A, p respectively, when A > p,

it may be possible to choose a set of branches zx, z2, ■ • ■, zk, none of whose mem-

bers vanish, that has the same group of substitutions as a basis ( yx, y2, ■ • •, yk )*.

It is easy to prove that the relation of theorem B holds good even when some of

the families concerned are of order < n and the sets of branches y[v\ y2"\ • • •, pf

are not all bases, provided these sets have the same group. Returning to our

notation for the families y and z, we can now easily show that y must be reduci-

ble, for, by theorem B in its altered form, we have

dy. dlk~l)y.

<h*t + «,y, + «s -£+••• + «a+, d^-\; = o    («•=i, 2, • •., x),

where a, 4= 0, and consequently the remaining coefficients cannot all vanish. But

the branches zx, z2, • • •, zk are linearly dependent, since z is of order p < A ;

hence we can form a linear combination of the above relations so as to eliminate

z. We shall then have a linear differential equation of order < A satisfied by

a member of the family y ; in such a case, by a well-known theorem, y must be

reducible.

Let T be a system of s linear families ym', y{2), ■■■, f/^ analytic in Tm.

These may be of different orders, and any of them may be reducible. Between

certain branches j^1', y[2), ■■■, y["> of these families we shall suppose there exists

a relation

(1) alî/1"+a2^ + ... + a< = 0,

where ax, a2, ■ ■ ■, at are single-valued and analytic in Tm.    Further, in order

to avoid results which apply only to subfamilies, we shall suppose that none of

the branches in (1) belongs to a subfamily.    As a matter of notation we  take

* A simple illustration is furnished by the set of branches x, x and the basis {x-\- V*,x — \/* ).
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y0' as the family whose order, n, is larger than, or at least equal to that of any

other.

We can now obtain n linearly independent branches y'x\ y'P, ■ ■ -, y^ by ana-

lytic continuation of fxl) over n —1 suitably chosen paths Cx, C2, •••, C j.

Continuing equation (1) over these paths in succession we obtain the set

(2) axy?+a2*f+-- ■ + atfp = 0 (, = i, 2, ■•.,»).

Designate by yf^ the result of continuing analytically the branch y^ about any

circuit Üin Tm.    Since (]/P, y2\ ■ ■ -, y'^) is a basis we have

(3) f11)=cyx>+Vj2»+...-r-c„y'?,

where the coefficients cx, c2, ■ ■ -, cn are constants. Unless the sets of branches

VV i y^ » " * ' » 2/,f' (°f which some may be bases and some not) have the same

group for all the values v = 1, 2, •■-,«, there must exist a circuit C for which

the equation

&? = rf + rf + ■ ■ ■ + CJ?
holds only for certain values of v. Then if we multiply equations (2) by suit-

able constants and add to the equation

(4) arfp+arfV+.-. + a^^O

we can obtain a relation

(5) apf>;lx + aqf;;lx + ... + «^, = 0

from which y0) has been eliminated. Hence if there exists no relation (5)

linearly independent of relations (2), the families of T have corresponding

sets of branches (i. e., sets having the same group)

iftUyfi ■■■^f:) <»=i.2,■■•,.),
where y(y\for each value of i and v, is an analytic continuation of ' fxv).

The following theorem gives a condition that the families of T have the same

group: If there exists no relation of the same type as (1) between less than s

branches chosen each from a different family of Y, then the existence of rela-

tion (1) is a sufficient condition that the families of T have the same group.

In this case corresponding bases (y^,]/^, • • • ■> f?) are obtained by simul-

taneously continuing the branches y1^ over n — 1 suitably chosen circuits in

Tm. The existence of a relation linearly independent of relations (2) may be

easily proved incompatible with our hypothesis. Hence to complete the proof

of this theorem we need only show that the corresponding sets of branches

which must exist in accordance with the previous theorem are bases. But if

this were not true we could obtain a linear combination of equations (2) so as to

eliminate at least one family from the resulting relation, in contradiction to our

hypothesis.
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Here we must have s = n + 1, since theorem B always gives a linear rela-

tion between n+l families of order n that have the same group. It can easily

be shown that if the conditions of this theorem are satisfied no family of Y can

have a subfamily of order o- < s — 1, for in such a case every family of Y must

have a subfamily of order cr and all these subfamilies must have the same

group. But theorem B gives a linear relation between branches of cr + 1 of

these, which contradicts our hypothesis that no such relation exists between less

than s branches. In particular, if s = n + 1, all the families of Y must be

irreducible.

If, therefore, n + l irreducible linear families of order n have no relation of

type (1) between less than n+l branches chosen one from each of the families,

the preceding results combined with theorem B show us that the existence of a

relation (1) is a necessary and sufficient condition that these families have the

same group. Under these conditions we can eliminate yxv>, f-2), • ■ -, f"+l),

between (1) and the differential equations of their respective families so as to

obtain a system of differential equations in ax, a2, • ■ ■, an+l. The condition

that the families have the same group is that these equations have a system of

single-valued solutions. Such a system of equations is generally of degree = 2,

but in case n — 1 of the families are the successive derivatives of a family ?/2'

the system is linear. Its study by Heun has shed some light on the conditions

which the parameters of two linear differential equations must satisfy in order

that the equations may have the same group.*

If, now, we set aside the conditions of the second theorem of this section,

though still assuming the existence of a relation (1), an especially interesting

case presents itself when all the families of Y are irreducible. In this case the

sets of branches y{xv), y^\ • • •, y^ cannot correspond unless they are all bases,

otherwise, by the results of page 103, tfl) would be reducible. Hence if the sets

of branches fx\ tf*\ ■ ■ -, y^> are not corresponding bases for j/= 1, 2, ■••, s,

we can not only obtain a relation (5) from which fX) has been eliminated, but

we can also deduce a relation from which any given family appearing in (5) has

been eliminated, but which involves every family of Y except y(l'\ y(?), • • •, y(r)

(and may involve some of these also). This can be done by analytically con-

tinuing (5) over n — 1 suitably chosen circuits and combining the results with

(1). We now apply the same reasoning to these two relations until we finally

reach a set of relations from none of which further eliminations are possible-

By the preceding theorem, the families involved in any one of these relations

have the same group. Thus either all the families of T have the same group,

or else we can group them into systems Yx, T2,- ■ -, r4 whose members have the

same group.    Every family of T will belong to at least one of these systems.

*Acta Mathematica, vol. 11 (1887), p. 97; vol. 12 (1888), p. 103. Mathematische

Annalen, vol. 33 (1889), p. 161.
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If a family is common to two systems they must have the same group ; by the

use of this principle it is possible to separate Y into mutually exclusive systems

in each of which all the families have the same group.

In conclusion we illustrate these results by considering three linear families

of the second order, if1), ym, y(3\ between branches of which there holds a rela-

tion of form (1)

(6) axif?+a2y?+a3y?>=Q.

If the branches in this equation all belong to subfamilies it is easily seen that

these subfamilies must have the same group. If y^ does not belong to a sub-

family of j/1' we can obtain, by analytic continuation of (6), a relation

(7) «riff+ «Wff +«riff-«•
In case the pairs of branches y(x\ y2")do not have the same group for v = 1, 2, 3,

we can deduce from (6), (7), and suitable analytic continuations of (6), a set of

equations

a^ + a^^Q,

(8) a2yf + «32/f = 0,

«riff + «riff-o.
Hence if the families ym, ym have no pairs of branches possessing the same

group they are reducible and contain subfamilies which have the same group ;

similarly for ym, y{3> and y(3), y(1).

If one of the three families is irreducible the same is true of the others. For

let ym be irreducible, and y(2), if possible, be reducible. A suitable linear com-

bination of equations (6) and (7) will then give an equation of form (6) in which

y[¿) is a member of a subfamily of ym. If we use the notation of (6) for this

relation we see, by the results of page 103, that y^p, iff, being linearly inde-

pendent members of an irreducible family, cannot have the same group as

fx2\ f2'. But the first equation of (8) would then hold good, though an evident

impossibility if y(1) is irreducible and ym reducible.

From these results we deduce the conclusion that if one family represented in

a relation (6) is irreducible the same must be true of the others, and the families

must all have the same group. To obtain corresponding bases we continue

analytically the branches in relations (8), if such exist ; otherwise those in rela-

tion (6).

Northwestern University,

October, 1905.


