SETS OF METRICAL HYPOTHESES FOR GEOMETRY®

BY

ROBERT L. MOORE

In this paper is given a set of assumptions, C, concerning point, order t and
congruence, which, together with a certain set of order assumptions O,} a conti-
nuity assumption A ,} and a very weak parallel assumption P,,} are sufficient
for the establishment of ordinary Euclidean geometry. Each assumption of
this set is independent of all the remaining ones. Moreover congruence is here
an independent symbol in the sense that it would be impossible § to prove that
if the order assumptions O, K and P, are true, then there must exist a relation
satisfying the congruence assumptions C with reference to the points and order
in terms of which O, K and P, are stated. According to VEBLEN || congru-
ence would not, however, be thus independent if P, were replaced even by his
still comparatively weak parallel assumption XI.q

If in this categorical set of assumptions there is substituted for & the assump-
tion that every segment has a middle point,** and P, is replaced by the some-
what stronger assumption P,,T1 then follows I ] a geometry §§ in which a theory
of proportion holds and rigid motion is possible.

Other alternative sets of assumptions are discussed. Among these an inter-
esting set is that obtained by substituting for P, the postulate P, and for K a
postulate I, which may be roughly stated as follows: « If B is within, and B’
without, any circle a, then each semicircle with B'B as diameter must have a point
in common with the circle 2.”’|||| Each assumption in the set composed of P,, I,

* Presented to the Chicago section of the American Mathematical Society, in a somewhat dif-
ferent form, April 22, 1905. Received for publication December 26, 1907.

11t would be impossible (see Theorem 1 of § 12) to formulate two sets of assumptions, one
set, C, being stated in terms of point and congruence alone, and the other, O, being stated in
terms of point and order alone, such that from O and C would follow a geometry, Euclidean with
respect to the undefined symbols in terms of which O and C are stated.

t 0, K aund P, are all stated in terms of point and order.

§ Ct. § 10.

|| These Transactions, vol. 5 (1904), pp. 343-3%4.

1 Loc. cit. p. 346.

**Ct. end of § 1 and first part of § 6.

11 See § 6.

1t Ct. Theorem 1 of § 6.

§§ A geometry which is a consequence of this set of assumptions is a consequence of HiL-
RERT’S Axiom-groups I-IV and conversely.

et §7.

487




488 R. L. MOORE: METRICAL [October

and the assumptions C and O is independent of the remaining ones, and more-
over this set is sufficient for the establishment of a geometry in which not only
is there a theory of proportion and rigid motion but also all ordinary rule and
compasses constructions are possible.

In this paper “ proof” is used to mean an indication of a demonstration.
“ Hence,” “by,” « therefore,” etc., are intended as suggesting certain relations
and not necessarily as describing exactly the logical dependéence of one state-
ment upon another.

I wish to thank Professor E. H. MooRE and Professor O. VEBLEN for sug-
gestions and criticisms. Professor VEBLEN, who suggested the undertaking of
this investigation, has not only made numerous suggestions and criticisms, but
has given me much help in the way of actual collaboration.

Assumptions for Euclidean geometry.

O. VEBLEN’s order “axioms” I and ITI-X.*

C. Assumptions concerning point and congruence, sometimes with reference
to order, as follows :

C,,. If Bt is different from C and A’ is different from B’ then there exists a
point C” such that A’B'C’'t and BC= B'C".§

C,,. If B s different from C und A’ is different from B’ then there is not more
than one point C’ such that A’'B'C’ and BC= B'C'.

C,. If A is different from B, A’is different from B, A" is different from B”,
AB= A'B and A'B'= A"B’, then AB= A"B".

C,. If ABC, A’'B'C’y AB= A'B and BC= B C’, then AC= A'C'.

C,. If A, B and C are three non-collinear || points and A’y B’ and C’ are three
non-collinear points and CAD, C’A'D'y AB= A'B, BC= B'(C,CA = C4,
CD = C'D, then BD = B'D'

K. For the continuity assumption A may be taken either VEBLEN’s XI or a
DEDEKIND cut assumption stated for the points of a single segment as follows :
If there exists any segment then there ewists some segment AB such that if it is

* Loc. cit.x). 344-346. From assumption Cj, below it follows that if 4 and B are two dif-
ferent points there is a point C different from B such that ABC. VEBLEN's Axiom II may be
8een to be a consequence of this proposition and his Axioms I, III-VIII (¢f. a paper presented
by me to the American Mathematical Society on October 26, 1907, but not yet pub-
lished). Thus Axiom II is redundant in the set composed of VEBLEN’s Axioms I-X together
with my Axioms C.

T Capital letters are used to designate points.

1 ABC used as a sentence means 4, B and C are in the order ABC.

§ BC as a simuple word, unmodified by * line’’ or *‘ ray,’’ means the segment BC, i. e., the se$
of all points X such that BXC.

|| Cf. VEBLEN, loc. cit., p. 345. Instead of ‘‘ three non-collinear points ’’ one mighs, in stat-
ing this assumption, use the phrase *‘ three points such thas neither ABC, BCA, nor CAB.”

{ Cf. VERONESE, Grundziige der Geometrie, pp. 254-260. C, and C; might be stated together
in one assumption.
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composed of two sels of points [M]* and [N], each set containing at least two
points and no point X of either set being either the same as Y, or such that Y, XY,
where Y, and Y, are points of the other set, then there exists a point C such that
MCN for every M and N different from C.

With the help of O, from either of these assumptions can be deduced a
theorem to the effect that this DEDEKIND cut proposition must apply to every
segment as well as to the segment AB (cf. VEBLEN, loc. cit., pages 368 and
369).

P,. If there exists any straight line and a point not on it then there evists some
straight line a, and some point A, not on i, such that if a and A lie in a planet
B then in the plane B there is not more than one straight line passing through
4 and having no point in common with a.

§ 1. Consequences of O and C.

On the basis of O and C we have the following propositions :

Theorem 1. If A’is a point and A B is a segment, then on each ray { start-
ing from A’ there is one and only one point B’ such that AB = A'B.

Proof. See C, and C,,.

Theorem 2, If ABC and C’ is on ray A'B’ and AB= A'B and
AC= A'C’, then A'BC".

Proof. There is, according to C; , a point C” such that A’B'C” and
BC = BC". Hence, by C,, AC= A’C". But, according to hypothesis,
AC = A'C'. Therefore, by C,, C”is C'. But A'B'C”".

Corollary. If Bisonray AC and B isonray A'C”"and AB = A'B and
AC= A'C', then BC= BC..

Theorem 3.§ If A is distinet from B, then AB = AB.

Proof. According to Theorem 1 there exists, on ray AB, a point B’ such
that AB= AB. Again there exists, on ray 4B, a point B” such that
AB = AB". But, then, according to C,, AB = AB” and thus (see Theorem
1) B'is B". Hence AB' = AB. Therefore AB=AB and also AB'=A4PB.
But if B is not B’ then either A BB’ or AB B and thus, by Theorem 2, AB'B’,
which is impossible. So Bis B. But AB= AB. Hence AB= AB.

Theorem 4. If AB= A'B, then A’'B' = AB.

Proof. According to Theorem 1 there exists, on ray AB, a point B” such
that A’'B'= AB’. So, by C,, Theorem 3 and Theorem 1, B” must be B.
But A'B'=AB’. Thus A'B'= AB.

* The notation [ M ] is used to denote a set of elements any one of which may be called M.

+Cf. VEBLEN, loo. cit., p. 345.

1 It 4 and B are two distinot points, then the set of all points [C'] such that either C is B, or
ACB, or ABC, is called a ray or half line starting from 4. Such a ray is called the ray 4B.

¢ Ct. HILBERT's 1V, 1 (see page 12 of HILBERT's The Foundations of Geometry, TOWNSEND's
translation).
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Theorem 5.* If AB= A'B and AB = A"B’, then A'B'= A"B".

Proof. This theorem is a logical consequence of Theorem 4 and C,.

Theorem 6. If ABC and AC = A’'C’, then there exists one and only one
point B’ such that A’B'C’ and AB= A'B and BC = B'(C".

Proof. According to Theorem 1 there is one and only one point B’ on ray
A’C’ such that AB= A'B’. According to Theorem 2 and its corollary,
A'BC and BC=BC".

Definition 1. A'B’'< AB means: there exists a point P such that APB
and A’ B =AP. A'B' > AB means AB< A'B.

Theorem 7. If AB> A'B') AB=CDand A'B'= C'D',then CD>C'D".

Proof. According to definition 1 there exists a point P such that APB and
A'B'= AP. So, according to Theorem 6, there exists P’ such that CP'D
and AP=CP. By C, it follows that A’B'= CP'. Therefore, by hypothesis
and Theorem 5, C'D’' = CP. So CD > (C'D', according to Definition 1.

Theorem 8. If A is different from B and A’ is different from B, then, of the
three statements AB= A'B, AB> A'B’, AB < A'B/, one and only one is
true.

Theorem 9, If AB> A'B and A'B"> A”"B", then AB> A"B".

Definition 2. AB + CD means the segment AE, where & is a point such
that ABE and CD = BE. 1f AB> CD then AB — CD means the seg-
ment A E where £ is a point such that BEA and CD = BE.

Theorem 10. If AB= A'B, CD=C'D', then AB+CD=A'B +C'D.
We have the following rules of combination: AB + CD = CD + AB,
(AB+CD)+ EF=AB + (CD + EF), AB—CD = EF if and only if
AB=CD + EF.

A relation (called congruence) between anglest is introduced by the follow-
ing definition :

Definition 3. % ABC =5 A'B'C’ means that there exist points D, IV,
E, E',on rays BA, BA', BC, B'C’ respectively, such that BD = B'D,
DE=DE', EB=FE'B.

Theorem 11. 1f X BAC =4 BA'C’, BA=FBA, CA=C('4, then
BC=PBC.

Proof. By hypothesis and Definition 3 there exist on rays AB, AC, A'B/,
A'C’, points D, E, IV, E’ respectively such that AD = A'D, DE=D'E’,
EA=E'A. By Theorem 1 there exist points F', G, F", G, such that BAF,
CAG, BAF, CAQ, AF=A'F', AG=A'G. By hypotheses and C,
it follows that EF = E’F"’ and therefore, by Theorem 2 and another applica-
tion of C,, it may be proved that FG = F'G’. Treating 4, B, C, 4", B, (',

*See HILBERT's IV, 2, loo. cit., p. 12.
t An angle is a point together with two non-collinear rays which start from that point.
1 Cf. VERONESE, loc. cit., p. 257.
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with reference to A, G, F, A, G, F'as A, G, F, A, G, F’ were treated
with reference to 4, D, E, A’y D', E’, one may prove that BC = B C".

Theorem 12.* £ ABC =% ABC.

Proof. Use Definition 3 and Theorem 3.

Theorem 13. 1f{ ABC =% A'B'C’, then £ A’'B'C'=A ABC.

Proof. Use Definition 3 and Theorem 4.

Theorem 14.t If { ABC =4 A'BC’ and  ABC = A"B"C", then
{ABC =AA"B"C".

Proof. Use Definition 3 and Theorems 11 and 5.

Definition 4. Two angles are supplementary to (supplements of) each other
if and only if they have a common vertex and one common side and their other
sides form two rays of the same straight line.

Two angles are vertical angles if and only if they have a common vertex and
their four sides, together with this common vertex, make up two straight lines.

Theorem 15. 1f f HAK = H'A’K’ then each angle that is supplementary
to § HAK = each angle that is supplemeéntary to ¥ H"A’K’, and the angle that
is vertical to ¥ HAK = the angle that is vertical to f H'A'K".

Proof. See Theorem 11 and proof thereof.

Corollary. Vertical angles are congruent to each other.

Definition 5. A ABC = A'B'C’ means: AB= A'B, BC= B(/,
CA=CA, Y ABC=f ABC,{BCA={ BC'A,{CBA=4C'BA}

Theorem 16. A ABC=pn ABC if AB=A'B, BC=BC(C', CA=(C'4".

Proof. See Definitions 3 and 5.

Theorem 17.§ A ABC=p ABC if AB= A'B, BC= B (', and
{ABC=4ABC".

Proof. See Theorem 11 and Definitions 3 and 5.

Theorem 18. If { ABC =4 A'B'C’and Disin| £ ABC, then there exists
a point D' in § A'B'C’ suchthatf ABD =4 A’'BD'and{ DBC=4 DB ("

Definition 6. % B'A’'C’ < BAC means: there is a point, P, in £ BAC
such that Y BA'C'=f BAP. B A'C'>%BACmeans: { BAC<ABAC"

Theorem 19. IfX BAC>%B'A'C',{ BAC={DEF,{BAC'={DE'F,
then X DEF > 4 D'E'F".

Theorem 20. If X BAC> A BA'C' and X BA'C'>%B'A"C”, then
¥ BAC>%B'A"C".

Theorem 21. If ABCisa A and AC= BC, then { ABC=4 ACB.

*8ee HILBERT's IV, 4, loc. cit., page 14.

tSee HILBERT’s IV, 5, loc. cit., page 14. A ABC (triangle ABC) means the three non-
collinear points 4, B, and C.

1 See VERONESE; loc. cit., page 254.

§ See HILBERT’S, 1V, 6, loc. cit., page 15.

| It ABC is an angle, the two rays, B4 and BC, together with the vertex B, divide the plane
ABC into two regions. That one of these regions which contains points P such that 4PC is
called the interior of ! 4BC. Cf. VEBLEN, loc. cit., pp. 363-365.
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Proof. Use Theorem 3 and Definition 3.

Definition 7. A middle point of the segment 4 B’ means a point M, on the
straight line A B, such that AM = MB.

Theorem 22. If M is a middle point of 4B, then AMB.

Proof. Use Definition 7 and C,,.

Theorem 23. No segment has two middle points.

Proof. Use Definition 1 and Theorems 22, 7 and 8.

I do not know as yet whether from O and C it follows that every segment
has one middle point. This proposition (statement) that every segment has a
middle point will be denoted by the symbol M.

§ 2. Two consequences of O, C and M.

In § 1 a number of propositions were deduced as consequenceés of O and C.
In the present paragraph it will be shown that, if M is assumed in addition to O
and C, then follow two propositions concerning angles.

The symbol 4, will be used to denote the proposition : If ABC, AB = BC,
and D is not on the straight line AB  then there s, in the half-plane D — AB,* a
point E such that AD = BE and BD = CE.t

The symbol A_, denotes the proposition : If C is riof on straight line AB,
then, in the half-plane C — A B, there is no point C', different from C, such that
AC= AC and BC=BC'.}

Theorem 1. From O, C and M follows 4_,.

Proof. If this theorem is not true, then there exists a space for which O, C
and M are true but which contains four distinct coplanar points 2, 3, C", C”
such that C’ and C” are on the same side of 4B and moreover £(’'= BC”
and C'A = C"A. In case the straight lines C'C” and 4B have a joint P in
common, then with use of Theorems 15, 16, 17 and 3 it may be seen that
A APC'=p APC”, and thus PC’ = PC”, but this is impossible according
to C,, and the hypothesis that C’ and C” are on the same side of 4B. In
case the straight lines C’'C” and A B have no point in common, then 4 and B
are on the same side of the straight line C’C”. According to M and Theorem
22, there is a point S such that C”"SC” and C"S = SC’. There exists, as may
be seen by use of O, a point P such that PS4 and segment PB has a point
8’ in common with segment C'C”. Consider A’s ASC’ and ASC".
AS = AS by Theorem 3, while, by hypothesis, AC"= AC” and C'S = SC".
Hence, by Theorem 16, AASC’'= n ASC”. With use of C,, C, and The-

*By a half-plane is meant one of the two regions into which a plane is decomposed by a
straight line which lies in it (of. VEBLEN, loc. cit., pp. 363-365). If the straight line 4B thus
decumposes a plane into two regions and D lies in one of these regions then this region is called
the half-plane D — 4B.

 Thus, according to Definition 3, 2 BAD = 2 CBE and 4, is, then, a weak form of the propo-
sition given in the statement of Theorem 4 of §5. Cf. HILBERT's 1V, 4, loo. cit., p. 14.

1 Cf. HILBERT’s IV, 4, loc. cit., p. 14.
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orem 3 it follows that PC"= PC’. Hence, by hypothesis, Theorem 3 and
Definition 3, it follows that 2 C”BS’ = 4 C’BS’ and, consequently, by means of
Theorems 17 and 3 and Definition 5, that C”S" = 8’C", but this is impossible
according to theorem 23.

Corollary.* Given an angle BAC and a ray A'B’, there is, in a given
plane containing A'B and on a given side of A’B’, not more than one ray
A’C’ such that  BAC=A{ BA'C".

Theorem 2. From O, C and M follows 4,.

Proof. Suppose ABC, AB = BC and D is not on the straight line AC.
According to M and Theorem 22, there is a point S such that ASB and 4S=8B.
By C,, there exists a point £’ such that DSE” and DS = SE". According to
Theorem 17 and Corollary to theorem 15, £ SAD =ASBE’. Bunt by C,
there is a point & such that £'BE and AD = BE. By theorems 13 and 14
and Corollary to Theorem 15, ¥ DAS=CBE. But AB=B( and
AD = BE. Hence, by theorem 11, BD = CE.

§ 3. Consequences of O, C' and A_,.

In § 2 it has been shown that if M is assumed in addition to O and C, then
there follow the two propositions 4, and 4_,. On the basis of O, C'and 4_,
we have the following propositions.

Theorem 1. AABC=AABC if{ABC={A'BC’,4BAC=4{BA'C’
and AB= A'B.

Proof. According to Theorem 1 of §1 there is a point C” on ray 4°C”’
such that AC = A'C”. According to hypothesis and Theorem 17,
A ABC = A A'B C” and thus (see Definition 5) X ABC=4 A'B'C’. But
X ABC=%(A'BC. By A_, and Theorem 1 of §1 it follows that either
C” is C’ or, if not, then B is on the straight line C”C’ and, thus, on the
straight line A’C’, contrary to hypothesis. So C” is C'. But A ABC=
A ABC". Hence n ABC= A'BC.

Theorem 2.1 Of the three statements, X BAC<fB A'C, §BAC=AB A’'C’,
%4 BAC > B'A’C’, not more than one is true.

Proof. Make use of Definition 5 and A_,. For instance suppose
4 BAC>A BA'C'. Then, according to Definition 6, there exists a point
D, inf BAC, such that { BA'C' = BAD. So,if { BAC=oBAC,
then ¥ BAC = A BAD, and this could not be, in view of A_,; while, if
4 BAC <4 BA'C’, then there exists, in  BA'C’, a point D’ such that
¥ BAC =4 BA'D. Then, according to original hypothesis and Theorem
19, BAD >4 BA'C’. Hence there exists, in  BA'D, and at the same
" #See HILBERT'S IV, 4, loc. cit., p. 14.

1 Oheerve that it is not here stated that one of these statements is true. See Corollary to
“Theorem 2 of § 4.
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time in X B'A’C", a point @” such that ¥ BA'C’ = § B'A’'G", but this could
not be according to A_,. So, if £ BAC>% BAC’, then neither
¥ BAC<¥BAC nor ¥ BAC=%4BAC.

Theorem 3. If HGF', and I is not on the straight line HF and 4 is dif-
ferent from C, and B, D, A and C are coplanar but neither B nor D is on the
straight line AC, and X BAC =% FGIand X ACD = § IGH, then the rays
CD and A B do not meet.

Proof. Of course, the rays AB and CD cannot meet unless they are on the
same side of the straight line A C'. Suppose they are on the same side of 4 C.
According to hypothesis and Definition 6, there exist points P and S such that
either ray C'§ is ray CD or ray CS isin ¥ DCA and moreover either ray AP
is ray AB orray AP is in XCAB and furthermore ¥ ACS = ¥ HGI and
¥ CAP =4 FGI. Evidentiy, then, rays CD and AB cannot meet unless
rays C'S and AP meet. Suppose rays C'S and AP do meet in a point M.
There exists, according to C,_, a point M’ such that MCM’ and AM = CM'.
Now, by Theorems 15, 13 and-14, 5 CAM = ACM'. Hence, by Theorems
3 and 17 and Definition 5, X CAM = ACM. But, by Theorems 15, 13
and 14, X ACM =% P’AC, where P’ is aany point such that PAP. It fol-
lows, by means of 4_,, that the points M, A and M’ are collinear. So the
straight lines AP and C'S unite in two* points M and M’, but this is impos-
sible. Therefore rays AP and CS do not meet.

Corollary. 1If HGF, and I is not on the straight line HF', and 4, B and
C are three non-collinear points, and D is in the half-plane B — A C, and
¥ BAC =% FGIand £ ACD = A{IGH, then the lines CD and AB have no
point in common.

Theorem 4. 1f ABC is a triangle and BC' > AC, then ¥ A > B.

Proof. By hypotheses, Theorem 7, and Definition 1, there exists, between
B and C, a point D such that AC = CD. Since D is between B and C, it
follows from Theorem 12 and Definition 6 that ¥ BAC > DAC. But, by
construction and Theorem 21, Y DAC= {ADC. Hence, by Theorems 12
and 19,  BAC > CDA. But, by Theorem 2 and Corollary 2 to Theorem
3 of §3, YCDA >4 ABC. Hence, by Theorems 3 and 19 of §1,
¥BAC>AABC.

Theorem 5. If D is within X BAC and D’ is within ¥ B'A’C’ and
¥BAD=oBAD and { DAC=%DA'C’, then { BAC= BAC".

Proof. It may be easily seen that there exist points £, F, E’, G’ on rays
AC, AD, A'C’, A’D respectively such that AE= A’E’, AF = A'F’, and
EF and E'F’ cut rays AB and A'B in two points G and G’ respectively.
By hypothesis and Theorem 17, { AFE = A'F'E’ and EF = A E'F".
But it is clear that EFG and E'F'G. Hence, by Theorem 15,

*That M and M’ are distinct is a consequence of 0.
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AAFG =4 AF'G@. But {GAF =4 GAF and AF = A'F’, Hence,
by Theorem 1, FG = F'G'. But EF = E'F’'. Hence, by C,, EG = E'G'.
But AE = A'E’ and AG=A'G’. Hence, by Definition 3, {BAC=4B'A'C".

Definition 7. A right angle is an angle that is congruent to its supplement.
A straight line a is perpendicular to a straight line b if and only if they inter-
gect in a point O and there exist two points, A and B, different from O, 4
lying on @ and B lying on b, such that £ A OB is a right angle.

Corollary. Every angle which is congruent to a right angle is itself a right
angle. If the straight line a is perpendicular to the straight line b, then & is
perpendicular to ¢ and if A and B are any two points different from O, 4
lying on a and B lying on b, then § AOB is a right angle.

Proof. See Theorems 12, 14 and 15 of § 1.

Theorem 6. In each plane there is a right angle.

Proof. Suppose A, B, C, are three distinct non-collinear points of a given
plane. According to Theorem 1 of § 1 there exists, on ray 4 C, a point B’
such that AB= AB'. There is a point D such that ADB and, according to
Theorem 6 of § 1, there is a point D’ such that BID'A, BD = B D' and
DA = DA. According to O, there is a point P such that BPD and BPD.
Now ¥ BBA = X BB'A (see Theorem 21). Hence, by Theorems 3 and 17 of
§1,ABBD =, BBD. Thus 4 BDB =% BDB and therefore, by The-
orem 15, it follows that ¥ P1’'4A = {PDA. Moreover, by Theorems 17 and 12
and Definition 5, XPBD = { PB'D’. Hence A B PD = A BPD according
to Theorem 1. Thus P =PD. Now also DA =D'A. Hence, by The-
orem 3 of § 1 and Definition 3, { BAP =% BAP. According to O, there
is a point M, on AP, such that BMB. By Theorems 17 and 3 and Definition
5, MB'= MB and £ AMB = AMB. Thus % AMB is a right angle (see
Definition 7).

Corollary. If BAC is an angle, then there exists, within ¥ BAC, a point
O such that Y BAO =A04C.

Theorem 7. If there is one perpendicular p to a straight line a, then, through
each point of a, and lying in the plane pa, there is one and only one straight
line perpendicular to a.

Proof. Suppose O is the point at which p intersects ¢, C is any other point
of a, and P is any other point of p. By C,, there exists a point P’ such that
POP and PO= OP'. There is also a point P’ such that P CP” and
PC=CP". There is (see Corollary to Theorem 6) a ray CM in  PCP”
such that ¥ PCM = MCP". Now, also, { PCO=4 P CO=4P'CO,
where 0CO'. Hence (see Theorem 5) ¥ MCO = MCO'. Hence, by defini-
tion 7, MC is perpendicular to a at the point C.

Suppose there is, in the plane pa, another perpendicular to a at the point C.
Suppose N is a point of this new perpendicular on the same side of a as M and
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suppose MCM' and NCN'. Ray CN must lie either in £OCM or in XO'CM.
Suppose it lies in OCM. Then ray CN’ lies in ¥O'CM’'. According to
Definition 7, Theorem 12, and Theorem 15, X MCO=%M'CO and
¥ NCO=xN'CO. By Theorem 18, there is a point N” in ¥ M’ CO such that
¥OCN=0CN". But ZOCN=x0CN’ and ray CN’ is in O'CM’ and
thus is different from CN”. But this is impossible according to 4_,. Thus
CN cannot be in YOCM. Similarly it cannot be in 0'CM. There is, then,
in the plane pa and passing through C, not more than one straight line per-
pendicular to «.

Theorem 8. If there is one perpendicular p to a straight line @, and P is
any point in the plane pa, then through 2, and lying in this plane, there is
one and only one perpendicular to «a.

Proof. If P is on a cf. Theorem 7. If P is not on a, suppose F is a point
of p on the same side of @ as P and O is the point where p meets a. If P is
on OF, then certainly, through P, there is a perpendicular (OF)to AB. If P
is not on OF, it is on one side of it. Suppose H is a point of a that is on the
same side of OF as P. Then P lies in ¥ HOF. There is (by C,)) a point
F’ such that FOF’ and OF =OF'. According to Theorem 18 there is, in
§ HOF’, a point P such that ¥ POH=o HOP'. On ray OF there is a
point P” such that OP = OP”. Since P and P” are on opposite sides of OH
and on the same side of OF, there is a point M of ray OH such that PMP".
According to Theorems 3 and 17 of §1, AOMP = AOMP". So
¥ PMO = ¥ P"MO and thus PM is perpendicular to a.

Now suppose that through P there is, in this same plane, another perpendicu-
lar to a. Suppose this new perpendicular meets a in the point M". There is
a point p” such that PM'P”. According to hypothesis, Definition 7 and The-
orems 13 and 14, X MM'P = MM'P” and f M'MP = M'MP”". According
to Theorem 17, A PMM'= A P"MM'. So { PM'M=MM'P’. But
Y PM'M=xP"M'M. Hence, according to A_,; P” must lie on ray M'P”
and thus the straight lines MP and M'P intersect in two points P and P”,
but this is impossible. So there is through P, and in a given plane contain-
ing @, not more than one perpendicular to a.

Theorem 9. 1If in the plane of two intersecting straight lines there is a per-
pendicular to one of them, then there is in this plane a perpendicular to the
-other one.

Proof. Suppose that the straight lines @ and b intersect in a point O and
there is a perpendicular to a lying in the plane ab. Then, if B is any point of
b other than O, it follows, by Theorem 8, that there is a point 4 on a such that
BA is perpendicular to a. In case 4'is O, then a is perpendicular to b, and
the conclusion of Theorem 9 is evidently verified. In case 4 is not O, then
there exist points 4" and B, on b and a respectively, such that O4 =04/,
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OB = OB. By Theorems 12 and 17, f BAO=xBA’0. But ¥ BAO
is a right angle. Hence, by the corollary to Definition 7, ¥ B'A'O is a right
angle. So BA is perpendicular to b.

Theorem 10. 1If a is any straight line and P is any point, then in a given
plane a containing P and a there is, through P, one and only one straight line
perpendicular to a.

Proof. By Theorem 6, there exists in a some straight line @’ to which there:
is a perpendicular lying in a. "In case ' is not a, suppose 4 and A’ are two
points of @ and @’ respectively. By hypothesis and Theorem 9 there is in
a perpendicular to A4’, and therefore, by Theorem 9, there is in « a perpen-
dicular to «. Hence, by Theorem 8, through each point of a there is, in a,.
one and only one perpendicular to a.

Theorem 11. If a and b are two intersecting straight lines then there exist
in the plane ab straight lines a’ and & which are perpendicular to ¢ and b
respectively and are such that each angle that a’ makes with @ = each angle-
that &' makes with b.

Proof. See Theorem 10 and proof of Theorem 9.

§ 4. Consequences of O, C, A_, and A4,.

In § 2 it was shown that A as well as A_, was a consequence of O, C and
M. On the basis of O, U, A, and A_, we have the following propositions :

Theorem 1. . Any two coplanar right angles are congruent to each other.

Proof. If a side of one right angle is collinear with a side of another which
is coplanar with it, it may be easily seen, with help of 4, Definition 7 and
Theorems 1, 15, 13 and 14, that they are congruent to each other. From this
result and Theorem 11 of § 3, it follows that two coplanar right angles are con-
gruent to each other if the straight line waich contains a side of one intersects
the straight line which contains a side of the other. From this, O, Theorem
14 of § 1, and Theorem 10 of § 3, it follows that any two coplanar right angles
are congruent to each other.

Theorem 2*. If A, B, C are not collinear and 2, A’y B’ are not collinear,
but A, B, C, D', A’, B are coplanar, then, in the half-plane ' — 4’'B’, there
is a point C" such that X BAC =« BA'C".

Proof. According to Theorem 10 of § 3, there exist points, £ in the half-
plane C'— AB, and E’ in the half-plane ' — A’B, such that ¥ EAB and
§ E'A'B’ are right angles. According to Theorem 1, ¥ FAB = E'A'B'.
Suppose ray AC lies within ¥ £AB. Then, according to Theorem 18 of
§ 1 and Theorem 1 of § 4, there exists, in § £"A’'B’, a ray 4’'C’, such that
YBAC=yBA'C'. Proceed in a similar manner if 4C is within ¥ B, AE"
(where B, AB).

*Cf. HILBERT’s, IV, 4, loc. cit., page 14.
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Corollary. If ABC and A'B'C’ are two coplanar angles then either
{ABC<{ABC,{ABC=4ABC or{ABC>{ABC'*

Theorem 3. If ABC is a triangle and B is between A and D, then
¥ DBC>CAB.

Proof. By hypothesis and Theorem 3 of § 3, neither ¥ DBC <4 CAB
nor X DBC =% CAB. Hence, by corollary to Theorem 2 of §4,
¥DBC>ACAB.

Théorem 4. If ABC is a triangle and BC'> AC, then Y BAC> A ABC
and, conversely, if  BAC > ABC, then BC> AC.

Proof. I. Suppose BC > AC. Then, by Definition 1, there exists between
B and C a point D such that AC= CD. Since D is between B and C, it
easily follows, from O and Definition 6, that £ BAC > DAC. But, by
construction and Theorem 21 of §1, ¥ DAC=4ADC. Hence, by
Theorems 12 and 19 of §1, Y BAC > CDA. But, by Theorem 3 of § 4,
§CDA >4 ABC. Hence by Theorem 20 of § 1, { BAC >A ABC.

2. Conversely, suppose  BAC > ABC. By Theorem 8 of § 1 -either
BC<AC,BC=A4C or BC>AC. If BO<AC or BC= AC then,
by Theorem 21 of § 1 and first part of present theorem, either Y BAC <4 ABC
or Y BAC=xABC; and each of these, by Theorem 2 of § 3, is contrary
to hypothesis. Hence BC> AC.

Theorem 5. If £ ABC is a right angle, or  ABC > a right angle, of the
plane ABC, then AC> AB.

Proof. From hypotheses, Definitions 6 and 7, Theorems 19, 20 and 12 of
§ 1, Theorems 3, 2 and 10 of § 3 and Theorem 1 of § 4, it follows that neither
$ACB=5ABC nor YACB> ABC. Hence, by the corollary to The-
orem 2 of §4,{ ACB < ABC. Hence, by Theorem 4 of § 4 and Defini-
tion 6, AC> AB.

Theorem 6. 1f ABC is a triangle, then AB + AC> BC.

Proof. By C, , there exists a point D such that CAD and AB= AD.
By Theorem 21 of §1 Y BDC=4DBA. Hence, by O and Definition 6,
¥ DBC>4CDB. Hence, by Theorem 4 of § 4, DC> BC. But, accord-
ing to Definition 2, DC = AB + BC. Hence AB+ AC> BC.

Corollary. If ABC is a triangle and AB> AC, then AB— AC < BC.

§ 5. Euclidean and Bolyai-Lobachevskian geometry.

It is desired to prove that from O, C, K and P, follows Euclidean geometry
and from O, C, K and the denial of P, follows Bolyai-Lobachevskian geometry.

Definition 8. Two straight lines are said to be parallel to each other if they
lie in the same plane and have no point in common.

Theorems 1-5 are based on the assumptions O, C, K.

*Cf. Theorem 2 of § 3.
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Theorem 1. Every segment has a middle point.

Proof. Suppose AB is a segment. Certainly there exists 4 point X, of
AB, such that AX << XB and a point ¥, of AB, such that AY > ¥ B.
For suppose P is any point of AB. By Theorem 8 of § 1, either AB < PB,
AP =PBor AP> PB. If AP > PB, then, by Theorems6and 3 of § 1,
there is a point P of AB such that AP = BP and PB = P'A and, by
Theorem 7 of § 1 and Definition 1, it follows that AP < P’B. Similarly, if
AP PB, there exists a point P’ such that AP">PB. Finally,if AP=PB,
any point D between A4 and P would be such that AD < DP, and there
would exist a point D’ such that AD'> D'P. It is true then that there
is at least one point X of AB such that AX < XB and at least one point
Y of AB such that AY > ¥B. By Theorem 8 of §1 Y could not be
identical with X. The points of 4B may then be divided into two classes,
the class, [ X ], of all points. such that A X < XB and the class, [ Y], of
all other points of AB. By Definition 1, O, and Theorems 9 and 8 of §1
it is clear that no X is between two F’s and no ¥ is between two X'’s
Hence, by K, there exists a point M such that XMY for every X and Y which
are different from M. Suppose it were true that AM < MB. Then, by
Theorems 6 and 3 of § 1, there would exist a point N of AB such that
AM = BN and MB = NA. Clearly M would be between 4 and N. Hence,
by a previous argument, it would follow that there exists a point L, between M
and N, such that ML << LN. But, from this together with the fact that
AM = BN, it would follow, from Definition 1 and Theorems 10 and 7 of § 1,
that AL < LB. But this would be impossible. For then L would be an X
and we would thus have an X such that AMX. Similarly it would be
impossible that AM > MB. Hence AM = MB.

This theorem having been established, it is clear that every proposition, given
in the preceding part of this paper as a consequence of O, C and M, is also a
consequence of O, C'and K. Such propositions will therefore be freely referred
to in this section. It is to be remembered that A, and A_, are propositions of
this kind.

Definition 9. If O is a point of a plane 8 and s is a segment, then the set
of all points [ P] of the plane B, such that OP = s is called a circle.

Theorem 2. Every circle is a Jordan curve.

Proof. In his article “ Theory of plane curves in non-metrical analysis
situs,”* VEBLEN has given three sets of conditions as sufficient in order that a
simple closed set of points, existing in a space in which K and the plane
axioms of the set O hold true, should be a Jordan curve. These conditions are
called the conditions of linear order, ordinal continuity, and geometrical conti-
nuity respectively.

*These Transaotions, vol. 6 (1905), pp. 83-98.




500 R. L. MOORE: METRICAL [October

If O is the center of a circle a, then every ray starting from O contains one
and only one point of a.

The points A, B, C, D of a are said to be in the order 4 BCD if the rays
OA, OB, OC, OD are in the order OA —OB —0C—0D. From O, K
and this correspondence, it follows that the points of a satisfy, with reference
to this order, the conditions of linear order and ordinal continuity.

The condition of geometrical continuity will evidently be satisfied if the
proposition can be established that, given any point P of a and any triangle A,
which contains P, then there exist in that triangle two points, P, and P, of
o, such that every point on the are P, PP, will lie within Ap. To establish
this proposition, proceed as follows : Given that A, contains the point P of the
circle a, consider a segment s which is shorter than each of the perpendiculars
from O to the sides of A,. These perpendiculars and this segment exist by
Theorem 10 of § 3, Theorems 7, 8 and 9 of § 1, Definition 1 and O. By
hypothesis, O, Theorem 5 of §4 and Detinition 1 and Theorem 9 of § 1, it fol-
lows that every point 7/, such that PP < s, must be within A,. By Theorem
10 of § 3, there exists, in the plane of a, a straight line a perpendicular to OP
at the point . On a there exist, by Theorem 1 of. § 1, two points £ and F,
one on each side of P, such that s = PX and s = PF. Each of the rays OF
and OF contains a point of a. Call these points P, and P, respectively. Let
X be any point of a on the arc P, PP,. Then either X is P or it is in
{ POE or £ POF. Suppose X isin X POE. Then the ray OX contains a
point M such that PME. By Theorem 5 of §4, OM>OP. Hence
OM >O0X and therefore OXM. But from the fact that OP =0X and
Theorem 21 of § 1 it follows that {OXP = OPX, and thus (see Theorem 3
of § 3) OXP < a right angle (of the plane a). Hence clearly, X PXM > a
right angle (of the plane a) and therefore, by Theorem 5 of § 4, it follows that
PX < PM. But PM < PE and PE=s. Hence PX <s and therefore,
by what has already been established, X is within A,. This same conclusion
would, of course, have been reached had X been in £ FOP. Hence, if X is on
the arc P, PP,, it lies within the triangle A,. It is true then that every circle
is a Jordan curve.

Notation. 9, means a circle whose center is 4 and whose radius is congru-
ent to r.

Theorem 3. Any point P in the plane of the circle O, is within, on, or
without O, , according as OP <r, OP =r,or OP>r.

Proof. If P is any point in the plane of O, such that OP > r, then, with
the help of Theorem 5 of § 4, it may be, seen that the straight line which lies in
the plane of O, and is perpendicular to OP at the point P has no point in
common with ©_. Hence, by the theory of Jordan curves, it follows that P
is without ©,. With the help of O, Definition 7 and Theorem 5 of § 4, it




1908] HYPOTHESES FOR GEOMETRY 501

may be seen that all points P such that OP < r lie in one of the regions into
which 9, divides its plane. But it has already been established that all points
such that OP > r lie in the outside region, and moreover tke two regions, into
which D, divides all those points of its plane which do not lie on it, are non-
vacuous and, finally, for every one of these points, either OP < r or OP >r.
Hence all points P such that OP < r must lie within O, .

Theorem 4. 1If A and A’ are two points and » and + are two segments such
that r + "> A4’ but either r =1 or r — ' < AA’, then, if A and U are
coplanar, they have two points in common, one on each side of 44’

Proof. U_has two points, D and E,in common with the straight line 44",
It follows, by hypothesis, Theorems of § 1, Definition 9 and Theorem 2, that
one of these points is within and the other is without %,. But the points D
and E are joined by two distinct segments of the Jordan curve 9, one of these
segments lying entirely on one side and the other one entirely on the opposite
side of DE. Hence, since U/, also is a Jordan curve, A_and A, intersect in
two points, one on each side of DE.

Theorem 5.* 1If ABC is any angle and A'B’ is any ray, then in any plane
containing A’B’ there exists, on each side of the straight line 4'B’, a point C’
such that f BAC = BA'C".

Proof. On ray A’'B there exists, by Theorem 1 of § 1, a point B” such
that AB = A’'B’. By hypothesis, Theorem 6 of § 4 and its corollary, and
Theorem 4 of § 5, it follows that, on each side of A’'B’, there is a point C”
such that AC=A4'C"and BC=B'C". But AB= A'B". Hence, by
Definition 3, { BAC=4B'A'C".

If P, is assumed in addition to O, C, and K, then one has the following two
theorems (6 and 7).

Theorem 6.1 If b is any straight line of any plane 8 then there is some point
B, in the plane 8 but not on b, such that through B there is not more than
one parallel to b.

Proof. According to P, there exists a straight line 4" and a point B’ such
that through B’ there is not more than one parallel to . On &' there exist two
points C' and D', If b is any straight line in any plane 8 then on b there exist,
by O and C,, two points C' and D such that C'D' = CD. Furthermore,
by Theorem 5 of §5, there exists in the plane 8 a point B” such that
4D C'B =4DCB". By Theorem 1 of § 1, there exists on ray C'B” a point
B such that C'B = CB. Suppose that through B there are two parallels to
b. Then one of these has a point Z and the other a point F on that side of
BC on which D lies. By Theorem 5 of § 5, there exist in the plane IV C'B),

* See HILBERT’s 1V, 4.
tSee VEBLEN’s XII. It may here be remarked that VEBLEN’s form of statement lacks the
proviso tbat B should not lie on b.
Trans. Am. Math, Soc. 833




502 R. L. MOORE: METRICAL [October

and on that side of B’C’ on which D lies, two points, £ and F”, such that
A CBE=%C'BE and {CBF = C'B'F'. By Theorem 13 of §1,and 4_,,
the straight line B’F"” must be distinct from the straight line B’E’. But neither
of these straight lines can have a point in common with C’D’. For suppose
the ray B'F’ and the straight line C’"D’ had a point G in common. G would
evidently lie on the ray C'2’. By Theorem 1 of § 1, there would exist, on
the ray CD, a point G such that C'G' = CG. Then one would have
C'B =CB,{GFCB =4GCBand C'G'= CG. Hence, by Theorem 17 of
§ 1 and Definition 5, it would be true that 2 C'B'G" = # CBG. But, by con-
struction,  CBF = ¥ C"B'G". Hence, by Theorem 13 of § 1 and A4_, (which
by Theorem 1 of §2 is a consequence of O, C, and M) the ray BF would
be the same as the ray BG'. Hence ray BF would have a point in common
with ray CG, contrary to hypothesis. In a similar manner, with the help of
Theorem 15 of §1, it could be shown that the other ray of the straight line
B'F’ could not have a point in common with C'G’. Hence the straight lines
B'F’ and C’D’ have no point in common. Similarly, B'E’ and C’D have no
point in common. But then there exist, through B’, two parallels to &', and
this is contrary to hypothesis. Thus the assumption that through the point B
there are two parallels to b would lead to an absurdity. Hence through B there
is not more than one parallel to 5.

Theorem 7. 1If a is any straight line and A any point not on it, then through
A there is one and only one straight line parallel to a.

Proof. See Theorem 43 of VEBLEN’s ¢ A System of Axioms for Geometry.”

In view of Theorems 1, 4 and 6 of the present section, C,, Theorems 1, 3,
5, 12,14, 17 of § 1 and Theorem 1 of § 2, it is clear that from O, C, K, P,
follows a geometry in which HILBERT’s axioms of groups I-IV hold true.
One may then proceed, as is, for example, indicated in HILBERT’s Festschrift
and HALSTED’s Rational Geometry, to derive a theory of proportion, etc., and
then, with the use of K, one may finally develop an analytic geometry exhibit-
ing a one to one correspondence between the points of our geometry and the
number triples of the real continuous number system, this correspondence being
such as to preserve all relations of congruence and order. Thus would be
established the following theorem :

Theorem 8. From O, C, K and P, follows Euclidean geometry.

In case the contradictory of P, were assumed in addition to O, C and K,
then in place of Theorem 7 one would have Theorem 39 of VEBLEN’s 4 Sys-
tem of Awxioms for Geometry and again a correspondence could be established
between points and number triples, this correspondence also being such as to
preserve all relations of order and congruence.* The following theorem would
then be established :

* In this case congruence and order for this system of number triple would of course be introduced
by definitions different from those used in the case of the correspondence with Euclidean geometry.
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Theorem 9. From O, C, K and the denial of P, follows Bolyai-Loba-
chevskian geometry.

Tt is thus seen that if O, C and K are true of a space, then that space must
be either Euclidean ar Bolyai-Lobachevskian.

§ 6. Semi-quadratic geometry.

In this section will be given several sets of assumptions, any one of which
sets is sufficient for the establishment of semi-quadratic or plane semi-quadratic
geometry. By semi-quadratic geometry is meant the set of propositions which
follow from HiLBERT’s I-IV. In the case of such a geometry rigid motion is
possible, there is a coordinate system and a theory of proportion ; and, speak-
ing in terms of this theory of proportion, if a,, a,, a,, -+ -, a, are any finite
number of segments and #(a,, a,, a,, ---, a,) is any rational function of these
segments, then there exists a segment equal to #'(a,, a,, a4, -+, @,) and alsoa
segment equal to V'a® + b%.*

Use will be made of the following additional notations for propositions :

R, (equality of right angles). If ABD, A'BD, £ ABC =%CBD and
{ABC =4C'BD,then { ABC=4A'BC".

By R? is meant the proposition R, with the proviso that the angles ABC
and 4'B’ C’ are coplanar.t This superscript, ¢ pl,” may sometimes be used in
notations for other propositions in order that their application may be similarly
restricted to the case of coplanar points.

D, (shortest distance proposition).I If A, B and C are non-collinear, ACH,
CB = CB, and B" is a point on ray A C such that AB = AB’, then AB'B.

P_ (perpendicular to a straight line).§ If A BC, then in any plane contain-
ing these poinis there exists a point D such that ¥ ABD =4 DBC.

A,.|| If A, B and C are three non-collinear points and A’y B’ and D are
three non-collinear points and BA = B A’, then in the half-plane D’'A’B’ therc
exists one and only one point C” such that AC = A'C’ and BC = B'C".

A. If £ ABC and £ A'B C’ are two angles and BA = B'A’, then either
there is a point C” on the ray BC such that A'C' = AC” and B'C' = BC”,
or there is a point C" within  ABC such that A'C' = AC” and B'C’' = BC",
or there is a point C™ within £ A'B’'C" such that AC = A'C" and BC = B'C™;
but for these given angles no two of these statements can both be true.

P,. In every plane a there is a straight line a such that if A is any point of

*See HILBERT'S Grundlagen der Geometrie.

t See Theorem 1 of § 4.

1 See Theorem 6 of § 4.

§ For a stronger proposition see Theorem 10 of § 3.

|| Cf. Theorem 2 of § 4 and A—; (see § 2). Cf. also HILBERT's IV, 4.

{1t X 4BC and % A’ B’ are two angles then either z{ 4’B'C = ABCor { A’B'CY >% ABC
or z{A’ B <z§ 4ABC but no two of these cases can ocour simultaneously. Cf. Definition 6,
also Theorem 2 of § 3 and corollary to Theorem 2 of § 4.
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a not on a, then through A and lying in a there is not more than one straight
line which has no point in common with a.

Theorem 1. From O*, C, M, and P, follows plane semi-quadratic geometry.

Proof. See Theorems 1, 3, 5, 12, 14, 17 of § 1 and Theorems 1 and 2 of
§ 2 and Theorem 2 of § 4. The proposition that through each point there is
one and only one parallel to any given straight line may be proved with the
help of P, by a method which is suggested in proof of Theorem 6 of § 5.

Theorem 2. From O¥, C, A_,, A,, P,, follows plane semi-quadratic
geometry.

Proof. In the proof above indicated for Theorem 1, M is used only to
demonstrate A_, and 4,.

Lemma 1. From 0%, C and D, follows 4_,.

Proof. Suppose O, C and D, are true and A_, is not. Then there exist
three non-collinear points 4, B, C, and a point ', all in the half-plane C— A B,
such that AC= AC" and BC = BC'. According to O, there exist points
A’, B’ such that ACA’y, BCB’. There are five cases.

I If C is'in ¥ A CB’, then segments A C' and BC" have a point O in com-
mon. According to D,,, AO+ OC'> AC and OC+ BO> BC. Thus
(40+0C)+(0C'+BO)>BC+AC'. Hence AC+BC'>BC+AC;
this is impossible in view of the hypothesis that AC'= AC" and BC= BC'.

II. If C"is in £ BCA’, argue in a similar manner.

IIL. If C" is in X A CB, then there exists a points D such that AC'D,
BDC. Now AC+ CD> AD. Hence AC+CD+ DB> AD + DB,
AC+CB>AC +CD+ DB. But C'D+ DB> C'B. Therefore
AC+CB> AC + C'B, and this is impossible in view of hypotheses.

IV. If C isin £ A’ CB’, proceed as in case III.

V. If (' is on the straight line A C or the straight line BC, proceed with C'
or ' as in case I1I with D.

Thus in any case it would be impossible that O, C and D,, should be true
and A4_, false simultaneously.

Lemma 2. From O, C and P, it follows that through any point there is
at least one perpendicular to any given straight line.

Proof. See the proof of Theorem 10 of § 3.

Lemma 3. A_, is a consequence of O, C' and P, .

Proof. Suppose C, A and B are three non-collinear points and C’ is a
point in the half-plane C'— AB such that C4 =C'4 and CB=C'"B. By
Lemma 2, there is, on the straight line AB, a point D such that CD is per-
pendicular to AB. In case D coincides with A, then ¥ BAC is a right angle
and therefore, by hypothesis aad corollary to Definition 7 of § 3, ¥ BAC is a
right angle and hence, by P,_and C,,, " is C. If D does not coincide with
A, then, by Theorem 17 of §1, Y ADC =4 ADC and DC= DC'. But




1908] HYPOTHESES FOR GEOMETRY 505

A ADC is a right angle. Hence, by the corollary to Definition 7 of § 3,
A ADC is a right angle, and therefore, by P,_, ray DC" coincides with ray
DC. But DC=DC'. Hence, by C,,, C"is C.

Theorem 3. From O, C, A,, D, and P, follows plane semi-quadratic
geometry.

Proof. See Lemma 1 and Theorem 2.

Theorem 4. From O, C, A, and P, follows semi-quadratic geometry.

Proof. Compare Theorems 1, 3, 5, 12, 14, 17 of § 1 and Definition 3 and
A, with HiLBERT’s group IV of axioms. Use argument, concerning parallel
proposition, suggested in proof of Theorem 1 of § 6.

Theorem 5. From O, C, A_,, R, and P, follows semi-quadratic geometry.

Proof. It may be seen, from the proof of Theorem 2 of § 4, that 4, is a con-
sequence of O, C, 4_, and R,. But, by Theorem 4 of § 6, from O, C, A,
and P, follows semi-quadratic geometry.

Theorem 6. From O, C, P,, R,, P, follows semi-quadratic geometry.

Proof. See Lemma 3 and Theorem 5.

Theorem 7. From O, C, D,,, R, and P, follows semi-quadratic geometry.

Proof. See Lemma 1 and Theorem 5.

Theorem 8. From O, C, A, and P, follows semi-quadratic geometry.

Proof. According to Theorem 4, this theorem will be established if it is
shown that 4 is a consequence of O, C and 4,.

Suppose 4, B and C are three non-collinear points and I, B’ and E’ are
three non-collinear points. On the ray B'D’ there is a point A’ such that
BA = BA'. To prove that in the half-plane E' — A’'B’ there is one and only
one point C’ such that* BC = BC’ and AC= A4'C’, argue as follows.
According to A either (I), there is a point C’, on B’E’ or in £ A'B'E’,
such that BC'= B'C’' and 4C = A'C’, or (II), there is a point C” within
f ABC, such that { ABC”" = A'B'E’. 1In this last case there is, on the
ray BC", a point F such that AFC. By Theorem 11 of § 1 there exists on
ray B'E’ a point F' such that AF = A’F’ and BF= B'F’. By C,, there
is a point C’ such that 4A'F'C’ and FC= F'C’. By C, and Theorem 11
of §1, AC=A'C'and BC = B C'".

Suppose there were, in the half-plane E'— A4’B’, two points C’ and C” such
that AC= A'C’ and BC = B'C”. Then, by C,_ and O, either C” is within
fA'BC’" or C' is within £ A’B'C”". Suppose, for instance, C” is within
§ A'B'C’. Then, by hypothesis, Definition 3 and Theorems 11 and 18 of § 1,
there exists within £ ABC a point C™ such that B'C” = BC” and
A'C”"= AC". Baut, by hypothesis, C, and Theorem 4 of § 1, A'C’ = A’C’
and BC' = BC". Hence, by C,, AC’'=AC” and B'C' = BC".
But C”is within £ A’'B'C’ and AC = A'C” and BC = B'C”. Thus the
T *Cf. 4., page 503.
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supposition that there are two points C'’ and C”, in the half plane E'A’B’
such that AC= A'C’', BC = B'C’, AC= A'C" and BC= B'C”, would
lead to a contradiction with 4.

Theorem 7 is therefore established.

§ 7. Geometry of the rule and compasses.

In this paragraph will be considered several sets of assumptions, from any one
of which sets follows a geometry in which all ordinary rule and compasses con-
structions are possible.

Two propositions concerning intersections of straight lines with circles, or of
circles with each other, will be considered and will be referred to by means of
the following notations :

IL.* If A, Band C are non-collinear points and P is between A and B,
then there is, on the straight line DC, a point B’ such that AB = AB'.

L.t Iy APD, PBP, ADP, PB= BP, AD = AD/ and all of these
points lie in a plane, and this plane is decomposed by the straight line PB into two
regions,} then, in each of these regions, there is a point C such that AC = AD and
BC= BP.

Lemma 1. M is a consequence of O, C, and I,.

Proof. Suppose 4 and B are two different points. From O and C it easily
follows that there is a point P, between 4 and B, such that AP > PB,
Then there is, by Theorems 3 and 6 of § 1, a point P’ such that AP'B,
AP’ = PB,and P'B= AP. Evidently AP'P. Hence, by I,, there exist
two points D and D’, on opposite sides of AB, such that

BD= AD= BD' = AD' = AP.

Segment DD’ meets the straight line AB in a point M. According to
Definitions 3, 5 and Theorems 3 and 17 of § 1, M4 = MB. Thus every
segment has a middle point.

Lemma 2. I, is a consequence of O, C, M, P, and I,.

Proof. According to Theorem 1 of § 6, plane semi-quadratic geometry is a
consequence of 0%, C, M, P,. So a theory of proportion and an analytic
geometry may be introduced. Now suppose one extremity of a diameter of
€/, is within €, and its other extremity is without €,. Take CC’ as x-axis
and a perpendicular to C'C" at the point C as y-axis. Equations of € and
G.,, referred to these axes, are x* + 4> =% and (x — a)? 4 3 = r" respectively,
where a is the abscissa of C". It is evident, in view of I, that for every value,

*If a straight line lies in the plane of a circle and has a point within that circle then it inter-

sects the cirocle.
11t a semicircle has one extremity, P, within and the other, P/, without a circle with which

it is coplanar, then it bas a point in common with that circle.
1 Ct. VEBLEN, loc. cit., pages 363 and 364.
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x’, of 2 between — » and + r, there is a value, ', of y such that («’, y') satisfies
2?4+ y* =12 With help of the fact that r + r'>a,a+r>r"and a +r'>r,
it may be seen that 3a~'(r* + o® — r'z) is between — r and 4 r. Take for o’
this value. Then
y' = :i:l/r'z —_ m'z

and, no matter which sign we take, these values of x' and gy’ evidently satisfy
(z—a)+y*= »? as well as «? + y*=7% Thus ¢ and €, intersect in two
points, one on each side of CC".

Lemma. 3. I, is 2 consequence of O, C and I,.

Proof. From O, C and I,, M follows, according to Lemma 1. Now sup-
pose the straight line p lies in the plane of the circle €, and passes through a
point P which is within that circle. If P is the same as C, then, by Theorem
1 of § 1, p evidently has a point in common with € . If P is different from C,
it follows from O, C and M (see Theorem 10 of § 3), that there exists on p
a point D such that CD is perpendicular to p. By C,, there is a point C’
such that CDC’ and CD = DC’. Then, evidently, according to hypothesis,
Theorem 5 of § 4, Theorems 1 and 2 of § 2, and I,, €, and €, have a point
F in common. Hence, according to Definitions 3 and 7, F'D is perpendicular
to CD. Hence, by Theorem 10 of § 3, F lies on the straight line p. So p
and €, have a point /" in common.

Theorem 1. From O, C, I,, and P, follows a “ Geometry of the Rule and
Compasses.”

Proof. With the help of Theorem 1 of § 6 it may easily be seen that a geome-
try of the rule and compasses for each plane follows from O, C, M, P, and I,.
Our present theorem will then be established if it is proved, (I), that M follows
from O, C, P, and I,, and, (IT), that a geometry of the rule and compasses
follows from I,, P,, O, and geometry of the rule and compasses for each plane.
Now M follows from O, C, P, and I,, according to Lemma 1; and (II) is
evident in view of the fact that Theorem 5 of § 5 is proved as a logical conse-
quence of I, and plane semi-quadratic geometry for each plane.

§ 8. Independence of each assumption in the set composed of K, P, C and O.

The following “independence examples ” are constructed to show that each
assumption of the set composed of K, P,, C, and O is independent of the
remaining ones.

Example for order Axiom I. Use VEBLEN’s K, (loc. cit., page 353).

Example for order Axiom III. Cousider four points 4, B, C, D in the
orders ABC, ACB, ADB, BAD, BCA, BDC, CAD, CBD, CDA,
DAC, DBA, DCB. Consider that every segment = every segment.

Example for order Awiom IV. Use VEBLENS K,y. Consider that every
segment = every segment.
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Ezxample for order Awiom VI. Points are all integers (including 0). 0K4
and 4KO for every point K except — 1,0, 4and 5. — 1, 0 and 4 are in the
orders —104 and 40 —1. 0,4 and 5 are in the orders 045 and 540.
If, in the ordinary sense,0 < 4 <4, C> 4 and 0 < B < 5, then {££¢} if and
only if B— A =C — B —1. If, in the ordinary sense, 0 << 4 <4, C<0
and — 1< B <4, then {#£S} ifandonlyif A — B=B—-C—1. IfDand E
are two integers and there is no integer C' such that DEC according to these
definitions given above, then {2£5} if and only if E — C = D — E. Every
segment = every segment.

According to this plan one has the following orders :

841 134 —403 30 —4
742 247 —302 20 -3
6 43 346 —-201 10 -2
631 136 —213 31 -2
540 045 —-104 40 —1
53 2 235 —112 21-1

0K4 and 4KO for every integer K 4 — 1,0,4 or 5; and in case 4 and B are
two integers which are not respectively the first and second element of any one
of these triads, then ABC if and only if A — B= B —C.

Ezample for order Axziom VII. VEBLEN’s Ky;. Every segment = every
segment.

Example for order Aziom VIII. VEBLEN’S Ky, Every segment =
every segment,

Ezample for order Axiom 1X. VEBLEN’s Kiy. Congruence ordinary.

Ewample for order Awviom X. VEBLEN’s K,,. Congruence ordinary.

Ezample for order Aziom XI or K. Some non-Archimedean geometry, for
example that of HILBERT (cf. TOWNSEND’s translation of HILBERT’s Grund-
lagen der Geometrie, page 34).

Ezample for P,. Consider any of the ordinary proofs of the compatibility
of Bolyai-Lobachevskian geometry.

Example for C,,. Define points as the points of ordinary Euclidean space
that lie on one side only of a given plane, consider these points to be ordered
just as in the ordinary sense and two segments to be congruent to each other if
and only if they are congruent in the ordinary sense. Then K and P, are
satisfied and so are all the assumptions of C except C,,.

Example for C,,. Consider points to be all the points of ordinary Euclidean
space ordered in the ordinary manner, but consider every segment as being
congruent to itself and every other segment. Evidently C), is the only assump-
tion of K, P, and C that is not satisfied in this example.

Example for C,. Consider points to be all the points of ordinary Euclidean
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space ordered in the usual manner, but consider that every segment is congru-
ent to every segment which in the ordinary sense is just twice as long.

Example for C,. Consider points to be the points of ordinary Euclidean
space ordered in the usual manner, but consider that there is one segment A B’
such that CD = C'D' if and only if C'D' is congruent to AB in the ordinary
sense.

Ezxample for C,. Consider points to be the points of ordinary Euclidean
space ordered in the usual manner. Consider a certain fixed plane p and
regard two segments neither of which is perpendicular to that plane as being
congruent to each other if and only if their orthogonal projections upon that
plane are congruent to each other in the ordinary sense; in case only one of
them is perpendicular to p, regard them as congruent if and only if this one is
congruent in the ordinary sense to the projection of the other one upon p;
finally, if they are both perpendicular to p, regard them as congruent if and
only if they are congruent in the ordinary sense.

As was suggested by Professor E. H. MOORE, the independence example here
given for C, does not prove C, independent of K, C and the negative of P,.
But all of the other independence examples here given (except, of course, that
for P,) do apply if the negative of P, is substituted for P, and Bolyai-Loba-
chevskian space is used instead of Euclidean. Of course the negative of P, is
shown to be independent of O, C and K if point, order and congruence are
taken as those of ordinary Euclidean space.

§ 9. Independence of each postulate in the set composed of I,, P,, C and O.

Except for C, and I, use the same examples as in § 8.

To prove C), independent, observe that all the assumptions P, C, I,, except
C,,, are satisfied, either ¢ vacuously ” or otherwise, if ¢ points ” are all the points
of ordinary Euclidean space ordered as usual, no segment, however, being
congruent to any segment. C,, C,, C, and I, are, in this case, ‘ satisfied
vacuously.”

To prove I, independent, consider the space obtained by omitting all the
points of Euclidean space except those whose codrdinates are rationally expres-
sible in terms of expressions of the form 1/r where r is an integer.

§ 10. Relation of parallel assumptions to introduction of congruence by definition.

With use of O, K (or order “ Axiom XI’’), and VEBLEN’s Axiom XII*
(concerning parallels), congruence may 1 be introduced by definition, so that, if"
0, K and XII are true of a space, then there must exist between the segments.
of that space a relation satisfying, for example, all of my assumptions C. But.

*See footnote 1 on page 501.
1 VEBLEN, loo. cit., page 383.
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this is not true if XII is replaced by the weaker postulate P,, as may be seen
with help of the independence example obtained by considering a certain fixéd
plane in ordinary Euclidean space and regarding as  points”” only those points
of this space which are on a certain side of this fixed plane, these points being
ordered as usual. Here O, K (also XI) and P, are satisfied. But there can-
not exist among the segments of this space a relation satisfying assumptions C.
For in that case this space would be, according to § 5, ordinary Euclidean space
and thus, in particular, through each point outside of any given line there would
be only one parallel to that line, as is manifestly impossible.

§ 11. Relation of continuity assumptions to introduction of congruence
by definition.

Theorem 1. It is not possible to prove that if the assumptions* O, P,,
C,, C;, Gy, C,(call this the set §), hold true of a space, then there exists a
definition for the symbol ¢ = ” such that the assumptions C' and M will hold
true with reference to the points and order in terms of which the assumptions
of S are stated.

Proof. Select any system (0OX, OY, OZ) of three rectangular axes in ordi-
nary Euclidean space and consider the space composed of all points whose
coordinates with reference to this system are all rational, congruence and order
relations being as usual. Call this space U and let the terms “original order ”’
and “ original congruence ” be understood here as meaning the order and con-
gruence here indicated for this space. Clearly O, P, and all of the assump-
tions of C except C;_hold true of I/ with reference to this order and congruence.
Suppose a new meaning could be given to the congruence symbol ¢ =" such
that the assumptions C and M would hold true for the space U with reference
to the original order. Then, according to § 6, all the theorems of plane semi-
quadratic geometry, in particular a theory of proportion, would hold true, with
reference to this new congruence and the original order, for any planes in the
space U. There would then exist on OX a point P such that, with reference
to this theory of proportion, OP x OP = 20I where I is some point of OX
(e. g, such that O = original unit). OP would then clearly not be, with refer-
ence to this new congruence, rational in terms of OI. But with use of P, it
may be shown that any two segments which lie on OX), being rational in terms
of each other with reference to the original congruence, would necessarily also
be so with reference to this new congruence. To prove this let us first suppose
that AB and CD are two segments of OX and 4B = C'D according to original
congruence. By P, there exists a parallelogram ABEF in which AB and EF

* By P. is meant the strong parallel assumption : If « is any straight line and 4 is any point
not on a then, in the plane a4, there is one and only one straight line which passes through 4
and has no point in common with a.
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are opposite sides. Manifestly EFCD will be a parallelogram in which EF
and CD are opposite sides. Bat it is clear that, in terms of our new as well as
in terms of our old congruence, the opposite side of a parallelogram must be
congruent to each other. Therefore, in terms of this new congruence, 4B = EF
and EF = CD and therefore AB = CD. It is true then that if AB and CD
are segments of OX and AB = CD according to old congruence, then also
AB = OD according to our new congruence. Now suppose that the segments
AB and CD, of the line OX, are given as rational in terms of one another
(instead of simply congruent to one another) in terms of original congruence.
Then there exists a segment KL, on OX, such that 4B can be divided into m
segments and CD can be divided into » segments, all congruent in the origipal
sense, to KL, m and n being positive integers. But these m + n segments of
OX, being congruent to each other according to the original congruence, must
also be congruent according to our new congruence, and thus AB and CD are
rational in terms of one another according to new congruence. But it has been
shown that, were such a new congruence possible, then there would exist on 0X
two segments, OP and OI, which would not be rational in terms of one another
according to this congruence. A contradiction would thus be obtained and
such a congruence would therefore be impossible.

§12. A question concerning the separation of the assumptions for a
geometry into two sets.

Theorem 1. It would be impossible to formulate a set (I) of assumptions
expressed in terms of point and order alone and a set (II) of assumptions
expressed in terms of point and congruence alone, such that any geometry
satisfying the assumptions I and II must necessarily be ordinary Euclidean
geometry with respect to the undefined symbols in terms of which I and II are
stated.

Proof. Consider a system of three rectangular axes OX, OY, OZ in an
ordinary Euclidean space (E). Consider a paraboloid of revolution (G')
whose axis is OZ and whose vertex is O. Let order be as usual but consider
that segment AB = segment A’B’ if and only if

(za—2e) + (Ya—¥s) '+ (Qu—92)' = (x;'—“'x')z"' (Yo—ys )} + (quw—195)%

the new coordinate, ¢, being defined as 0 if P is on G, and otherwise as =+ the
length of SP where S is the point in which G is cut by a parallel to OZ through
the point P, and + or — is used according as P is on the same side of the sur-
face G as is Z, or on the other side. Let C’ designate this particular congruence.
It may be seen that any statement concerning point and order alone that is true
for Euclidean space must hold true for the space E with reference to the con-
gruence . For if a straight line were defined as the locus of a point P
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satisfying two linear equations of the first degree in z, ¥, ¢,, and, in accordance
with this, a new order O’ were defined in the usual analytical manner, then one
would have a Euclidean geometry concerning the points of the space E, the
congruence C” and the order O’. But also, of course, any statement concern-
ing points and order alone which is true of ordinary Euclidean space is true of
our original order for the particular space E. But manifestly space E does
not satisfy the theorems of ordinary Euclidean geometry with reference to ordi-
nary order and the congruence C'.

§ 13. Certain queries.

I do not know as yet whether M* is a consequence of Ot and C't. There
are several other questions which could not be settled negatively without de-
ciding this question. For example: Is D, 1 a consequence of O, C, 4, § and
P,21 1Is A, a consequence of O, C, D, and P,? Is R, a consequence of
0, C,A_,§and P,? Is A_,a consequence of O, C, R, and P,? Is A a
consequence of O, C, 4_, and P,? Is A_, a consequence of O, C, 4, and P,?

Another question is whether Theorem 1 of § 11 would be true if C, were
substituted for either C,,, C,, C, or C,.

In § 6 it was shown that from O, C, M and P, follows a geometry for
every plane of which all the theorems of plane semi-quadratic geometry hold
true. Is then the semi-quadratic geometry of a three-space a consequence
of O, C, Mand P,? This could be answered in the affirmative if it could be
shown that in every space for which O, € and M are true all right angles are
congruent to each other. It can be proved || that in such a space all coplanar
right angles are congruent to each other.

* See last sentence of § 1.

1 See the opening pages of the paper.
1 8ee ¢ 6.

¢ See ¢ 2.

| See Theorem 1 of 3 4.




