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In this paper is given a set of assumptions, C, concerning point, order f and

congruence, which, together with a certain set of order assumptions 0,% a conti-

nuity assumption F,% and a very weak parallel assumption P0,% are sufficient

for the establishment of ordinary Euclidean geometry. Each assumption of

this set is independent of all the remaining ones. Moreover congruence is here

an independent symbol in the sense that it would be impossible § to prove that

if the order assumptions 0, TTand P0 are true, then there must exist a relation

satisfying the congruence assumptions C with reference to the points and order

in terms of which O, F and P0 are stated. According to Veblen || congru-

ence would not, however, be thus independent if P0 were replaced even by his

still comparatively weak parallel assumption Xl.^f

If in this categorical set of assumptions there is substituted for F the assump-

tion that every segment has a middle point,** and P0 is replaced by the some-

what stronger assumption P2,ft then follows JJ a geometry §§ in which a theory

of proportion holds and rigid motion is possible.

Other alternative sets of assumptions are discussed. Among these an inter-

esting set is that obtained by substituting for P0 the postulate P2 and for F a

postulate I2 which may be roughly stated as follows : " If B is within, and B'

without, any circle a, then each semicircle with B'B as diameter must have a point

in common with the circle a."|||     Each assumption in the set composed of P2, I2

* Presented to the Chicago section of the American Mathematical Society, in a somewhat dif-

ferent form, April 22, 1905.    Received for publication December 26, 1907.

fit would be impossible (see Theorem 1 of § 12) to formulate two sets of assumptions, one

set, C, being stated in terms of point and congrnence alone, and the other, 0, being stated in

terms of point and order alone, such that from O and C would follow a geometry, Euclidean with

respect to the undefined symbols in terms of which O and Care stated.

i O, íTaud P„ are all stated in terms of point and order.

§ Cf. § 10.
|| These Transactions, vol. 5 (1904), pp. 343-384.

i Loc. cit. p. 346.

** Cf. end of § 1 and first part of § 6.

ttSee§6.

tt Cf. Theorem 1 of § 6.

§§ A. geometry which is a consequenoe of this set of assumptions is a consequence of Hil-

bebt's Axiom-groups I-IV and conversely.

IHI Cf. §7.
487
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and the assumptions C and O is independent of the remaining ones, and more-

over this set is sufficient for the establishment of a geometry in which not only

is there a theory of proportion and rigid motion but also all ordinary rule and

compasses constructions are possible.

In this paper " proof" is used to mean an indication of a demonstration.

" Hence," " by," " therefore," etc., are intended as suggesting certain relations

and not necessarily as describing exactly the logical dependence of one state-

ment upon another.

I wish to thank Professor E. H. Moore and Professor O. Veblen for sug-

gestions and criticisms. Professor Veblen, who suggested the undertaking of

this investigation, has not only made numerous suggestions and criticisms, but

has given me much help in the way of actual collaboration.

Assumptions for Euclidean geometry.

O. Veblen's order "axioms" I and III-X.*

C. Assumptions concerning point and congruence, sometimes with reference

to order, as follows :

C,a. If Pf i-8 different from C and A' is different from B' then there exists a

point C such that A'B'C X and BC = B'C. §

Clb. If B is different from C and A' is different from B' then there is not more

than one point C such that A'B'C and BC== B'C.

C2. If A is different from B, A' is different from B, A" is different from B',
AB = A'B and A'F = A"B', then AB m A"F'.

C3. If ABC, A'B'C, AB = A'B' and BC= BC, then AC= AC.
C4. If A, B and C are three non-collinear || points and A', B' and C are three

non-collinear points and CAB, CAD', AB = A'B, BC= FC, CA = C'A',
CD m CD', then BD = B'D'.'I

F. For the continuity assumption F may be taken either Veblen's XI or a

Dedekind cut assumption stated for the points of a single segment as follows :

If there exists any segment then there exists some segment AB such that if it is

*Loc. cit., pp. 344-346. From assumption da below it follows that if A and B are two dif-

ferent points there is a point C different from B such that ABC. Veblen's Axiom II may be

Been to be a consequence of this proposition and his Axioms I, III-VIII (cf. a paper presented

by me to the American Mathematical Sooiety on October 26, 1907, but not yet pub-

lished). Thus Axiom II is redundant in the set composed of Veblen's Axioms I-X together

with my Axioms C.

f Capital letters are used to designate points.

} ABC used as a sentence means A , B and C are in the order ABC.

§ PC as a simple word, unmodified by "line" or "ray," means the segment BC, i. e., the set

of all points X such that BXC

|| Cf. Veblen, loc. oit., p. 345. Instead of "three non-collinear points " one might, in stat-

ing this assumption, use the phrase "three points such that neither ABC, BCA, nor CAB."

If Cf. Vebonese, Orundzüge der Geometrie, pp. 254-260. C4 and C, might be stated together

in one assumption.
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composed of two sets of points [J!f]* and \_N~j, each set containing at least two

points and no point X of either set being either the same as Yx or such that Yx XY2

where Yx and Y2 are points of the other set, then there exists a point C such that

MCNfor every M and N different from C.

With the help of 0, from either of these assumptions can be deduced a

theorem to the effect that this Dedekind cut proposition must apply to every

segment as well as to the segment AB (cf. Veblen, loc. cit., pages 368 and

369).
P„. If there exists any straight line and a point not on it then there exists some

straight line a, and some point A, not on it, such that if a and A lie in a planef

ß then in the plane ß there is not more than one straight line passing through

A and having no point in common with a.

§ 1.  Consequences of O and C.

On the basis of O and C we have the following propositions :

Theorem 1. If A ' is a point and AB is a segment, then on each ray % start-

ing from A' there is one and only one point F such that AB = A'F.

Proof.    See (7,a and Ch.

Theorem 2. If ABC and C is on ray A'B and AB = A'B and

AC = A'C, then A'BC.
Proof. There is, according to C¡z, a point C" such that A'BC" and

BC = BC". Hence, by Cs, AC = A'C". But, according to hypothesis,

AC s A'C.   Therefore, by Cu, C"is C".    But A'BC".
Corollary. If B is on ray A C and B is on ray A'C" and AB = AB and

AC s A'C, then PCs BC.
Theorem 3.§    If A is distinct from B, then AB = AB.

Proof. According to Theorem 1 there exists, on ray AB, a point B such

that AB = AB. Again there exists, on ray AB, a point B' such that

AB = AB'. But, then, according to C2, AB = AB" and thus (see Theorem

1) B is B'. Hence AB m AB'. Therefore AB=AB and also AB=AB.

But if B is not B then either ABB' or ABB and thus, by Theorem 2, ABB',

which is impossible.    So B is B.    But AB = AB.    Hence AB = AB.

Theorem 4.    If AB = A'B, then A'B m AB.
Proof. According to Theorem 1 there exists, on ray AB, a point B' such

that A'B = AB'. So, by C2, Theorem 3 and Theorem 1, P" must be B.

But A'B m AB'.   Thus A'B m AB.

♦The notation £M] is used to denote a Bet of elements any one of whioh may be called M.

t Cf. Veblen, loo. oit., p. 345.

X If A and B are two distinct points, then the set of all pointa [C] such that either C is B, or

ACB, or ABC, is called a ray or half line starting from A.   Such a ray is called the ray AB.

i Cf. HlLBKBT'a IV, 1 (see page 12 of Hilbebi's The Foundations of Geometry, Townsend's

translation).
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Theorem 5*    If AB = AB and AB m A'B', then AB m A'B'.
Proof.    This theorem is a logical consequence of Theorem 4 and C2.

Theorem 6. If ABC and AC = AC, then there exists one and only one

point B such that A'B'C and AB m A'B and BC=BC.

Proof. According to Theorem 1 there is one and only one point B on ray

AC such that AB = A'B'. According to Theorem 2 and its corollary,

¿'P'C and PC =P'C.

Definition 1. AB' < AB means : there exists a point P such that APB

and AB = AP.    AB' > AB means AB < AB'.
Tlieorem 7.   If AB > ^4'P', .4P = CD and AB m CD', then CD > CD'-
Proof. According to definition 1 there exists a point P such that APB and

AB' = .4P. So, according to Theorem 6, there exists P' such that CPD

and ^4P = CF. By C2 it follows that A'B m CF. Therefore, by hypothesis

and Theorem 5, CD' m CF.    So CD > CD', according to Definition 1.

Theorem 8. If A is different from P and A is different from B, then, of the

three statements .4P = AB, AB~> AB', AB < A'B, one and only one is

true.

Theorem 9.    If AB > AB and ̂ l'P'> ^1"P", then AB > A'B".
Definition 2. -4P + CD means the segment AE, where E is a point such

that ABE and CD m BE. If AB > CD then AB - CD means the seg-
ment AE where E is a point such that BEA and CD = BE.

Theoretn 10. If ^4P = A'B, CD = C'P', then AB + CD = AB' + CD.
We have the following rules of combination : AB + CD = CD + AB,

(AB + CD) + EF=AB + (CD + FF), AB-CD= EF if and only if

AB = CD + EF.
A relation (called congruence) between anglesf is introduced by the follow-

ing definition :

Definition Z.% iÇ ABC= ^ A'B'C means that there exist points D, D',

E, E, on rays P^4, BA, BC, BC respectively, such that BD = BD',

DE=D'E',EB = E'B.
Theorem 11. If f BAC = 4 BAC, BA = P'^4', CA = C'A, then

BC=BC.
Proof. By hypothesis and Definition 3 there exist on rays AB, AC, A'B',

AC, points D, E, D', E' respectively such that AD = AD', DE=D'E,

EA = E'A. By Theorem 1 there exist points F, G, F', G', such that BAF,

GAG, BAF', CAG, AF=AF', AG = AG'. By hypotheses and C4

it follows that EF= E'F' aud therefore, by Theorem 2 and -another applica-

tion of Ct, it may be proved that F G = F'G'.   Treating A, B, C,A, B, C,

*See Hilbert's IV, 2, loo. cit., p. 12.

t An angle is a point together with two non-collinear rays which start from that point.

JCf. Veronese, loo. cit., p. 257.
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with reference to A, G, F, A, G', F' as A, G, F, A, G', F' were treated

with reference to A, D, E, A, D, E', one may prove that BC = BC.

Theorem 12.*    4 ABC = % ABC.
Proof.    Use Definition 3 and Theorem 3.

Theorem 13.    If 4 ABC= 4 ABC, then 4 A'B'C = 4 ABC.
Proof.    Use Definition 3 and Theorem 4.

Theorem 14.| If 4 ABC = 4 ABC and 4 ABC m 4 A'B'C", then

4 ABC = 4 A'B'C".
Proof.    Use Definition 3 and Theorems 11 and 5.

Definition 4. Two angles are supplementary to (supplements of) each other

if and only if they have a common vertex and one common side and their other

sides form two rays of the same straight line.

Two angles are vertical angles if and only if they have a common vertex and

their four sides, together with this common vertex, make up two straight lines.

Theorem 15. If 4 HAF= 4 F'AF' then each angle that is supplementary

to 4 FAF= each angle that is supplementary to 4 H'A'F', and the angle that

is vertical to 4 FAF = the angle that is vertical to 4 H'A'F'.

Proof.    See Theorem 11 and proof thereof.

Corollary.    Vertical angles are congruent to each other.

Definition 5. A ABC =& A'B'C means: AB = A'B, BC=B'C,

CA m C'A, 4 ABC = 4 A'B'C, 4BCA=4BC'A, 4 CBA m4CB'A.\
Theorem 16.    A ABC=A A B'C if AB=AB', BC=BC, CA= CA.

Proof.    See Definitions 3 and 5.

Theorem 17.§ aABC=aAB'C if AB = AB, BC = B'C, and

4ABC = 4AB'C.
Proof. See Theorem 11 and Definitions 3 and 5.

Theorem 18. If 4 ABC =4 ABC and D is in || 4 ABC, then there exists

a point D' in 4 A B'C such that 4 ABD = 4 ABU and 4 DBC=4FBC.
Definition 6. 4 BAC < 4 BA C means : there is a point, P, in 4 BA C

such that 4B'AC=4BAF.   4B'AC>4 BAC means: 4BAC<4B'AC.
Theorem 19. If ^P.4 C>4B'AC, 4BA C=4DEF, 4BAC=4D'E'F',

then 4 DE F > 4 DE'F'.
Theorem 20. If 4 BAC'>4BA'C and 4 BAC>4B'A"C", then

4 BAC > 4 B" AC".
Theorem 21.    If^PCisa A and AC=BC, then 4 ABC =4 ACB.

♦See Hilbert's IV, 4, loc. oit., page 14.

fSee Hilbert's IV, 5, loc. cit., page 14. A ABC (triangle ABC) means the three non-
collinear points A, B, and C.

X See Veronese, loc. cit., page 254.

§ See Hilbert's, IV, 6, loo. cit., page 15.

|| If ABC is an angle, the two rays, BA and BC, together with the vertex B, divide the plane

ABC into two regions. That one of these regions which contains points P such that APC is

called the interior of ̂ ! ABC.   Cf. Veblen, loc. cit., pp. 363-365.
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Proof.    Use Theorem 3 and Definition 3.

Definition 7. "A middle point of the segment .4P " means a point M, on the

straight line .4P, such that AM = MB.

Theorem 22.    If M is a middle point of AB, then AMB.

Proof.    Use Definition 7 and Cu.

Theorem 23.    No segment has two middle points.

Proof.    Use Definition 1 and Theorems 22, 7 and 8.

I do not know as yet whether from O and C it follows that every segment

has one middle point. This proposition (statement) that every segment has a

middle point will be denoted by the symbol M.

§ 2. Two consequences of 0, C and M.

In § 1 a number of propositions were deduced as consequences of O and C.

In the present paragraph it will be shown that, if M is assumed in addition to O

and C, then follow two propositions concerning angles.

The symbol Ax will be used to denote the proposition : If ABC, AB = BC,

and D is not on the straight line AB, then there is, in the half-plane D — AB,* a

point E such that AD s BE and BD s CP.f

The symbol A_2 denotes the proposition : If C is riot on straight line AB,

then, in the half-plane C— AB, there is no point C, different from C, such that

AC= AC and BC=BC.%
Theorem 1.    From 0, Cand M follows A_2.

Proof. If this theorem is not true, then there exists a space for which O, C

and Jfare true but which contains four distinct coplanar points A, B, C, C"

such that C and C" are on the same side of AB and moreover ßC'= BC"

and C'A = C'A. In case the straight lines C C" and .4P have a point P in

common, then with use of Theorems 15, 16, 17 and 3 it may be seen that

A .4PC s a ^4PC", and thus PC s PC", but this is impossible according

to Cu and the hypothesis that Cand Care on the same side of AB. In

case the straight lines C'C" and .4P have no point in common, then A and B

are on the same side of the straight line C C". According to M and Theorem

22, there is a point S such that C"8C and C"S m SC There exists, as may

be seen by use of 0, a point P such that P&4 and segment PB has a point

8' in common with segment C'C". Consider a's ASC and ASC".

A8=AS by Theorem 3, while, by hypothesis, AC = AC" and CS = SC".
Hence, by Theorem 16, &ASC m a ASC".    With use of C2, C, and The-

♦ By a half-plane is meant one of the two regions into whioh a plane is decomposed by a

straight line which lies in it (of. Veblen, loc. cit., pp. 363-365). If the straight line AB thus

decomposes a plane into two regions and D lies in one of these regions then this region is called

the half-plane D — AB.

t Thus, according to Definition 3, 4 BAD s 4 CBE and Ax is, then, a weak form of the propo-

sition given in the statement of Theorem 4 of §5.   Cf. Hilbebt's IV, 4, loo. cit., p. 14.

I Cf. Hilbebt's IV, 4, loo. cit., p. 14.
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orem 3 it follows that PC = PC. Hence, by hypothesis, Theorem 3 and

Definition 3, it follows that 4 C"BS' = 4 CBS' and, consequently, by means of

Theorems 17 and 3 and Définition 5, that C"S' = S'C", but this is impossible

according to theorem 23.

Corollary.* Given an angle BA C and a ray AB', there is, in a given

plane containing A'B and on a given side of A'B', not more than one ray

AC such that 4BAC = 4BAC.
Theorem 2.    From O, Cand M follows Ax.

Proof. Suppose ABC, AB = BC and D is not on the straight line A C.

According to M and Theorem 22, there is a point S such that ASB and AS=SB.

By C,o there exists a point E' such that DSF' and DS = SE'. According to

Theorem 17 and Corollary to theorem 15, 4SAD = 4SBE". But by Cla

there is a point F such that E'BE and AD = BE. By theorems 13 and 14

and Corollary to Theorem 15, 4DAS = 4CBF. But ABsBC and

AD = BE.    Hence, by theorem 11, BD m CF.

§ 3.  Consequences of 0, C and A_2.

In § 2 it has been shown that if M is assumed in addition to O and C, then

there follow the two propositions Ax and A_2. On the basis of O, C and .4_2

we have the following propositions.

Theorem 1. a ABC= a AFC if 4ABC=4ABC, 4BA C=4B'AC
and AB m AB.

Proof. According to Theorem 1 of § 1 there is a point C" on ray A'C

«uch that AC m A'C". According to hypothesis and Theorem 17,

A ABC s a A'BC" and thus (see Definition 5) 4 ABC = 4 ABC '. But
^.ABC = 4ABC. By A_2 and Theorem 1 of § 1 it follows that either

C" is C or, if not, then B is on the straight line C'C and, thus, on the

straight line AC, contrary to hypothesis. So C" is C But aABC =

A A'BC".    Hence A ABC = ABC.
Theorem 2.f Of the three statements, 4BA C<4BA C, $BA C=4BA C,

-4BAC>4 B'AC, not more than one is true.

Proof. Make use of Definition 5 and -4_2. For instance suppose

'4BAC~>4FAC. Then, according to Definition 6, there exists a point

F, in 4 BAC, such that 4 FA Cm % BAD. So, if 4 BA C = 4 FA C,
then 4 BAC =4 BAD, and this could not be, in view of .4_2; while, if

tÇ BA C <4 FA C, then there exists, in 4 B"A' C, a point D' such that

4 BA C = 4 BAD'. Then, according to original hypothesis and Theorem

19, 4BAD'>4BA'C-    Hence there exists, in 4 BAD', and at the same

♦See Hilbebt's IV, 4, loo. cit., p. 14.

t Observe that it is not here stated that one of these statements is true. See Corollary to

Theorem 2 of § 4.
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time in 4 BAC, a point G" such that 4 B'AC m 4 BAG", but this could

not be according to -4_2. So, if 4 BAC~>4 FA' C, then neither

4BAC<4 BAC nor 4BAC = 4BAC.
Theorem 3. If HGF, and / is not on the straight line HF and A is dif-

ferent from C, and B, D, A and C are coplanar but neither P nor D is on the

straight line A C, and 4 BA C i 4 FGI and 4 A CD i 4IGH, then the rays
CD and AB do not meet.

Proof. Of course, the rays AB and CD cannot meet unless they are on the

same side of the straight line A C. Suppose they are on the same side of A C.

According to hypothesis and Definition 6, there exist points P and S such that

either ray CS is ray CD or ray CS is in 4 DCA and moreover either ray .4P

is ray AB or ray .4P is in j£C4P and furthermore 4 ACS = 4FGI and

4 CAP = 4 FGI. Evidently, theu, rays CD and AB cannot meet unless

rays CS and AP meet. Suppose rays CS aud .4P do meet in a point M.

There exists, according to C,o, a point M' such that MCM' and AM = CM".

Now, by Theorems 15, 13 and 14, 4 CAM ss 4 A CM".   Hence, by Theorems

3 and 17 and Definition 5, 4 CAM' m 4ACM. But, by Theorems 15, 13
and 14, 4 A CM= 4 FA C, where F is any point such that P^4P. It fol-

lows, by means of -4_2, that the points 31, A and M' are collinear. So the

straight lines .4P and CS unite in two* points M and M', but this is impose

sible.    Therefore rays .4P and CS do not meet.

Corollary. If HGF, and I is not on the straight line HF, and A, B and

C are three non-collinear points, and D is in the half-plane B — AC, and

4 BAC = 4 FGI and 4 A CD m 4IGH, then the lines CD and AB have no
point in common.

Theorem 4.    If ABC is a triangle and BC> AC, then 4 A > 4 B.

Proof. By hypotheses, Theorem 7, and Definition 1, there exists, between

F and C, a point D such that AC = CD. Since D is between P and C, it

follows from Theorem 12 and Definition 6 that 4BAC>4DAC. But, by

construction and Theorem 21, 4DAC = 4ADC. Hence, by Theorems 12

and 19, 4BAC>4CDA. But, by Theorem 2 and Corollary 2 to Theorem

3 of §3, 4CDA>4ABC. Hence, by Theorems 3 and 19 of §1,

4BAC>4ABC.
Theorem 5. If D is within 4BAC and D' is within 4B'AC" and

4BAD = 4FAD' and 4 DAC =4DAC, then 4BAC m FAC.
Proof. It may be easily seen that there exist points E, F, F", G' on rays

.4C, AD, AC, AD respectively such that AE = AE', AF = AF', and
P'P'and EF' cut rays AB and A'B in two points G and G' respectively.

By hypothesis and Theorem 17, 4AFE=4AF'E' and EF=4E'F'.
But   it   is   clear   that   EFG    and   E'F'G.     Hence,   by   Theorem    15,

* That M and M' are distinct is a consequence of 0.
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4 AFG m 4 A F G'. But 4 GAF m 4 G'A'F' and AF m A F'., Hence,
by Theorem \,FG = F' G'. But EF m FF. Hence, by CS,EG = EG'.
But AE m AE' and AG= AG'.   Hence, by Definition 3, 4BA Cm 4B'A C.

Definition 7. A right angle is an angle that is congruent to its supplement.

A straight line a is perpendicular to a straight line b if and only if they inter-

sect in a point O and there exist two points, A and B, different from O, A

lying on a and P lying on 6, such that 4 A OB is a right angle.

Corollary. Every angle which is congruent to a right angle is itself a right

angle. If the straight line a is perpendicular to the straight line 6, then b is

perpendicular to a and if A and P are any two points different from O, A

lying on a and P lying où b, then 4 A OB is a right angle.

Proof.    See Theorems 12, 14 and 15 of § 1.

Theorem 6.    In each plane there is a right angle.

Proof. Suppose A, B, C, are three distinct non-collinear points of a given

plane. According to Theorem 1 of § 1 there exists, on ray AC, a point B

such that AB = AB'. There is a point D such that ADB and, according to

Theorem 6 of § 1, there is a point D such that FDA, BD = BD and

DA = DA. According to 0, there is a point P such that BPD and B'PD.

Now 4 B'BA m 4 BB'A (see Theorem 21). Hence, by Theorems 3 and 17 of

§ 1, A BED = a BBD. Thus 4 FD'B m 4 B'DB and therefore, by Ther
orem 15, it follows that 4FDA = 4FDA. Moreover, by Theorems 17 and 12

and Definition 5, 4PBD m 4 PFD. Hence A BPD = A BPD according

to Theorem 1. Thus PD =PD. Now also DA m DA. Hence, by The-

orem 3 of § 1 and Definition 3, 4FAP = 4BAF. According to 0, there

is a point M, on AF, such that B'MB. By Theorems 17 and 3 and Definition

5, MB' m MB and 4 AMF = 4 AMB. Thus 4 AMB is a right angle (see
Definition 7).

Corollary. If BA C is an angle, then there exists, within 4 BA C', a point

O such that 4BAO = 40AC.
Theorem 7. If there is one perpendicular p to a straight line a, then, through

each point of a, and lying in the plane pa, there is one and only one straight

line perpendicular to a.

Proof. Suppose O is the point at which p intersects a, C is any other point

of a, and P is any other point of^. By Clm there exists a point F such that

POP' and PO= OF. There is also a point P" such that FCF' and

FC = CF'. There is (see Corollary to Theorem 6) a ray CM in 4PCF'

such that 4PCM=4MCF'. Now, also, 4P CO = 4 F CO = 4F'CO,
where OCO. Hence (see Theorem 5) 4 MC O m 4 M CG. Hence, by defini-

tion 7, MC is perpendicular to a at the point C.

Suppose there is, in the plane pa, another perpendicular to a at the point C.

Suppose N is a point of this new perpendicular on the same side of a as M and
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suppose M CM' and NCN'. Ray CN must lie either in 4 0 CM or in 4OCM.

Suppose it lies in 4 O CM. Then ray CN' lies in 4OCM'. According to

Definition 7, Theorem 12, and Theorem 15, 4MCO = 4M'CO and

4 NCO = 4N'CO. By Theorem 18, there is a point N" in 4 M' CO such that

40CN=OCN". But 40CN=40CN' and ray CN' is in 4OCM' and
thus is different from CN". But this is impossible according to A_2. Thus

CN cannot be in 4OCM. Similarly it cannot be in 4CCM. There is, then,

in the plane pa and passing through C, not more than one straight line per-

pendicular to a.

Theorem 8. If there is one perpendicular p to a straight line a, and P is

any point in the plane pa, then through P, and lying in this plane, there is

one and only one perpendicular to a.

Proof. If P is on a cf. Theorem 7. If P is not on a, suppose F is a point

of p on the same side of a as P and 0 is the point where p meets a. If P is

on OF, then certainly, through F, there is a perpendicular (OF) to .4P. If F

is not on OF, it is on one side of it. Suppose H is a point of a that is on the

same side of OF as P. Then P lies in 4 HOF. There is (by C,J a point

F' such that EOF' and OF=OF. According to Theorem 18 there is, in

4 HOF', a point F such that 4POH1S4HOF. On ray OF there is a
point P" such that OP = OP". Since P and P" are on opposite sides of OH

and on the same side of OF, there is a point M of ray OH such that PMP ".

According to Theorems 3 and 17 of §1, aOMP = aOMF'. So

4 PMO = 4 F'MO and thus PM is perpendicular to a.

Now suppose that through P there is, in this same plane, another perpendicu-

lar to a. Suppose this new perpendicular meets a in the point M'. There is

a point p" such that PM'F". According to hypothesis, Definition 7 and The-

orems 13 and 14,4 MM P m 4 MM'P" and 4 M'MP = 4 M'MF'. According
to Theorem 17, a PMM' = A F'MM'. So 4FM'M=4MM'F'. But
4PM'Mm4F"M'M. Hence, according to A_2; P" must lie on ray M'F"

and thus the straight lines MP and M'F intersect in two points P and F',

but this is impossible. So there is through P, and in a given plane contain-

ing a, not more than one perpendicular to a.

Theorem 9. If in the plane of two intersecting straight lines there is a per-

pendicular to one of them, then there is in this plane a perpendicular to the

other one.

Proof. Suppose that the straight lines a and b intersect in a point O and

there is a perpendicular to a lying in the plane ab. Then, if P is any point of

b other than 0, it follows, by Theorem 8, that there is a point iono such that

P.4 is perpendicular to a. In case A is 0, then a is perpendicular to b, and

the conclusion of Theorem 9 is evidently verified. In case A is not 0, then

there exist points A and B', on 6 and a respectively, such that O A = OA',
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OB = OF. By Theorems 12 and 17, 4 BAO = 4 BAO. But 4 BAO
is a right angle. Hence, by the corollary to Definition 7, 4 BAO is a right

angle.    So P^4 is perpendicular to b.

Theorem 10. If a is any straight line and P is any point, then in a given

plane a containing P and a there is, through P, one and only one straight line

perpendicular to «.

Proof. By Theorem 6, there exists in a some straight line a to which there

is a perpendicular lying in a. ' In case a is not a, suppose A and A ave two

points of a and a' respectively. By hypothesis and Theorem 9 there is in a

a perpendicular to AA, and therefore, by Theorem 9, there is in a a perpen-

dicular to a. Hence, by Theorem 8, through each point of a there is, in a,

one and only one perpendicular to a.

Tlieorem 11. If a and b are two intersecting straight liues then there exist

in the plane ab straight lines a and b' which are perpendicular to a and 6

respectively and are such that each angle that a makes with a = each angle

that 6' makes with b.

Proof.    See Theorem 10 and proof of Theorem 9.

§ 4.  Consequences of 0, C, A_2 and Ax.

In § 2 it was shown that Ax as well as .4_2 was a consequence of 0, Cand

M.    On the basis of 0, C, Ax and ^4_2 we have the following propositions :

Tlieorem 1. . Any two coplanar right angles are congruent to each other.

Proof. If a side of one right angle is collinear with a side of another which

is coplanar with it, it may be easily seen, with help of Ax, Definition 7 and

Theorems 1, 15, 13 and 14, that they are congruent to each other. From this

result and Theorem 11 of § 3, it follows that two coplanar right angles are con-

gruent to each other if the straight line which contains a side of one intersects

the straight line which contains a side of the other. From this, 0, Theorem

14 of § 1, and Theorem 10 of § 3, it follows that any two coplanar right angles

are congruent to each other.

Theorem 2*. If A, P, Care not collinear and D, A, B are not collinear,

but A, B, C, D, A, F are coplanar, then, in the half-plane D' — A'B, there

is a point C such that 4 BA C=4 B'AC.

Proof. According to Theorem 10 of § 3, there exist points, E in the half-

plane C— AB, and E' in the half-plane D — AF, such that 4 FAB and

4EAB are right angles. According to Theorem 1, 4FAB = 4E'A'B.

Suppose ray AC lies within 4 FAB. Then, according to Theorem 18 of

§ 1 and Theorem 1 of § 4, there exists, in 4F'A'B', a ray A'C, such that

4BAC =4 B'AC. Proceed in a similar manner if A C is within 4BXAE

(where BXAB).

*Cf. Hilbert's, IV, 4, loc. cit., page 14.
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Corollary. If ABC and ABC are two coplanar angles then either

4ABC<4 ABC,4ABC = 4ABC or 4ABC>4AFC*
Theorem 3.    If ABC is a triangle and  P is between  A and D, then

2^PPC>^C^P.
Proof. By hypothesis and Theorem 3 of § 3, neither 4DBC <4CAB

nor 4DBC=4CAB. Hence, by corollary to Theorem 2 of § 4,

4DBC>4CAB.
Theorem 4. If ABC is a triangle and P C > ,4 C, then 4BAC>4ABC

and, conversely, iî4BAC>4ABC, then PC> ^4C.

Proo/. I. Suppose BC> AC. Then, by Definition 1, there exists between

P and Ca point P/ such that AC = CD. Since D is between P and C, it

easily follows, from O and Definition 6, that 4 BA Cp>4 FA C. But, by

construction and Theorem 21 of §1, 4 DAC = 4 ADC. Hence, by

Theorems 12 and 19 of § 1, 4 BA C> 4 CD A. But, by Theorem 3 of § 4,
4 CD A >4ABC.    Hence by Theorem 20 of § 1, 4BAC> 4 ABC.

2. Conversely, suppose 4BAC>4ABC. By Theorem 8 of § 1 either

BC<AC, BC=AC or BC>AC. If PC<^Cor BC=AC then,
by Theorem 21 of § 1 and first part of present theorem, either 4 BA C<4ABC

or 4BAC'=4^BC'; and each of these, by Theorem 2 of § 3, is contrary

to hypothesis.    Hence BC~> AC.

Theorem 5. If 4 ABC is a right angle, or 4 ABC> a right angle, of the

plane ^4PC, then AC> AB.

Proof. From hypotheses, Definitions 6 and 7, Theorems 19, 20 and 12 of

§ 1, Theorems 3, 2 and 10 of § 3 and Theorem 1 of § 4, it follows that neither

4ACB = 4ABC nor 4ACB>4ABC. Hence, by the corollary to The-
orem 2 of § 4, 4 A CB < 4 ABC. Hence, by Theorem 4 of § 4 and Defini-

tion 6, ^4C>^P.

Theorem 6.    If >4PC is a triangle, then AB + AC> BC.

Proof. By C,o, there exists a point D such that C4P/ and .4P = AD.

By Theorem 21 of § 1 4BDC=4DBA. Hence, by O and Definition 6,
4DBC>4 CDB. Hence, by Theorem 4 of § 4, D C > BC. But, accord-

ing to Definition 2,DC=AB + BC.    Hence AB+ AC>BC.
Corollary.    If ABC is a triangle and AB > AC, then ^1P-^C<PC.

§ 5. Euclidean and Bolyai-Lobachevskian geometry.

It is desired to prove that from O, C, Fand P0 follows Euclidean geometry

and from O, C, F and the denial of P0 follows Bolyai-Lobachevskian geometry.

Definition 8. Two straight lines are said to be parallel to each other if they

lie in the same plane and have no point in common.

Theorems 1-5 are based on the assumptions O, C, F.

*Cf. Theorem 2 of § 3.
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Theorem 1.    Every segment has a middle point.

Proof. Suppose AB is a segment. Certainly there exists a point X, of

AB, such that AX<XB and a point Y, of AB, such that AY>YB.

For suppose P is any point of .4P. By Theorem 8 of § 1, either .4P < PB,

AP m PF or AP>PB. If 4P > PB, then, by Theorems 6 and 3 of § 1,
there is a point F of -4P such that AP m BF and PB m FA and, by

Theorem 7 of § 1 and Definition 1, it follows that AF < FB. Similarly, if

AP<PB, there existsa point F such that AF>PB. Finally, if AP=PB,

any point D between A and P would be such that AD < DP, and there

would exist a point D' such that AD' > DP. It is true then that there

is at least one point X of AB such that AX<.XB and at least one point

Y of AB such that AY> YB. By Theorem 8 of § 1 Y coujd not be

identical with X. The points of AB may then be divided into two classes,

the class, [-3T], of. all points, such that AX<_XB and the class, [F"], of

all other points of AB. By Definition 1, O, and Theorems 9 and 8 of § 1

it is clear that no X is between two F~'s and no Y is between two X's.

Hence, by F, there exists a point i/such that XM Y for every AT and F which

are different from M. Suppose it were true that AM < MB. Then, by

Theorems 6 and 3 of § 1, there would exist a point N of AB such that

AM = BN and MB = NA . Clearly M would be between A and N. Hence,

by a previous argument, it would follow that there exists a point L, between M

and N, such that ML < LN. But, from this together with the fact that

AM= BN, it would follow, from Definition 1 and Theorems 10 and 7 of § 1,

that AL < LB. But this would be impossible. For then L would be an X

and we would thus have an X such that AMX. Similarly it would be

impossible that AM> MB.    Hence AM = MB.

This theorem having been established, it is clear that every proposition, given

in the preceding part of this paper as a cousequence of O, C and M, is also a

consequence of 0, C and F. Such propositions will therefore be freely referred

to in this section. It is to be remembered that Ax and A_2 are propositions of

this kind.

Definition 9. If O is a point of a plane ß and s is a segment, then the set

of all points [P] of the plane ß, such that OP = s is called a circle.

Theorem 2.    Every circle is a Jordan curve.

Proof. In his article " Theory of plane curves in non-metrical analysis

situs,"* Veblen has given three sets of conditions as sufficient in order that a

simple closed set of points, existing in a space in which F and the plane

axioms of the set O hold true, should be a Jordan curve. These conditions are

called the conditions of linear order, ordinal continuity, and geometrical conti-

nuity respectively.

♦These Transactions, vol. 6 (1905), pp. 83-98.
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If 0 is the center of a circle a, then every ray starting from O contains one

and only one point of a.

The points A, B, C, D of a are said to be in the order AB CD if the rays

OA, OB, OC, OD are in the order OA -OB-OC-OD. From O, F
and this correspondence, it follows that the points of a satisfy, with reference

to this order, the conditions of linear order and ordinal continuity.

The condition of geometrical continuity will evidently be satisfied if the

proposition can be established that, given any point P of a and any triangle A¿>

which contains P, then there exist in that triangle two points, P, and P2 •of

a, such that every point on the arc PXPP2 will lie within AP. To establish

this proposition, proceed as follows : Given that A^ contains the point P of the

circle a, consider a segment s which is shorter than each of the perpendiculars

from O to the sides of A^. These perpendiculars and this segment exist by

Theorem 10 of § 3, Theorems 7, 8 and 9 of § 1, Definition 1 and 0. By

hypothesis, O, Theorem 5 of §4 and Definition 1 and Theorem 9 of § 1, it fol-

lows that every point F, such that PF < s, must be within AP. By Theorem

10 of § 3, there exists, in the plane of a, a straight line a perpendicular to OP

at the point P. On a there exist, by Theorem 1 of. § 1, two points E and F,

one on each side of P, such that s = PE and s = PF. Each of the rays OE

and OP contains a point of a. Call these points P, and P2 respectively. Let

X be any point of a on the arc P, PP2 - Then either X is P or it is in

4 POE or 4P OF. Suppose X is in 4 POE. Then the ray OX contains a

point M such that PME. By Theorem 5 of § 4, OM>OP. Hence

O.M>OXand therefore OXM. But from the fact that OP =OX and

Theorem 21 of § 1 it follows that 4OXP m 4OPX, and thus (see Theorem 3

of § 3) 4OXP < a right angle (of the plane a). Hence clearly, 4 PXM~> a

right angle (of the plane a) and therefore, by Theorem 5 of § 4, it follows that

PX<PM. But PM < PE and PE = s. Hence PX<s and therefore,

by what has already been established, X is within AP. This same conclusion

would, of «ourse, have been reached had X been in 4 FOP. Hence, if X is on

the arc PXPP2, it lies within the triangle A^,. It is true then that every circle

is a Jordan curve.

Notation. 2Ir means a circle whose center is A and whose radius is congru-

ent to r.

Theorem 3. Any point P in the plane of the circle Dr is within, on, or

without £)r, according as OP < r, OP = r,or OP > r.

Proof. If P is any point in the plane of Dr such that OP > r, then, with

the help of Theorem 5 of § 4, it may be, seen that the straight line which lies in

the plane of Dr and is perpendicular to OP at the point P has no point in

common with Dp. Hence, by the theory of Jordan curves, it follows that P

is without Dr.    With the help of O, Definition 7 and Theorem 5 of § 4, it
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may be seen that all points P such that OP < r lie in one of the regions into

which Dr divides its plane. But it has already been established that all points

such that OP > r lie in the outside region, and moreover the two regions, into

which Dr divides all those points of its plane which do not lie on it, are non-

vacuous and, finally, for every one of these points, either OP < r or OP > r.

Hence all points P such that OP < r must lie within £)r.

Theorem 4. If A and A' are two points and r and r ave two segments such

that r + f> A A but either r = f or r — r < A A, then, if 2lr and %l are

coplanar, they have two points in common, one on each side of A A'.

Proof. 3lr has two points, D and E, in common with the straight line AA.

It follows, by hypothesis, Theorems of § 1, Definition 9 and Theorem 2, that

one of these points is within and the other is without 2l¿,. But the points D

and Pare joined by two distinct segments of the Jordan curve 2ir, one of these

segments lying entirely on one side and the other one entirely on the opposite

side of DE. Hence, since 2l¿, also is a Jordan curve, 2Ir and %'r, intersect in

two points, one on each side of DE.

Theorem 5.* If A BC is any angle and A F is any ray, then in any plane

containing A F there exists, on each side of the straight line AF, a point C

such that 4 BAC = 4BAC.
Proof. On ray A'B there exists, by Theorem 1 of § 1, a point P" such

that AB = AB'. By hypothesis, Theorem 6 of § 4 and its corollary, and

Theorem 4 of § 5, it follows that, on each side of A'B', there is a point C"

such that A C m A' C" and BC = B C". But AB = A'B'. Hence, by
Definition 3, 4 BA C s 4 BA' C.

If P0 is assumed in addition to O, C, and F, then one has the following two

theorems (6 and 7).

Theorem 6.f If 6 is any straight line of any plane ß then there is some point

P, in the plane ß but not on b, such that through B there is not more than

one parallel to b.

Proof. According to P0, there exists a straight line 6' and a point F such

that through F there is not more than one parallel to 6'. On 6' there exist two

points C and D. If 6 is any straight line in any plane ß then on b there exist,

by O and C, , two points C and D such that CD = CD. Furthermore,

by Theorem 5 of § 5, there exists in the plane ß a point P" such that

4DCB = 4DCB'. By Theorem 1 of § 1, there exists on ray CE' a point

P such that CF = CB. Suppose that through B there are two parallels to

b. Then one of these has a point F and the other a point F on that side of

FC on which D lies.    By Theorem 5 of § 5, there exist in the plane DCF,

♦ See Hilbebt's IV, 4.

fSee Veblen's XII.   It may here be remarked that Veblen's form of statement lacks the

proviso that B should not lie on b.

Trans. Am. Math. Soc. 33
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and ou that side of BC on which D lies, two points, E and F', such that

4 CBE m 4 C'B'E' and 4CBF m 4 CBF'. By Theorem 13 of § 1, and A_t,r
the straight line FF' must be distinct from the straight line B'E'. But neither

of these straight lines can have a point in common with CD. For suppose

the ray FF' and the straight line CD had a point G' in common. G' would

evidently lie on the ray CD. By Theorem 1 of § 1, there would exist, on

the ray CD, a point G such that CG' = CG. Then one would have

CB =CB,4 G'C'F m 4 GCBand C'C = CG. Hence, by Theorem 17 of
§ 1 and Definition 5, it would be true that 4 CBG' m 4 CBG. But, by con-

struction, 4 CBF m 4 CBG'. Hence, by Theorem 13 of § 1 and .4_2 (which

by Theorem 1 of § 2 is a consequence of 0, C, and M) the ray BF would

be the same as the ray BG. Hence ray BF would have a point in common

with ray CG, contrary to hypothesis. In a similar manner, with the help of

Theorem 15 of § 1, it could be shown that the other ray of the straight line

BF' could not have a point in common with C'C. Hence the straight lines

BF' and CD have no point in common. Similarly, BE' and CD have no

point in common. But then there exist, through B, two parallels to b', and

this is contrary to hypothesis. Thus the assumption that through the point B

there are two parallels to 6 would lead to an absurdity. Hence through P there

is not more than one parallel to b.

Theorem 7. If a is any straight line and A any point not on it, then through

A there is one and only one straight line parallel to a.

Proof.   See Theorem 43 of Veblen's " A System of Axioms for Geometry."

In view of Theorems 1, 4 and 6 of the present section, C2, Theorems 1, 3,

5, 12, 14, 17 of § 1 and Theorem 1 of § 2, it is clear that from O, C, F, P„,

follows a geometry in which Hilbert's axioms of groups I-IV hold true.

One may then proceed, as is, for example, indicated in Hilbert's Festschrift

and Halsted's Rational Geometry, to derive a theory of proportion, etc., and

then, with the use of F, one may finally develop an analytic geometry exhibit-

ing a one to one correspondence between the points of our geometry and the

number triples of the real continuous number system, this correspondence being

such as to preserve all relations of congruence and order. Thus would be

established the following theorem :

Theorem 8.    From O, C, PJand P0, follows Euclidean geometry.

In case the contradictory of P0 were assumed in addition to 0, C and F,

then in place of Theorem 7 one would have Theorem 39 of Veblen's A Sys-

tem of Axioms for Geometry and again a correspondence could be established

between points and number triples, this correspondence also being such as to

preserve all relations of order and congruence.* The following theorem would

then be established :

* In this case congruence and order for this system of number triple wonld of course be in trodnced

by definitions different from those used in the case of the correspondence with Enolidean geometry.
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Theorem 9. From O, C, F and the denial of P0 follows Bolyai-Loba-

chevskian geometry.

It is thus seen that if 0, C and ufare true of a space, then that space must

be either Euclidean or Bolyai-Lobachevskian.

§ 6. Semi-quadratic geometry.

In this section will be given several sets of assumptions, any one of which

sets is sufficient for the establishment of semi-quadratic or plane semi-quadratic

geometry. By semi-quadratic geometry is meant the set of propositions which

follow from Hilbert's I-IV. In the case of such a geometry rigid motion is

possible, there is a coordinate system and a theory of proportion ; and, speak-

ing in terms of this theory of proportion, if a,, a2, a3, • ■ -, an are any finite

number of segments and F(ax, a2, a3, • • •, an) is any rational function of these

segments, then there exists a segment equal to F(ax, a2, a3, • • •, an) and also a

segment equal to Va7, + b2.*

Use will be made of the following additional notations for propositions :

RA (equality of right angles). If ABD, ABD, 4 AB Ce 4CBD and
4ABC = 4C'BD, then4ABC = 4A'BC

By RPf is meant the proposition RA with the proviso that the angles ABC

and ABC are coplanar. f This superscript, "pi," may sometimes be used in

notations for other propositions in order that their application may be similarly

restricted to the case of coplanar points.

Dth (shortest distance proposition). | If A, B and C are non-collinear, A CB,

CB = CF, and B' is a point on ray A C such that AB = .4P", then AB'F.

Pm (perpendicular to a straight line). § If ABC, then in any plane contain-

ing these points there exists a point D such that 4 ABD = 4 DB C.

At.\\ If A, B and C are three non-collinear points and A', B and D are

three non-collinear points and BA = BA', then in the half-plane DAB there

exists one and only one point C such that AC = A'C and BC = B'C.

-Ael' If 4 ABC and 4 AFC are two angles and BA = FA, then either

there is a point C" on the ray BC such that A'C = AC" and B' C =. BC",

or there is a point C" within 4 ABC such that A'C =A C" and BC m BC",

or there is a point CiT within 4 ABC such that AC = A'C and BC = B'ClY;

but for these given angles no two of these statements can both be true.

P2.    In every plane a there is a straight line a such that if A is any point of

♦ See Hilbebt's Grundlagen der Geometrie.

t See Theorem 1 of 5 4.

tSee Theorem 6 of §4.

§ For a stronger proposition see Theorem 10 of § 3.

|| Cf. Theorem 2 of § 4 and A-i (see § 2).    Cf. also Hilbebt's IV, 4.

ill 4 ABC and 4 A'B'C are two angles then either 4 A'B'C m 4ABCot4A'B'C>4ABC
or ¿A'P'C^^ ABC but no two of these cases can ocour simultaneously.    Cf. Definition 6

also Theorem 2 of § 3 and corollary to Theorem 2 of § 4.
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a not on a, then through A and lying in a there is not more than one straight

line which has no point in common with a.

Theorem 1.    From O*1, C, M, and P2 follows plane semi-quadratic geometry.

Proof. See Theorems 1, 3, 5, 12, 14, 17 of § 1 and Theorems 1 and 2 of

§ 2 and Theorem 2 of § 4. The proposition that through each point there is

one and only one parallel to any given straight line may be proved with the

help of P2 by a method which is suggested in proof of Theorem 6 of § 5.

Theorem 2. From O*1, C, A_2, Ax, P2, follows plane semi-quadratic

geometry.

Proof. In the proof above indicated for Theorem 1, M is used only to

demonstrate .4_2 and Ax.

Lemma 1.    From 0"', C and Dth follows .4_2.

Proof. Suppose O, Cand Dih are true and .4_2 is not. Then there exist

three non-collinear points A,B, C, and a point C, all in the half-plane C—AB,

such that AC = AC and BC= BC. According to 0, there exist points

A, B' such that ACA', BCB'.    There are five cases.

I. If C is in 4 A CB', then segments A C and P C have a point O in com-

mon. According to Dih, AO + OC> AC and OC+BO>BC. Thus
(AO + OC) + (OC + FO)>FC+AC. Hence AC+BG>BC+AC;
this is impossible in view of the hypothesis that AC = AC and PC' = BC'.

II. If C is in 4BCA', argue in a similar manner.

III. If C is in 4ACB, then there exists a points D such that A CD,

BDC. Now AC+ CD>AD. Hence AC + CD + DB> AD + DB,

AC+ CB>AC + CD + DB. But CD + DB>CB. Therefore
AC + CB > AC + CB, and this is impossible in view of hypotheses.

IV. If C is in 4 A' CB', proceed as in case III.

V. If C is on the straight line A C or the straight line BC, proceed with C

or C as in case III with D.

Thus in any case it would be impossible that O, C and Dih should be true

and .4_2 false simultaneously.

Lemma 2. From O, C and Pw it follows that through any point there is

at least one perpendicular to any given straight line.

Proof.    See the proof of Theorem 10 of § 3.

Lemma 3.    A_2 is a consequence of O, C and Ptr.

Proof. Suppose C, A and P are three non-collinear points and C is a

point in the half-plane C- .4P such that CA == C'^4 and CB = CB. By
Lemma 2, there is, on the straight line AB, a point D such that CD is per-

pendicular to AB. In case D coincides with A, then 4 BA C is a right angle

and therefore, by hypothesis and corollary to Definition 7 of § 3, 4 BA C is a

right angle and hence, by Pr and Ch, C is C. If D does not coincide with

A, then, by Theorem 17 of § 1, 4ADC==4ADC  and DC^ DC.    But
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4 ADC is a right angle. Hence, by the corollary to Definition 7 of § 3,

4 ADC is a right angle, and therefore, by Per, ray DC coincides with ray

DC.    But D C = D G.    Hence, by Ch, C ia*C.
Theorem 3. From Opl, C, Ax, Dih and P2 follows plane semi-quadratic

geometry.

Proof.    See Lemma 1 and Theorem 2.

Theorem 4.    From O, C, At and P2 follows semi-quadratic geometry.

Proof. Compare Theorems 1, 3, 5, 12, 14, 17 of § 1 and Definition 3 and

At with Hilbert's group IV of axioms. Use argument, concerning parallel

proposition, suggested in proof of Theorem 1 of § 6.

Theorem 5.    From O, C, A_2, RA and P2 follows semi-quadratic geometry.

Proof. It may be seen, from the proof of Theorem 2 of § 4, that At is a con-

sequence of 0, C, A_2 and RA. But, by Theorem 4 of § 6, from O, C', At

and P2 follows semi-quadratic geometry.

Theorem 6.    From O, C, P„, RA, P2 follows semi-quadratic geometry.

Proof.    See Lemma 3 and Theorem 5.

Theorem 7.    From O, C, D,h, RA and P2 follows semi-quadratic geometry.

Proof.    See Lemma 1 and Theorem 5.

Theorem 8.    From O, C, AG and P2 follows semi-quadratic geometry.

Proof. According to Theorem 4, this theorem will be established if it is

shown that At is a consequence of 0, Cand AG.

Suppose A, F and C are three non-collinear points and D, F and E' are

three non-collinear points. On the ray FD there is a point A such that

BA = BA. To prove that in the half-plane E' — A'B there is one and only

one point C such that* BC = BC and AC = AC, argue as follows.

According to Aa either (I), there is a point C, on BE' or in 4A'B'E',

such that BC=FC and AC = AC, or (II), there is a point C" within

4 ABC, such that 4 ABC" s ^ ABE'. In this last case there is, on the

ray BC", a point F such that AFC. By Theorem 11 of § 1 there exists on

ray B'E' a point F' such that AF = A'F' and BF= BF'. By C,, there

is a point C such that AFC and FCssF'C. By C, and Theorem 11

of §1, AC=AC and PC = .B'C".
Suppose there were, in the half-plane E'— A'B', two points C and C'such

that A C = A'C and PC = P'C". Then, by C,a and 0, either C" is within

4 A FC or C is within 4-^BC". Suppose, for instance, C" is within

4 ABC Then, by hypothesis, Definition 3 and Theorems 11 and 18 of § 1,

there exists within 4 ABC a point C" such that FC" m BC" and

A'C" m AC". But, by hypothesis, C2 and Theorem 4 of § 1, AC = A'C
and FC = FC". Hence, by C2, l'(7' s iC" and B'C = BC".
But C" is within 4 A B'C and ¿C= ¿'C" and BC = BC".    Thus the

*Cf. A,, page 503.
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supposition that there are two points C and C", in the half plane E A'B

such that AC'm AC, FC= B'C, AC m ¿'Cand PCs B'C", would
lead to a contradiction with AG.

Theorem 7 is therefore established.

§ 7.   Geometry of the rule and compasses.

In this paragraph will be considered several sets of assumptions, from any one

of which sets follows a geometry in which all ordinary rule and compasses con-

structions are possible.

Two propositions concerning intersections of straight lines with circles, or of

circles with each other, will be considered and will be referred to by means of

the following notations :

/,.* If A, B and C are non-collinear points and F is between A and B,

then there is, on the straight line DC, a point B such that AB = AF.

J2.f If APD, PBF, ADF, PB = BF, AD m AD, and all of these
points lie in aplane, and this plane is decomposed by the straight line PB into two

regions,X then, in each of these regions, there is a point C such that AC =. AD and

PC==BP.
Lemma 1.    M is a consequence of 0, C, and It.

Proof. Suppose A and P are two different points. From O and C it easily

follows that there is a point P, between A and P, such that APy> PB.

Then there is, by Theorems 3 and 6 of § 1, a point P' such that AP' B,

AP' = PB, and PB m AP. Evidently AFP. Hence, by 72, there exist

two points D and D', on opposite sides of AB, such that

BD = AD = BD' m AD' = AP.

Segment DD' meets the straight line AB in a point M. According to

Definitions 3, 5 and Theorems 3 and 17 of § 1, MA = MB. Thus every

segment has a middle point.

Lemma 2.    I2 is a consequence of O, C, M, P2 and 7,.

Proof. According to Theorem 1 of § 6, plane semi-quadratic geometry is a

consequence of C', C, M, P2. So a theory of proportion and an analytic

geometry may be introduced. Now suppose one extremity of a diameter of

Q,'r, is within Gr and its other extremity is without @r. Take CC as x-axis

and a perpendicular to CC at the point C as y-axis. Equations of ©r and

(S,'ri, referred to these axes, are x2 + y2 = r2 and (x — a)2 + y2 = r respectively,

where a is the abscissa of C    It is evident, in view of Ix, that for every value,

♦ If a straight line lies in the plane of a circle and has a point within that circle then it inter-

sects the circle.

t If a semicircle has one extremity, P, within and the other, P/, without a circle with which

it is coplanar, then it bas a point in common with that circle.

Í Cf. Veblen, loo. cit., pages 363 and 364.
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x', oí x between — r and + r, there is a value, y', of y such that (x , y') satisfies

x2 + y2 = r2. With help of the fact that r -f r'> a, a + r > r' and a + r'> r,

it may be seen that Ja-1^ + a2 — r' ) is between — r and -4- r. Take for x'

this value.    Then

y = ±V r   — x

and, no matter which sign we take, these values of x and y evidently satisfy

(x — a)2 + y2 = r' as well as x2 + y2 = r2. Thus 6r and &'_, intersect in two

points, one on each side of CC.

Lemma 3.    7, is a consequence of O, C and I2.

Proof. From O, Cand I2, M follows, according to Lemma 1. Now sup-

pose the straight line p lies in the plane of the circle 6r and passes through a

point P which is within that circle. If P is the same as C, then, by Theorem

1 of § \, p evidently has a point in common with 6r. If P is different from C,

it follows from O, C and M (see Theorem 10 of § 3), that there exists on p

a point D such that CD is perpendicular to p. By CXa there is a point C

such that CDC and CD = DC Then, evidently, according to hypothesis,

Theorem 5 of § 4, Theorems 1 and 2 of § 2, and 72, §p and Q,'r have a point

F in common. Hence, according to Definitions 3 and 7, FD is perpendicular

to CD. Hence, by Theorem 10 of § 3, F lies on the straight line p. So p

and 6r have a point F in common.

Theorem 1. From O, C, 72, and P2 follows a " Geometry of the Rule and

Compasses."

Proof. With the help of Theorem 1 of § 6 it may easily be seen that a geome-

try of the rule and compasses for each plane follows from O, C, M, P2 and 72.

Our present theorem will then be established if it is proved, (I), that M follows

from O, C, P2 and 72, and, (II), that a geometry of the rule and compasses

follows from I3, P2, O, and geometry of the rule and compasses for each plane.

Now M follows from O, C, P2 aud 72, according to Lemma 1 ; and (II) is

evident in view of the fact that Theorem 5 of § 5 is proved as a logical conse-

quence of 72 and plane semi-quadratic geometry for each plane.

§ 8. Independence of each assumption in the set composed of F, F0, C and O.

The following " independence examples " are constructed to show that each

assumption of the set composed of F, P0, C, and O is independent of the

remaining ones.

Example for order Axiom I.    Use Veblen's F1 (loc. cit., page 353).

Example for order Axiom III. Consider four points A, B, C, D in the

orders ABC, ACB, ADB, BAD, BCA, BDC, CAD, CBD, CD A,
DA C, DBA, D CB.    Consider that every segment = every segment.

Example for order Axiom IV. Use Veblen's F1V. Consider that every

segment = every segment.
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Example for order Axiom VI. Points are all integers (including 0). 0F4

and 4F0 for every point F except — 1, 0, 4 and 5. —1,0 and 4 are in the

orders —10 4 and 4 0—1. 0, 4 and 5 are in the orders 0 4 5 and 5 4 0.

If, in the ordinary sense, 0 < .4 < 4, C>4 and 0 < B < 5, then {£f£} if and

only if P — A = C — B — 1. If, in the ordinary sense, 0 < A < 4, C< 0

and- l<P<4,then{^}ifandonlyif^ -P = P-C-1. IfPandP
are two integers and there is no integer C such that DEC according to these

definitions given above, then {£f£} if and only if E — C = D — E. Every

segment = every segment.

According to this plan one has the following orders :

841 134 -4 03 30-4

742 247 -3 02 20-3

643 346 -2 01 10-2

63 1 136 -213 31-2

540 045 -104 40-1

532 235 -112 21-1

07T4 and 4F0 for every integer F=\= — 1,0,4 or 5; and in case A and B are

two integers which are not respectively the first and second element of any one

of these triads, then ABC if and only if A — B = P — C.

Example for order Axiom VII. Veblen's P^vii- Every segment = every

segment.

Example for order Axiom VIII. Veblen's PJviii. Every segment =

every segment.

Example for order Axiom IX.    Veblen's Flx.    Congruence ordinary.

Example for order Axiom X.    Veblen's Fxo.    Congruence ordinary.

Example for order Axiom XI or F. Some non-Archimedean geometry, for

example that of Hilbert (cf. Townsend's translation of Hilbert's Grund-

lagen der Geometrie, page 34).

Example for P0. Consider any of the ordinary proofs of the compatibility

of Bolyai-Lobachevskian geometry.

Example for C,a. Define points as the points of ordinary Euclidean space

that lie on one side only of a given plane, consider these points to be ordered

just as in the ordinary sense and two segments to be congruent to each other if

and only if they are congruent in the ordinary sense. Then F and P0 are

satisfied and so are all the assumptions of C except C¡a.

Example for C, . Consider points to be all the points of ordinary Euclidean

space ordered in the ordinary manner, but consider every segment as being

congruent to itself and every other segment. Evidently Ch is the only assump-

tion of F, P0 and C that is not satisfied in this example.

Example for C2.    Consider points to be all the points of ordinary Euclidean
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space ordered in the usual manner, but consider that every segment is congru-

ent to every segment which in the ordinary sense is just twice as long.

Example for Cs. Consider points to be the points of ordinary Euclidean

space ordered in the usual manner, but consider that there is one segment AB

such that CD = CD if and only if CD is congruent to AB in the ordinary

sense.

Example for C4. Consider points to be the points of ordinary Euclidean

space ordered in the usual manner. Consider a certain fixed plane p and

regard two segments neither of which is perpendicular to that plane as being

congruent to each other if and only if their orthogonal projections upon that

plane are congruent to each other in the ordinary sense ; in case only one of

them is perpendicular top, regard them as congruent if and only if this one is

congruent in the ordinary sense to the projection of the other one upon p ;

finally, if they are both perpendicular to p, regard them as congruent if and

only if they are congruent in the ordinary sense.

As was suggested by Professor E. H. Moore, the independence example here

given for C2 does not prove C2 independent of F, C and the negative of P0..

But all of the other independence examples here given (except, of course, that

for P0) do apply if the negative of P0 is substituted for P0 and Bolyai-Loba-

chevskian space is used instead of Euclidean. Of course the negative of P0 is

shown to be independent of O, Cand F if point, order and congruence are

taken as those of ordinary Euclidean space.

§ 9. Independence of each postulate in the-set composed of 73, P2, Cand O.

Except for C¡a and 72 use the same examples as in § 8.

To prove C¡o independent, observe that all the assumptions P0, C, 72, except

Clo, are satisfied, either " vacuously " or otherwise, if "points " are all the points

of ordinary Euclidean space ordered as usual, no segment, however, being

congruent to any segment. C2, C3, C4 and 72 are, in this case, "satisfied

vacuously."

To prove 72 independent, consider the space obtained by omitting all the

points of Euclidean space except those whose coordinates are rationally expres-

sible in terms of expressions of the form \/r where r is an integer.

§ 10. Relation of parallel assumptions to introduction of congruence by definition.

With use of O, F (or order "Axiom XI"), and Veblen's Axiom XII*

(concerning parallels), congruence may f be introduced by definition, so that, if

0, P"and XII are true of a space, then there must exist between the segments

of that space a relation satisfying, for example, all of my assumptions C.    But

♦See footnote t on page 501.

t Veblen, loo. cit., page 383.
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this is not true if XII is replaced by the weaker postulate P0, as may be seen

with help of the independence example obtained by considering a certain fixed

plane in ordinary Euclidean space and regarding as " points " only those points

of this space which are on a certain side of this fixed plane, these points being

ordered as usual. Here 0, AT (also XI) and P0 are satisfied. But there can-

not exist among the segments of this space a relation satisfying assumptions C.

For in that case this space would be, according to § 5, ordinary Euclidean space

and thus, in particular, through each point outside of any given line there would

be only one parallel to that line, as is manifestly impossible.

§ 11. Relation of continuity assumptions to introduction of congruence

by definition.

Theorem 1. It is not possible to prove that if the assumptions* 0, Pt,

C , C2, C3, Ct (call this the set S), hold true of a space, then there exists a

definition for the symbol " = " such that the assumptions Cand Jlfwill hold

true with reference to the points and order in terms of which the assumptions

of S are stated.

Proof. Select any system (OX, OY, OZ) of three rectangular axes in ordi-

nary Euclidean space and consider the space composed of all points whose

coordinates with reference to this system are all rational, congruence and order

relations being as usual. Call this space Cand let the terms "original order"

and " original congruence " be understood here as meaning the order and con-

gruence here indicated for this space. Clearly O, Pt and all of the assump-

tions of C except C,a hold true of U with reference to this order and congruence.

Suppose a new meaning could be given to the congruence symbol " = " such

that the assumptions C and M would hold true for the space U with reference

to the original order. Then, according to § 6, all the theorems of plane semi-

quadratic geometry, in particular a theory of proportion, would hold true, with

reference to this new congruence and the original order, for any planes in the

space U. There would then exist on OX a point P such that, with reference

to this theory of proportion, OP x OP =207 where 7 is some point of OX

(e. g., such that 07= original unit). OP would then clearly not be, with refer-

ence to this new congruence, rational in terms of 07. But with use of P it

may be shown that any two segments which lie on OX, being rational in terms

of each other with reference to the original congruence, would necessarily also

be so with reference to this new congruence. To prove this let us first suppose

that .4P and CD are two segments of OX and AB = CD according to original

congruence.    By Pt there exists a parallelogram ABEF in which AB and EF

* By P. is meant the strong parallel assumption : If a is any straight line and A is any point

not on a then, in the plane a A, there is one and only one straight line which passes through A

and has no point in common with a.
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are opposite sides. Manifestly EFCD will be a parallelogram in which EF

and CD are opposite sides. But it is clear that, in terms of our new as well as

in terms of our old congruence, the opposite side of a parallelogram must be

congruent to each other. Therefore, in terms of this new congruence, AB m EF

and EF ss CD and therefore AB ss CD. It is true then that if .4P and CD

are segmente of OX and AB = CD according to old congruence, then also

.4P = CD according to our new congruence. Now suppose that the segmente

AB and CD, of the line OX, are given as rational in terms of one another

(instead of simply congruent to one another) in terms of original congruence.

Then there exists a segment FL, on OX, such that AB can be divided into m

segments and CD can be divided into n segments, all congruent in the original

sense, to FL, m and n being positive integers. But these m + n segmente of

OX, being congruent to each other according to the original congruence, must

also be congruent according to our new congruence, and thus AB and CD are

rational in terms of one another according to new congruence. But it has been

shown that, were such a new congruence possible, then there would exist on OX

two segments, OP and 07, which would not be rational in terms of one another

according to this congruence. A contradiction would thus be obtained and

such a congruence would therefore be impossible.

§ 12. ^4 question concerning the separation of the assumptions for a

geometry into two sets.

Theorem 1. It would be impossible to formulate a set (I) of assumptions

expressed in terms of point and order alone and a set (II) of assumptions

expressed in terms of point and congruence alone, such that any geometry

satisfying the assumptions I and II must necessarily be ordinary Euclidean

geometry with respect to the undefined symbols in terms of which I and II are

stated.

Proof. Consider a system of three rectangular axes OX, O Y, OZ in an

ordinary Euclidean space (E). Consider a paraboloid of revolution (G)

whose axis is OZ and whose vertex is O. Let order be as usual but consider

that segment .4P = segment .4'P if and only if

(xA - XB)2 + (yA-yB)2+ (qA - qB)2 = (x\,-xB,f + (yA,-yB,J+ (qA,-qB,f,

the new coordinate, qP, being defined as 0 if P is on G, and otherwise as ± the

length of SP where S is the point in which G is cut by a parallel to ÖZ through

the point P, and + or — is used according as P is on the same side of the sur-

face G as is Z, or on the other side. Let C designate this particular congruence.

It may be seen that any statement concerning point and order alone that is true

for Euclidean space must hold true for the space E with reference to the con-

gruence C.    For if a straight line were defined as the locus of a point F
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satisfying two linear equations of the first degree in xP,yP,qP, and, in accordance

with this, a new order 0' were defined in the usual analytical manner, then one

would have a Euclidean geometry concerning the points of the space E, the

congruence C and the order O'. But also, of course, any statement concern-

ing points and order alone which is true of ordinary Euclidean space is true of

our original order for the particular space E. But manifestly space E does

not satisfy the theorems of ordinary Euclidean geometry with reference to ordi-

nary order and the congruence C.

§ 13.  Certain queries.

I do not know as yet whether M* is a consequence of 0 f and Cf. There

are several other questions which could not be settled negatively without de-

ciding this question. For example : Is DtK J a consequence of O, C, Ax% and

P2? % Is Ax a consequence of 0, C, Dih and P2? Is RA X a consequence of

0, C, A_2 § and P2? Is A_2 a consequence of O, C, RA and P2? Is Ax a

consequence of O, C, A_2 and P2?   Is .4_2 a consequence of O, C, Ax and P2?

Another question is whether Theorem 1 of § 11 would be true if CK were

substituted for either C,6, C2, C3 or Ct.

In § 6 it was shown that from O, C, M and P2 follows a geometry for

every plane of which all the theorems of plane semi-quadratic geometry hold

true. Is then the semi-quadratic geometry of a three-space a consequence

of O, C, M and P2? This could be answered in the affirmative if it could be

shown that in every space for which 0, Cand M are true all right angles are

congruent to each other. It can be proved || that in such a space all coplanar

right angles are congruent to each other.

♦See last sentence of § 1.

t See the opening pages of the paper.

t See ? 6.

\ See \ 2.
I See Theorem 1 of \ 4.


