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I.    Introduction.

1. It is proposed in the present paper to study the behavior for large positive

integral values of x of the general solution of the equation

(1) a0(x)u(x + 2) + ax(x)u(x + 1) + a2(x)u(x) = 0,

the coefficients a0(x), ax(x), a2(x) being given functions (real or complex) of x

and subject only to conditions relative to the form taken by the expression

4 «o(x)a2(x + l) _ 1

ax(x)af(x+l)

when x is very large.| The general results are summarized in Theorem I,

after which application is made to the following special equation considered by

Horn: J

P0(x)u(x + 2) + xkPx{x)u(x +1) + x2kP2(x)u(x) = 0,

where k is any integer, positive, negative or zero and P0(x), Px(x), P2(x)

are developable asymptotically (or as convergent series) in the form

The results obtained for this type of equation are stated in Theorem II and are

shown to be in accord with those obtained by Horn.   Also certain results addi-

* Presented to the Society (Chicago) April 17, 1908.

t Papers relating to this subject but placing more restrictive conditions upon the coefficients

have been published by Horn, Mathematische Annalen, vol. 53 (1900), pp. lll-i-X&l,

and by the present author, Annali di Matemática, series 3, vol. 13 (1907), pp. 313-328.

For a summary of literature concerning equations of form (1) see Barnes, Messenger of

Mathematics, vol. 34 (1904), p. 53.

%Loc. cit., p. 190. For simplicity we shall here confine ourselves to equations of order 2,

whereas Horn considers similar equations of any order. A generalization of our results to any

order is immediate, in view of the general character of the investigations contained in the

above mentioned memoir in the Annali upon which the present paper depends.
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tional to his are to be here found, and application of these is made in §11 to

the study of the behavior of Legend re's function of the first kind P for large

values of n.

II.    Reduction of the Equation.

2. We shall first show that in case ax(x) + 0, a2(x) + 0 for all x = a = con-

stant, * the study of equation (1) may be made to depend upon that of a certain

linear difference equation of the type

(2) A2y(x) + a(x)y(x + 2) = 0,

in which a(x) depends only upon a0, «, and a2 and is defined for all x g¡ a.

In fact, if one places u(x) = t(x)y(x), equation (1) becomes

a0(x)t(x + 2)y(x + 2)+ ax(x)t(x +l)y(x+ 1)+ a2(x)t(x)y(x)=0

or, since

y(x + l) = y(x + 2)- Ay(x + 1 ),

y(x) = y(x + 2)- 2t\y(x + 1) + A2y(x),

the same equation becomes

a2(x)t(x)A2y(x) - \axtx)t(x + 1) + 2a2(x)t(x)] Ay(x + 1)

(3)
+ [afx)t(x +2) + ax(x)t(x + 1) + a2(x)t(x)]y(x + 2) = 0.

Let us now choose the heretofore undetermined function t(x) in such a man-

ner that the second coefficient of (3) vanishes :

(4) <*,(*)<(*+ l) + 2aî(»)«(*)-<>.

The function t(x) thus becomes determined,! except for a constant factor, by the

equation
xi—x—1   / _ On   \

(5) t(x)= n (-~%) -

since ax(x) 4= 0 for x>a. Moreover, from the hypothesis a2(x) 4= 0 it fol-

lows that t(x) 4= 0 and hence also a2(x)t(x) 4= 0.

Consequently, equation (3) may be reduced to the form

(6) A2y(x) + [4(aJax)x(a2/ax)i+x-l]y(x + 2) = 0        (*>«),

i. e., to the desired form (2).

8. We shall now make the assumption that 4 ( a0/ax Y ( a2/ax)x+x — 1 for large

values of x has the form — v2 — cj>(x) — 0(x), where v is a constant (real or

* Throughout the paper it will be understood, unless otherwise stated, that x g¡ ° = a suffi-

ciently large constant.

t See Boole's Finite Differences, Chap. IX, i 6.
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complex) and v(ir — 1 ) 4= 0, where also cb(x) is a function of x of the form

p/xt+s, in which p and S are constants with 0 < B = J, and where 0(x) is any

function of x such that the series

J-,=.e

converges. For example, the function 0(.t) may be taken as any function of

the form g(x)-r(x)/x, where \g(x) | < c = const, and t(x) is one of the

functions

11 1

X*'   (h)g*)»*''   log9!(log™ «V**' ' (J»>°)'

In particular, we observe that the above hypotheses are realized whenever the

original equation (1) has coefficients at(x), ax(x), «.,(■>'■) which ave developable

either in the form of convergent power series in l/x(x = a) or, more gener-

ally, as asymptotic series in 1/x.

Equation (6) thus becomes

(7) á2y{x)-[ir + ep(x) + e(x)]y(x + 2)m.O.

In the study of this equation we shall now make use of Theorem II of the paper

entitled Sur les équations linéaires aux différences finies,* using without

further remark the results and notation there found.

In the present instance let us choose the auxiliary functions zx(x), z.,(x) as

follows, for reasons which will appear presently :

(8) •l(ai)-,*n*(l + v+*(»1)/2i»),     «,(»)-nffl(l--'-*(«i)/8»).
ari=a -fl—a

Then

(9) *•,(«) = (v + <b(x)l2v)zx(x),        A\(x) = {v2 + <b(x) + Ux))zx(x),

where

ftW-î+Î^W + Îit^iiO.

From our hypothesis respecting ef>(x) it appears directly that l;x(x) has the

character of one of the functions 0(x) mentioned above.

Likewise we have

Az2(x)=-(v + cb(x)l2v)z2(x),        A2z2(x)=(S + cb(x) + Ç2(x))z2(x),

where f«(as) has the properties of fj(sc) just mentioned and is obtained from it

by changing v into — v.

*Annali di Matemática, loo. cit., p. 301. The expression Sm»+i \um(xx )| there occur-

ring should be replaced by 2°[=r I "»■ ( *\ ) I •
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Equations (8) and (9) together with those just noted give the following values

for the expressions A(x), Q(x),fx(x),f2(x), q(x,xf), Q>(x, xx), "V(x, xx),

and Y(x) which occur in the statement of the above mentioned Theorem II:

(10) Q(x) = -2{v + cb(x)/2v)zx(x)z2(x),

(11) A(x) = c2zx(x)-cxz2(x),

fx(x) = l-S-eb(x)-0(x)]zx(x) + A2zx(x) = [!;l(x)-0(x)]zx(x),

(        fAx)=[C2(x)-0(x)]z2(x),

(13) q(x,xx) =

<P(X,XX) =

*,(»)     lMx,)-0(xx)]zx(xx)

ZAX)    i^(xx)-0(xx)]z2(xx)

1

2(v+eb(xx + l)/2v)

v \iUx,)-e(xx)]zx(x+l) _\^x(xx)-0(xx)]z2(x+l)^

x Hl-v-tb(xx)/2v]zx(xx+l)     \l + v+cb(xx)l2v]z2(xx + l)\'

Moreover, since limXi=„^)(a31) = 0, v(l — v2) 4= 0, while 0(xx), ^x(xx), i)2(xx)

have the properties above mentioned, we now see that

where | sL(aJL) | and |s2(5c1)| are less than some assignable constant, and 0(x),

though not identical with the 0(x) of (7), has the properties before described of

that function.

Finally, we have

(16) V(x,xx)=*Ji(xx + l)®(x,xf)

and

(17) Y(x) = -qñf+T) lA(x+1) + ui(x) + u2(x) +.■■ + uvfx) + ■■■].

III.   The special case \1 + v\ = \l — v\.

4. Let us suppose in the first place that 11 -f v | = 11 — v | and that

11 + v + cb(x)/2v I'= 11 — v — <b(x)/2v\ = px, (x = a). For this case

I äj ( as ) I = I «a ( as ) [.    Whence if we place

(18) G(x) = flpn

we may write

G(x)
(19) ®(x,xx)=cox(x,xx)\0(xx)\-ç^4r (*£«,*,>*),

where | ax ( x, xx ) | < ilx = const.
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Similarly we have

(20) A(x + l)=G(x)[cxrx(x)+c2r2(x)] («£«),

where ^(a:)| = |r2(%)| = 1 •    Whence, by (16), it follows that

(21) V(x,xx) = eo2(x,xx)\0(xx)\G(x) (*S«,*,>«).

where | co2 ( x, xx ) | < il2 = const.

Equations (19) and (21) having been obtained, we turn to consider the series

(22) |«,(»)| + K(«)l + "-+l«-(«)l + —•
Referring to the definition of the term um(x) given in the before mentioned

Theorem II, we have in the present instance

(23) *(x,xf)*(«,,«,) • • • *>(xm_2,xm_x)V(xn_x,xm)=G(x)P(x,xx,x2, ■ • -,xj,

where for x   = x    ,= x    .■■■= x, = x = a we may write
m ni—l tu—2 1 *>

(24) \P(x,xx,x2,...,xm)\<nrl£l2\0(xx)0(x2)...0(xm)\.

Relations (23) and (24) now enable us to show that the three conditions (a),

(b), (c) of the theorem are here fulfilled. Condition (a) is fulfilled inasmuch

as we have

£        E     •••    Y      \^(x,Xx)^(xx,X2)...eP(xm_2,Xm_x)^(Xm_x,Xm)\

<G(x)nx*->n2W(x),
where

W(x)= XT,\0(xx)\ f,   \0(x2)\...     E"    \0(xm)\,
¡tl=:e+l x,=x¡ + l x„=xm_,+l

and this expression has a meaning by virtue of our hypotheses concerning the

function 0(x).

As to condition (b), let us put

(25) 0x(x)= "f \0(xx)\.
»i=x+i

Since 0x(x) becomes arbitrarily small for all values of x sufficiently large, the

term u (x) takes the form

(26) um(x)=G(x)Vm(x),

where

(27) \Vm(x)\<ilr>il2\0x(x)\".

Whence, if a he sufficiently large, we shall have

(28) \um(x)\<G(x)km,        k = const. <1 («>«).
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Thus the series (22) converges for x = a to a. value U(x) such that

(29) U(x) = y(x)G(x),        7(a;)<rA_.

By virtue of (19) and (20) we may now write

\<S>(x, xx)\U(xx) = ßx(x,xx)G(x),
where

ßx(x, xx)<:il3\0(xx)\       (ß, = COUSt., i>a, x,>x).

Thus the series

"S \^(x,xx)\F(xx) (»=£«)
x¡=x+X

converges.

Finally, the expressions Y(xx)fr(xx), (r = 1, 2), of condition (c) are to be

considered.    We obtain in the first place from (17) and (29)

rr,   , (A(x + 1)     ßJx)G(x)\    I k  \
(30) nx)=-{ç\^) + P^^)   (lA(.)l<r(.X¿i).

But from (10) and (11) we have

^    Ç(9î+1)-     2„2+<p(x + l)Vz2(x+l)     ai(x+l)y-f5(x)    *  =a)'

where | /33 ( x ) | < ß3 = const.

Similarly we obtain

(32) rtf^iN-SS (IA(.)KA=—i).v    y Q(x + 1)     67(x)

Whence follows

r(«)->§^< (iA(*)i<ft=oonrt.).
v   '       6r(x)

Moreover, we have from (12),

f(x) = ßi(x,r)G(x)\0(x)\ (r = l,3),

where | ß6 ( x, r ) | < ß6 = const.

Thence, noting that pa 4= 0, we have

^(»')/>(:B) = ^7(a;',,)lÖ(:c)l    (|/3,(x,r)|<ft=const.),

and, therefore, the expressions

i,=.t+i

have a meaning.    Thus all the conditions of Theorem II become fulfilled.

Moreover, the function y(x) of (29) has the properties of the function 0x(x)
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defined in (25); i.e., limSMy(a»)-> 0.    Consequently from (80), (31) and (32)

we have

(83)        Y(x) = 2?~+tb(x+l) { z2(x + l) " zf(x~+l) + G(x) J

where x = a, limx_M $(x) = 0.

Upon applying now the result of Theorem II we find that the general solu-

tion of (7), under the present hypotheses respecting v, eb(x), and 0(x), will

have the following form when x = a for sufficiently large a :

kx(l + ex(x))      k2(l + e2(x))     (limtl(*) = limea(*)=0),

y\x>-  zx(x-i) + h(x-i)

kx, k2 being arbitrary constants.    Since also

z^T)=1+^x^     ^0rr1+nti9>)   (*!*(•>-*;*(»)-•).

this may be thrown into the form

(M) kx{l + ex(x))     k2(\+ei(x))   (limtx{x)=llmtÁx)=Q).

IV. Derivation of a first integral for the general case.

5. We turn now to consider the cases in which 11 -f v | 4= 11 — "| • Placing

px=\l + v + eb(x)/2v\ as before and also placing ax=\l — v — eb(x)/2v\

and

(35) F(x)=Uern,
n=a

we shall have

z,(x-fl) , sF(x)

z%-+-rrX3^x^Ffxf)       (iw.oi-1).

Thus, from (15) we obtain

iï)^.?«) =(^\(^L-j\...( Î5±! A
(x,)/T(x)       \r,*i/\r\i-i/        VrVfi/'

Then
g(»)g(g.)

Let us now suppose xt > x S a and let us consider c to be that square root of

tr in (7) for which 11 -f » | > 11 — i» |. Then the factors in the right hand

member of our last equation will each be less than 1 and we shall be able to

write

Fix)
(36) *(sb, xx) = w3(x,xx)\0(xx)\-sj~^     (l",(*,ï,)l<o,=ooDrt.).
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As regards the function

V(x,xx) = A(xx + l)<î>(x,xx)=[c2zx(xx + 1) - cxz2(xx + 1)] ep(x, xx),

let us take in the present instance c2 = 0.    Then

^(x+l) = c1r1(x)Jf7(x) (|r(i)| = l),

so that

(37) V(x,xx) = coi(x, xx)F(x)\0(xx)\     (Mz.xJK^const.).

We may now proceed as in the former case.    Thus we have in the first place

(38) um(x) = H(x)Vm(x) (■ = «),

where ^„(x) has the properties indicated in (27), whence also

(39) \um(x)\<F(x)km (i = const.<l;x>a),

and

n*)~<x ( _^_Ci __   ,   _8i M ^    ( lim ox ( x ) = 0 ) .
l)\z,(x + l)+ G(x)J   lx=. >2S + cb(x +

Thus in place of (34) we now have the solution

(40) yi(»)-Ml+^J (*£«, ««*,(*)=(>).
zx(x)

V. Derivation of the second integral.

6. Having obtained but a particular solution yx(x) of (7) when

11 + v I 4= 11 — v |, we proceed in the present section to obtain a second

solution and therewith the general solution.

For this purpose equation (7) may be written in the form

(41) (l-i>2-<¿>(x)-0(x))y(x+2)-2y(x-r-l)-r-2/(x) = O.

If now u(x) and v(x) be any two linearly independent solutions of the equation

(42) a0(x)u(x+2) + ax(x)u(x+l) + a2(x)u(x) = 0,

we   have,  after   placing  for  brevity   a0(x) = a0, etc., and m(x + 1) = m,,

u(x + 2) = u2, etc. :

«oCVi — uxvx) + a2(Mo"i - uxv») = °

and hence

Therefore, for any fixed integer a we obtain
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alp)

p=«+u-2 a |-    \

u(a + n)v(a + n—\) — u(a + n — l)v(a + n) = c ff~      (n = 2, 3, • • •).

where c is a constant as regards n.    Whence

u(a + n) _ u(a + 1 ) _    •St_1_ i>=«_h»-2^A\p)

v(a + n)~ v(a+ 1)~ C ,fe.v(a + mjv(a + m — l)    ¡A    at(p)'

Thus, if v(x) be looked upon as a known solution of (42), the solution u(x)

may be expressed in the following form for all values of x = a + n, a being a

constant :

(43) u(x) = cxv(x) + c2v(x) Sn

where

s = y; _1_p=af?-2 at(p)
"      ,Ùi «(<* + m)v(a + m — 1)    ¿i     «„(f)'

We proceed to study the properties of Sn for large values of n in the case of

the special equation (41), for which one solution v(x) = yx(x), given by (40),

is known.

Thus we have in the present instance

and from (41)
*»(P)_1 + t¡p_

where

w-m
v*-i-v2-cb(p)-0(1iy

Thence,
p=sa+lil—2

p=a+>»-2 „   /,, \ 11        V ■*•   ~T'%)

<46>    M Wr->

Moreover, by virtue of our hypotheses upon cb(x) and 0(x), the series

j>=»

is convergent, and hence it follows that

p—a+m -2

(46) TT    (1 + %) = ¿2(1 +e,J       (*, = 0Onrt.,Hmr_ = 0).

Trans. Am. Math. Soc 2»
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Upon making use of (44), (45) and (46) we find that the with term of SH is

of the form
p=„+»-i/ eb(p)\

k(l + e )_M    \1 + V + -^) = K(l + <n)zi(a + m)
Kz^ + 6«)j,=.+»-2 /    -     _eb(p)\ z2(a+m)

¿Í    V        '     ■*   )
The expression Sn may therefore be put into the form

(47) s„=*;^-í-k,2 z2(a + n)    "'

where
_ Ä" zx(a + m)z2(a + n) ,

" " ¿i «,<« + *)**(« + •») <    + '»>'

which we may now show directly to be of the form k3 + en where k3 = const.

and lim„=„ e 1 = 0.    In fact, we may write

_ /«"-?-       »=» X zi(g + m)z2(a + n)

where the first sum appearing on the right evidently approaches a limit by

virtue of (8) when n = oo, while by taking p sufficiently large the second sum

may be made less in absolute value than any pre-assigned positive quantity e,

whatever n may he (n>p + 1), since

|g,(« + ro)g,(q + n)|

zx(a + n)z2(a + m) Pa+nPa+n—l ' ' ' Pa-fin—

_tts=l < ç»-™+î    (9 = const.<l).

Availing ourselves of the form just established for S'n and recalling the

definition of v ( a + n ), we see from (47) that

g *(! + «.) H1 +*(»))     (limt„ = limf(,)=0).
»     v(a+n)z2(a + n)'=    v(x)z2(x)

Placing this value in (43) and recalling that the expression cxv(x) = cxyx(x)

there appearing is itself a solution of (41), we obtain the following second

solution linearly independent of yx(x):

tj(x\     h^1 + €^x)) US«, HmM*)=0).
y*x>- z2(x)

Our results may now be summarized in the following general theorem :

Theorem I :   Given the equation

a0(x)u(x + 2) + ax(x)u(x + 1) + a2(x)tt(x) = 0

whose coefficients (real or complex) are defined for all positive integral values

of x sufficiently large (x = a), and satisfy for such values the conditions :
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(1) a0(x), ax(x), a2(x) never vanish.

'2)  The expression

1«0(x)a2(x-t-l) _ 1

ax(x)ax(x+ 1)

has the form — v2 — p/xi+s — 0(x) where p, v, S are constants such that

0 < B = \ and v(l — i/2) 4= 0 and where 0(x) is any function of x such that

the series

Xi=X

converges.

Then if\l + p\=\¡\l—v\, there are two particular solutions of the equation

having the forms

t(x)(l + e.(x)) t(x)(l + eJx))    ,..      , .   ,.      .,   .,
ux(x)=   K   ,K   \   C — >    «2(x)=  ^   A   /   v-1-^-    (»tai,(*)-Jta«,«-«),

IV   y 2l(«) »ai3')
ira which

IPAera 11 -(- v| = j 1 — v I the result continues to hold true provided that

VI.   Application to the equation considered by Forn.*

7. We proceed to apply the above theorem to the study of the solutions

w(x) of the equation,

(48)       P0(x)u(x + 2) + xkPx(x)u(x +1) + x2* P2(x)u(x) = 0,

where k is any integer, positive, negative or zero and P0(x), Px(x) and

jP2(x) are either convergent series for all sufficiently large values of x or are

developable asymptotically in the form

AW-%+.J + }+».T^ (Hn>M*)=0).

For this purpose we begin by making the transformation w(x) = [r(x)]*y(x).

Thus equation (48) takes the form

(49)
(* + £ + $+•••)»<■+»)

+ (< + ^ + â+---)y(a; + t) + (a; + x + --)^a;) = 0'

* Loe. cit., p. 190.
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in which the coefficients of y(x + 1) and y(x) are of the form just indicated

for PK ( x ).    In particular,

(50) a[ = ax,        b[ = bx—axk,        d2 = a2,        b'2 = b2 — a2k.

For convenience, let us drop the primes in (49) and take as object of study

the equation

<51)   (%+^+--)y(x+2)+(ax + ^ + ..^y(x+l) + ^2+^+..jy(x)=0,

in which the coefficients are of the type P¿(x).

Equation (4) becomes in the present instance

(52) («, + J+5 + -)*(i» + 1-) + 2(«. + è + â+-)'(ÎB)-0-

Place t(x) = x''(l + h/x)v(x) where g and h are constants yet to be deter-

mined.    Equation (52) then takes the form

-or, upon developing (1 + l/x)~'J by the binomial theorem,

^ax+(bx+hax)x+(cx + hbx-hax)-2+--jv(x + l)+2^a1+(b-ga2+ha2)-

(53) " 1
+ (c2 - 9bt + h\ + \9{9 + IK- 9hai) y +■••)»(») — 0.

Let us uovv choose the undetermined constants g, h so that the term in 1/x in

each coefficient of (53) vanishes. In case ax 4= 0, a2 4= 0, these two conditions

determine g and h as follows :

n_axb2-a2bx bx

J ax a, a,

The constants g, h having been thus determined, we may now apply directly

to equation (53) the results embodied in Theorem III of my previous paper*

and write for sufficiently large a

v(x-)—cl-2 )  (l-fe,(x))       (ci = const, ¡ga, limfjx) =0),

and therefore also

(54) t(x) = CxX   «1««    Í -—2 J   (1 -fe^x)) (lime2(.r)=0).

*Loc. cit., p. 313.
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We turn now to consider the forms taken by zx(x), z2(x) for the equation

(51 ).    In the first place, let us construct the expression

4a0(x)q2Q-fl) _ ^

ax(x)ax(x+l)

referred to in condition ( o ) of the preceding theorem.    Since

a¿x)     a      aX-a0_&, /1 \

ax(x)     Bj"*"        a\        \x)+'"'

a2(x + l)     a2     «,¿¡,-0,0, /    1    \

«,(x + l)     ax+        a\        \x + lJ + "^,
we obtain

in which

(55)

i^x)aj(^x+l) _v2_p_

ax(x)ax(x + 1) x + 1        v   '

v= l/«î-4a0«2

M = 4 2ffoa26. - aj«2 ¿o - V*A

«Î
and 0(x) vanishes to at least the second order when x = oo .

Thus, for the f unction s, ( x ) we have

(57)    ^(-)-n(i + '+&j-*(i + *" -V  rc+i)

where <7j is a constant and /i and p are given by (56) and (55).    Similarly,

T(x+1-2vJf^V))

Let us next consider what conditions ( a ) and ( b ) of Theorem I become in

the present instance.    Since

i-,      -,\      4aoa2   /-3-Ä-
v{v-l) = ~-y Va-X - 4a0a2,

they will be satisfied if a0axa2(a\ — 4a0«2)4=0.    Moreover, the roots of the

quadratic equation a0X2 + ax\ + a2 = 0 are

\ = (.1liao)(-ax + V"'«2 -4a0a2), X2=(l/2a0)(-ax-v/ci; - 4a0a2)y

so that

1  + V=   .-f , 1 — V =-~ .
«1 \ ai \
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Also we have

_P_=_P__ — ̂ _P
2i/(l + v)     a0ax(ax X2 + Yaf) ' 2v( 1 - v ) " a0ax ( axXx + 2a2f

where p =■ — pa]¡4 = a0axb2 + axa2b0 — 2a0a.,bx.

Noting that a2 — 4a0 a2 4= 0 whenever X, 4= X2, we see that if in equation

(51) the roots X,, \2 of the quadratic a0X2 + axX + a2 = 0 are of unequal

modulus and aBaxa2 4= 0, there are two solutions of the same equation which,

when considered for all positive integral values of x sufficiently large, take the

forms

,,„,     , ,      r(x)xf(i + 6,(x)) r(x)A;(i-M2(x))
(59)    yx(x) = x?-—-r-i,        y2(x) = xP-

i-+&)'    "'      r(.+^)'

wherein limJ=„ ex(x) = lim^, e2(x) = 0, and the constants have the values

9 =   '  \ „  —,    P=%aA + axa2b0-2a0a2bx,    q = a0a2x,    r = 2a0axa2.
«1 «2

Moreover, for the cases in which X,, X2 are distinct but of equal modulus we

see from (57) and (58) that the result just obtained will continue to hold

true, by Theorem I, provided that for all x = a we have

I x.+ p/2v(l +v)\=\x- p/2v(l -v)\,

i. e. I x + c, I = I x + c21 where

P P
c, =  ,     .    ,        c, =

qX2+r' 2     q\+r'

But if this latter condition is satisfied, it is evident that c, and c2 are conjugate

imaginarles, and conversely. Thus the result already obtained when | Xx \ 4= | X21

will continue to hold true when | X11 = | X21, provided that X: 4= \, aQd either

Cj, c2 are conjugate imaginaries or cx = c2= 0.

We note also that the form of the solutions (59) may be somewhat simplified

by making use of the well known asymptotic relation

T(x) ~ V2~Tre-xx'-i.

Thus for any constant I we have

so that relations (59) may be replaced by

(60)        yx(x) = x^X*(l + ex(x)),        yt(x) -SB»"X;(l + «,(«,)),
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wherein

h =q-c = a'&2~ a26' _      P h = a^~a^ _      P

8. Besides the cases already considered in which aaaxa2 4= 0 it is deserving

of note that whenever a0a2 4= 0, a, = 6, = 0, the nature of the solutions of (51)

for large positive values of x may still be found by the application of known

results.    For after making the transformation

y(x)-x*(l+¿)v(x)

the same equation takes the form

A0(x)v(x + 2) + Ax(x)v(x + 1) + A2(x)v(x) = 0,

where

Ao(x) = a0 + (b0 + haa)- + ...,

AÁx) = ff + --->

A2(x) = u2+ (b2-2ga2 + ha2)- + ■■-.

Then by choosing h and g so that the coefficients of 1/x here appearing vanish,

i.e.,
_ a0b2-a2b0 \

3-      2a0a2     ' A-~V

we may at once apply to equation (51) the Theorem III of the aforesaid memoir.

As the roots of the equation a0X2 + «2 = 0 are unequal but of equal modulus,

we conclude that there are two solutions under the present hypotheses having

respectively the forms

(61)     y1(a;)=a!'X-í(1 + €1(a;))'       y2(x) = X"X¡(l + e2(x))    (Umex(x) = lime,{x)=CS))
2=00 2=00

where

9=(aobi-a2bo)/2aoa2-

9. Returning now to the original equation (48) and recalling that

u(x)[T(x)Yy(x) = (^yx-ii(2tr)i'y(x){l + e(x)),

where lim:e=_£(x) = 0, and making use of equations (50) we reach in summary

the following theorem :

Theorem II.   Given the equation

P0(x)u(x + 2) + x"Px(x)u(x +1) + x2kP2(x)u(x) = 0,

where k is any integer, positive, negative or zero, while P0(x), Px(x), P2(x)
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are convergent series for sufficiently large values of x , or are any functions

of x developable asymptotically in the form

F^) = ^ + If+í+--- + P^iX} (»■"*<*>-o>.

Case I. If a.axa. 4= 0 and if the roots Xx, X2 of the quadratic equation

aQ X2 + ax X + a2 = 0 are of unequal modulus, there are two solutions of the

given equation which, when considered for all positive integral values of x

sufficiently large, take the respective forms

U^x) " {~e) """"MÍ1 + ex(x))>    «.(») = (~) a^"M(l + S(»))

(HniP,(i) = 0, limf2(.v = 0)).

wherein p, crx, cr2 are constants defined as follows:

_ axbt — a2bx     k
P~      «,«,      ~2'

a- = 2aoaA~aoaA -fha2ft0-Hgia2 ,..   oN

a0ax(axXt + 2a2) <■        "}'

Moreover, the same result holds true whenever the roots Xx, X2 are unequal

but of equal modulus, provided that crx and cr2 are conjugate imaginarles,

including the case in which exx = cr2 = 0.

Case II. If aaa2 4= 0, ax = bx = 0 and if we rep>resent by Xx, X2 the roots

of the quadratic equation a„X2 + a2 = 0, there are two solutions of the given

equation which when considered for values of x sufficiently large take the forms

»,(*) -(*)  «*ï(l+«,(*)), u2(x) = (^y^Xt{l + e.fx))

( lim p, ( x ) = lim c2 ( x ) = 0 ),

where p is defined by the relation

aob2 — a2b0_k

p-     2a0a2 2'

10. The results obtained under Case I of the above theorem are in accord

with those obtained by Horn.* To show this we evidently need to show merely

that our values of p + <rx, p + cr2 are equal respectively to the quantities px, p2

employed by Horn, and defined f by the relation

_k(ax + 4a0Xx)     b2 + bxXx + b0X\

Pl~      2(ax + 2a0Xx)        axXx + 2a0X2   '

with a similar formula for p2 obtained by replacing X, by X2.

*Loo. cit., p. 192.

fLoc. cit., p. 191, footnote.
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Now in the sum p + erx the coefficient of %k is — 1 — 2oi/(alXJ + 2afj.    But

the coefficient of — \k in px may be written in the form

2a0Xi     =_1_       gffpW

«■ + 2«o\ «i\ + HW

which beeomes the same as the coefficient of — %k in p + ax since X1X2= a2/aQ.

It remains only to show that

axb2-a2bx     2a„a2o, - a0axb2 — axa2b0 ^ _o2 + 6|X, + 60X2

o,«2 «„^(o^X,, + 2a2) a1X1 + 2a0X2

This reduces to an identity by virtue of the relations

axX2 + 2a2 = -3k a, + 2a0X),        a0X2 + a.X, + a2 = 0.

Similarly, by using X2 instead of \x we obtain p + cr2 = p2.

It is to be observed that Horn's work concerns only case I.

11. As an illustration of the application of the preceding theorem, let us

consider the equation

(62)   (l + ¿)t»(» + S)-(2+|).«(« + l) + (l+¿)u(»)-0,

one of whose solutions is Legendie's function of the first kind Pt(z).    For

simplicity, we shall confine ourselves to real values of z.

Here we have k= 0, a0 = 1, ax = — 2a, a2 = 1, 60 = 2, bx = — 3z, b2= 1.

Whence the roots Xx, X2 are those of the quadratic X2 — 2zX + 1 = 0; i. e.,

Xj = z + \/z2 —1, X2 = z — V'z2 — 1. Thus, we shall have | X, | 4= | X21 if

I g I > 1, while we shall have | X, | = | X2 j but X, 4= X2 if | z | < 1. Applying Case

I of Theorem II, observing that a0 ax a2 4= 0 when z 4= 0 and that in the present

instance p = — \, crx = cr2 = 0, we find that for all real values of z except z = 0

the general solution of the above equation, when considered for all positive inte-

gral values of x sufficiently large takes the form

u(x)-—=[kx(z + V*^ï)*{\ + •,(»)) + k2(z-V^^ïf{l + e2(x))]

( lim ex ( x ) = lim ca ( x ) = 0 ) .

kx, k2 being arbitrary constants.

Moreover, precisely the same result holds when z = 0, as appears directly by

applying Case II of the same theorem.

If, in particular, — 1 < z < 1, we may place z = cos f and write

(z + yz2 — lf= cos xf -f i sin x|.    The solution u(x) then takes the form

u(x) = ~=   kx(l + ex(x)) cos x£ + k2 ( 1 +e2(x)) sin scf   ,
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where kx, k2, e,, e2 have the properties already mentioned. Moreover, upon

determining two constants X, p from the equations X sin p = kx, X cos p = k2,

and inserting for the constants kx, k2 these expressions, we obtain for w(x) the

form

u(x) = —= \ain(x% + p) + e{x)] (limt(«)=0)
\/x *=»

where X and p are arbitrary constants.

This last result for the special case in which u(x) = Px(z) agrees with

other well known results respecting the behavior of Legendre's function of the

irst kind for large values ol x. Previous investigations upon the subject, how-

jver, appear to have been from the standpoint of the differential equation satis

Sed by Px(z) rather than from that of the difference equation (62).*

*Cf. Dim, Studi guile equazioni differenziali, Annali di Matemática, ser. 3, vol. 3 (1899),

p. 178.


