ON THE INTEGRATION OF THE HOMOGENEOUS LINEAR
DIFFERENCE EQUATION OF SECOND ORDER*

BY
WALTER B. FORD.

I.  Introduction.

1. It is proposed in the present paper to study the bebavior for large positive
integral values of x of the general solution of the equation

(1) ay(@)u(® +2) + 6, (2)u(@ + 1) + a,(@)u(z) = 0,

the coefficients a,(x), @,(x), a,(x) being given functions (real or complex) of

and subject only to conditions relative to the form taken by the expression
ay(%)a, (2 +1)

a(2)ay(z+1)"

when « is very large.t The general results are summarized in Theorem I,
after which application is made to the following special equation considered by
Horn:}

Py(x)u(z+2)+a* P (x)u(x+ 1)+ *P,(x)u(x)=0,

1

where £ is any integer, positive, negative or zero and P (), P, (z), P,(x)
are developable asymptotically (or as convergent series) in the form

Pyt "’A(x)

(limwy (z)=0).
X z=0w

b c
P(o)=a+ 24+ 34t

The results obtained for this type of equation are stated in Theorem II and are
shown to be in accord with those obtained by HorN. Also certain results addi-

* Presented to the Society (Chicago) April 17, 1908.

1 Papers relating to this subject but placing more restrictive conditions upon the coefficients
have been published by HORN, Mathematische Annalen, vol. 53 (1900), pp. 1171192,
and by the present author, Annali di Matematica, series 3, vol. 13 (1907), pp. 313-328.
For a summary of literature concerning equations of form (1) see BARNES, Messenger of
Mathematics, vol. 34 (1904), p. 53.

t Loc. cit., p. 190. For simplicity we shall here confine ourselves to equations of order 2,
whereas HORN considers similar equations of any order. A generalization of our results to any
order is immediate, in view of the general character of the investigations contained in the
above mentioned memoir in the Annali upon which the present paper depends.
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820 W. B. FORD: INTEGRATION OF [July

tional to his are to be here found, and application of these is made in §11 to
the study of the behavior of Legendre’s function of the first kind P, for large
values of n.

II. Reduction of the Equation.

2. We shall first show that in case @, () 3 0, a,(2) 4 0 forall 2= a = con-
stant, * the study of equation (1) may be made to depend upon that of a certain
linear difference equation of the type

©) A%y(z) + a(=)y(x +2) =0,

in which a(2) depends only upon @, ¢, and @, and is defined for all x = a.
In fact, if one places u(x) = ¢(x)y (=), equation (1) becomes

a(2)t(z+2)y(2+2)+ a(2)t(z+1)y(z+ 1)+ ay(2)t(2)y(x)=0

or, since
y(x+1)=y(@=+2)—-Ay(z+1),

y(z)=y(x+2)—28y(= + 1) + A%y(z),
the same equation becomes
a,@)(@)A%(w) — [a@)(@ + 1) + 20,@)(2)] Ay(e + 1)
+ [a@)tx + 2) + e (@)i(= + 1) + a,(@)@)]y(= + 2) = 0.

Let us now choose the heretofore undetermined function ¢() in such a man-
ner that the second coefficient of (8) vanishes:

4) a(x)t(e+ 1)+ 2a,(x)t(x)=0.

The function ¢ () thus becomes determined,} except for a constant factor, by the
equation

®) =10 (Zo2),

z1=a

®)

since @, () % 0 for @ = a. Moreover, from the hypothesis a,(2) # 0 it fol-
lows that ¢(x) 4= 0 and hence also a,(x)#(x) + 0.
Consequently, equation (3) may be reduced to the form

(6) Ay () + [4(ay/a,),(2]2)) i — 1]y (2 +2)=0 (z=a),
i. e., to the desired form (2).

8. We shall now make the assumption that 4 (q,/a,),(a,/@,),,, — 1 for large
values of « has the form —»* — ¢(x) — @ (), where v is a constant (real or

* Throughout the paper it will be understood, unless otherwise stated, that z = a —a suffi-
ciently large constant.
1 8ee BoOLE’s Finite Differences, Chap. IX, 3 6.
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complex) and »(»* — 1) % 0, where also ¢(x) is a function of x of the form
p/a2+2, in which p and & are constants with 0 < 8 =1, and where 6(x) is any
function of x such that the series

=

> 18(=)]

=

converges. For example, the function 6 () may be taken as any function of
the form g(x)-7(x)/®, where |g(a)|-Jc=-const. and 7(x) is one of the

functions
1 1 1

ar (Tog ] logm(log,y<r®

(p>0).

In particular, we observe that the above hypotheses ave realized whenever the
original equation (1) has coefficients (). @, (@), «,() which are developable
either in the form of convergent power series in 1/x (2= a) or, more gener-
ally, as asymptotic series in 1/a:.

Equation (6) thus becomes
M Ay () — [+ ¢(2) + 0(x)]y(x+2)=0.

In the study of this equation we shall now make use of Theorem II of the paper
entitled Sur les équations linéaires aux différences finies,* using without
further remark the results and notation there found.

In the present instance let us choose the auxiliary functions z,(m), 2,() as
follows, for reasons which will appear presently :

r=x—1 r=r—

®) =)= I (1+v+8()/2), (=)= ‘gl(l—v—di(wl)/ﬁ’v).
Then l
©) By@) = (v +6()/2)2 @), A%@) = (7 + $() + £@)4 (@)

where

E(2)= 1 ;i'l_'fAd,(w) + ¢l§f’_'_":4i)¢(1)

From our hypothesis respecting ¢ (=) it appears directly that £ (a) has the
character of one of the functions 6 () mentioned above.
Likewise we have

Azz(x) == (” + 4’(:")/2”)32(“’)’ A"’zz(:r,) = (v2 + ¢(w) + Ez(w)) zz(w)’
where £,(x) has the properties of £ () just mentioned and is obtained from it
by changing » into — ».

* Annali di Matematizt;,”loo. cit., p. 301. The expression 2:}::_“ | um (2, )| there ocour-

ring should be replaced by 3).=7 |wu (1) ].
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Equations (8) and (9) together with those just noted give the following values
for the expressions A4 (x), @(x), fi(x), f;(=), (=, 2,), ®(x,2,), ¥ (=, x,),
and ¥ («) which occur in the statement of the above mentioned Theorem II:
(10) Q(zz)=—2(v+¢(w)/2v)zl(w)z,(w),

(11) A(x) = ¢z () — cz,(%),
ag) =[P 8(2) = 6(0)]n () + &% (2) = [£(2) = 6(2) ] (#),
So(2)=[&(=) - 0 ()] z,(=),

2 (%) [El(wl)_o(wl)]zl(ml)

13 g(x, x) = )

) 1) = @) [e(m) = () Taa(m)
q’(w’wx): 1

2 (V+ o(x, + 1)/‘211)

[I.Ez(:c ) O(m!)]z (w+1) [El(ml)~o(wl)]zz(m+l)]
[L—v—$@) 2]+ 1) ~ (L Bl 2]+ 1) |
Moreover, since lim, _ ¢ (x,) =0, »(1 —*) & 0, while §(zx,), £ (=x,), £ (x,)

have the properties above mentioned, we now see that

z(x+1 2 (2, + 1)z,(x+ 1"
(15) Q(w’wl)r;él_l((ﬁ—iz)[sl(ml)+32(wl)zi§wl_:-l))z:((xlil;]lo(wl)l’

where |3,(,)| and |s,(2,)] are less than some assignable constant, and 6(x),
though not identical with the () of (7), has the properties before described of
that function.

Finally, we have
(16) W(w’wl)=d(wx+l)®(w’ wl)
and

(14)

(A7) (@)= g 1y (A + 1)+ () + (&) + o, () 4 -]

IIL. The special case |1 + v|=|1—»|.

4. Let us suppose in the first place that |1 + »|=|1 — »| and that
[14+ v+ ¢(x)/2v|=|1—v—¢(x)/2v|=0p,, (x=a). For this case

|z (x)| =|z(x)|. Whence if we place
(18) 6(=) =11,
we may write
G (=)
19 d N = ) 6 AT N 1=, 7 >1),
(19) (2, 2,) =0 (2, 2,)| (”l)lg(wl) ( 7 >z)

where |, (2, 2,)| < 2, = const.
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Similarly we have

(20) Az +1) = 6(=) [on, () + 6 (2)] (Za),
where |7, (2)| = |7,(¢)| =1. Whence, by (16), it follows that
(21) V(x, x)=0,(x, 2,)|0(x,)|G(x) (2Za, 7, >a),

where |@,(x, )| < 2, = const.
Equations (19) and (21) having been obtained, we turn to consider the series

(22) luy ()| + [ ()| + -+ | ()] +

Referring to the definition of the term u,(x) given in the before mentioned
Theorem 11, we have in the present instance
(23) B(z,2,) P (2,%,) - P(pyy Tt ¥ (2

'm—17

®,)=G(x)P(x, 2, %, - - -, ,,),

where forz, =2, =2, ,.-- =, = 2 = a we may write
(24) |P(w" Tyy Lyy 200y wm)l < Q';'—‘sz(x,)a(mz)---O(acm)|.

Relations (28) and (24) now enable us to show that the three conditions (a),
(d), (¢) of the theorem are here fulfilled. Condition (@) is fulfilled inasmuch
as we have

Zy=w Zg=0w Zp=®
2 Pz 2)P(2), 2,) P ( Xy Bry) Y (Tis T )|
7=z+1 zp=z1+1 T =Zm-1+1
<G (z)QrQ, W(=),

where

z=00 Zyg=® Ty =%

W(z)= 2 |0(z)] 2 [6(x)]--- 2 [6(=,)],
z=z+1 z9=2z1+1 Ty =Zp_1+1

and this expression has a meaning by virtue of our hypotheses concerning the
function 6(x).
As to condition (), let us put

z)=®

(25) 01(“’)= Z Io(wl)l

n=z+1

Since 8, («) becomes arbitrarily small for all values of 2 sufficiently large, the
term u_(x) takes the form

(26) u,(z;= G(z)V, (=),
where
(1) [ V()| < Q71 0Q,]6, ()|

Whence, if a be sufficiently large, we shall have
(28) |u, ()| < G (=)™, k = const. < 1 (z=a).
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Thus the series (22) converges for 22 = a to a value U(x) such that
k
(29) U(x)=v(x) G(x), fy(w)\/r—_—k.
By virtue of (19) and (20) we may now write
|(I>(:c, wl)]U(ml) = B,(=, wl)G(w)’

Bi(z, x) < Q,|0(x,)] (2=const,, z2=a, n,=a).

where

Thus the series
2 | ®(x,2,)|U(x,) (zZa)

=z+1
converges.

Finally, the expressions ¥ (=,) f.(=,), (r =1, 2), of condition (¢) are to be
considered. We obtain in the first place from (17) and (29)

(80) Y(x)= —(ggziig +%((Z)f§”;)) (18()1<r () <p25)-
But from (10) and (11) we have

A(a:+_1_)_ v C, G _Bs(w) >
) Gein) =~ BT R D~ aeD) = 6 =

where | 8,(#)| < B, = const.
Similarly we obtain

_g_(w) _(?4.(___) z = cons
(32) 0= 1 1) = G(#) (184(2)1 < B = const.).
Whence follows
SR, 1 O —

Moreover, we have from (12),
S, (=)= By(2, )G (2)|6(=)| (r=1,2),
where | 8,(x, )| < B; = const.
Thence, noting that p, 4 0, we have
() fi(x) =B, (x, r)|0(=)| (18 (2, 7)1 <py=const.),

and, therefore, the expressions

z2y=mo

> () f(=) (r=1,2;2=a),

z=x+1

have a meaning. Thus all the conditions of Theorem II become fulfilled.
Moreover, the function () of (29) has the properties of the function 6, (x)



1909] LINEAR DIFFERENCE EQUATIONS 825

defined in (25); i. e., lim,_, y(2) = 0. Consequently from (80), (31) and (32)
we have
- d @ 4 S(=) )

(83) Y(w)-2v’+¢(w+ 1)<z,(w+1) z,(:c+1)+ G(x)
where x = a, lim,__, 8(x) = 0.

Upon applying now the result of Theorem II we find that the general solu-
tion of (7), under the present hypotheses respecting v, ¢(x), and (), will
have the following form when x = a for sufficiently large a:

kl(1+el(w)) k2(1+ez(m)) lime (z)=1lime¢(2)=0),
ACo by s y e e y B

k,, k, being arbitrary constants. Since also

2O i), i) (mae =i =o),

this may be thrown into the form

0 v ="UE @) BULAE) (= mac =0

IV. Derivation of a first integral for the general case.

5. We turn now to consider the cases in which |1 + |4 |1 —»|. Placing
P, =|1+ v+ ¢(x)/2v| as before and also placing o, =|1 —v— ¢(x)/2v|
and

n=x

(35) H(x)= Ha',n
hall ha =
we shall have (et 1) X He)
zl(mﬁj= 3(“” ml)ﬁ'—(—zl—) (M,(:c, a’1)|=1)-

Thus, from (15) we obtain

H
D (2, m) = 0 (8(m) Grs g + a(m) ) 16(a,)

G (=) H(z) _ (sz.)(ﬁ—_l) ("__)

G(wl)H(w) PZ\ le—l Px+l

Let us now suppose x, > = a and let us consider » to be that square root of
v* in (T) for which |1 4+ »|>|1 —v|. Then the factors in the right hand

member of our last equation will each be less than 1 and we shall be able to
write

Then

(36) d)(w’ wx)—_' "’s(m’ wl)lo(wl)lg((—;vr)) (loy(x, 1)< 25 = const. ).
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As regards the function
‘I'(w’ wl) = A(wl + ] )Q(w’ xl) = [czzl(xl + 1)_0122(‘”1 + 1)]®(x’ ml)’

let us take in the present instance ¢,= 0. Then

A(w+1)=clr|(x)H(x) (Ir(z)1=1),
so that
(37) ‘I’(x, wl)=w‘(w, wl)H(w)|0(wl)| (]o‘(z,z,)|<9‘=oonat.).
‘We may now proceed as in the former case. Thus we have in the first place
(38) u, (x)=H(x)V,(x) (z=a),
where V() has the properties indicated in (27), whence also
(39) U (@) <H(@)E  (k—oomsh. <1;zZ0),
and
-7 (= A=) im &, (z) =
Y@) =g+ 1)(z,(w Tt ew)) (RhE=0-

Thus in place of (84) we now have the solution

kl(1+el(w)) (#=e, limg(2)=0),

(49) yi(x)= zl(a,)_

V. Derivation of the second integral.

6. Having obtained but a particular solution y,(x) of (7) when
|1+ v]34|1—v|, we proceed in the present section to obtain a second
solution and therewith the general solution.

For this purpose equation (7) may be written in the form

(41) (l—vz—qb(a;)—-0(z))y(w+2)—2y(w+1)+y(:c)=0.

If now u(z) and v(x) be any two linearly independent solutions of the equation

42)  a(e)u(z+2)+ o ()u( + 1)+ a(z)u(z) =0,

we have, after placing for brevity q,(xz) = a,, ete., and u(x + 1) = u,,
u(x + 2) =u,, ete.:
a, (%, — u,v,) + a,(u,v, — u,v,;) =0
and hence
U0, — U, 0,
u, T, — U0,

%,
ao

Therefore, for any fixed integer a we obtain
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_ _ p=att=2a(p) _ .
ua+npla+n—1)—u@a+n—1pa+n)=c H alp) (n=2,8, ),
0

p=a

where ¢ is a constant as regards n. "Whence

u(a+n)_u(a+1)_c’"i” 1 T a(p)
v(a+n) wv(a+1) ,,,___2'v(a+m)v(a+m-—1) e (p)

Thus, if v(x) be looked upon as a krown solution of (42), the solution (o)
may be expressed in the following form for all values of x = a + n, a being a
constant :
(48) u(z)=-cov(x)+co(x)S,
where

m=n 1 =qa-+m—2 a2 (p )

5=3

amv(at+m)o(a+m—1) 2o afp)

We proceed to study the properties of S, for large values of » in the case of
the special equation (41), for which one solution v(x) = y,(x), given by (40),
is known.

Thus we have in the present instance

1 p=a+m-—1
() v(a+m)=’°x(1+€m)zx(a+m)=kl(1+€,..) I1 (1+ +¢(p )) (lim £,=0),

and from (41)

%(P) _ 1+m
o) (4 ¢(p) ¢(p)Y
+v+ — —v—"9,"
where ( )( ’ )
s - 22
=TV = é(p) = 0(p)
Thence, i
1
ay Tpem_ M0+ |
e %(P) p_“u '(1+v+¢(1’))(1_y_¢_ég_))
Moreover, by virtue of our hypotheses upon ¢ (x) and 6 (), the series
= in

is convergent, and hence it follows that

p=a+m -2
(46) H (1+1)p)=kz(1 +€m) (k,:wnst,,:lgem:o).
Trans. Am. Math. Soc 22 =
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Upon making use of (44), (45) and (46) we find that the mth term of S is

of the form
peetn ¢(p))
(142 +50) ks mesm i,

‘p=a
k (1 + G p—ﬁ‘—z 1 —v_?(z’) - zz(a.l. nl) m=w
Fr 2v
The expression S, may therefore be put into the form
EACE X))
(4;) 8, = k’z(a-}—n)
where
S = "=z (a+ m)z,(a+n)

T z{a+ n~)z,(a + m)(l +¢€.)

which we may now show directly to be of the form X, + ¢ where £, = const.
and lim,__ ¢, = 0. In fact, we may write

m=a—p—-1  m=n z,(a+m)z (a+n)
. DI\ T T 1 ,
s=(T8 +.Z )it tm e

where the first sum appearing on the right evidently approaches a limit by
virtue of (8) when n = oo, while by taking p sufficiently large the second sum
may be made less in absolute value than any pre-assigned positive quantity e,
whatever n may be (n> p + 1), since

zl(a + M)zz(a + n) Tain%atn-1"""Totm—1 —m42
n—m ( t. <l
zl(a + n)zl(a + m) P¢+nP¢+n—l Pl'}!‘—‘ < 9 e )

Availing ourselves of the form just established for S/ and recalling the
definition of v(a + n), we-see from (47) that

S = k(1+en) =k(1+e(z)) (hmt..—hmt(.r)—o).
ST CE PA CE ) ST e PY e M
Placing this value in (43) and recalling that the expression ¢,v(2) = ¢,y, ()
there appearing is itself a solution of (41), we obtain the following second
solution linearly independent of y,(x):

k2(1+62(w))‘ (*=Za, limeg(r)=0).
3/2(”)=' :z(x) r=n

[

Our results may now be summarized in the following general theorem :
Theorem 1: Given the equation

a(e)u(x+2)+ e (x)u(x+1) + a,(x)u(x)=0

whose coefficients (real or complex) are defined for all positive integral values
of x sufficiently large (x = a), and satisfy for such values the conditions :
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1) a,(x), a,(x), a,(x) never vanish.

2) The expression
a(x)a,(x+1)
a,(2)e,(x+1) "

has the form — v* — p[xit® — @ (x) where u, v, & are constants such that

0 <8 =1} and v(1 —1?) % 0 and where 6(x) i3 any function of x such that
the series

-1

=0

2 |0(=)] (2=a)

=x

converges.

Thenif |1 + v| 4= |1 — v|, there are two particular solutions of the equation
having the forms

t(x 1+€|- t 1""‘2 im & (z)=lim ¢,(z)=
u, () = ( )(zl(w) (%)), 4, (%) = (w)(zz(w) (ac)) (lim &, (z)=lim £(z)=0),

in which

t(¢°)=zlﬁ—l(~ 2%)2" (w)-n—ﬁ_ld-l- +¢( ')} z,(cc)=z‘i}1_l l—v—ﬁ(;T‘)}.

z1=a a[ Zj=a =a

When |1 + v| = |1 — »| the result continues to hold true provided that
b=)|_ly_,_9()
|

V=g jorm—a

1+v+

VI. Application to the equation considered by Horn.*
7. We proceed to apply the above theorem to the study of the solutions
u(x) of the equation,
48) P (x)u(x+2)+2*P(x)u(x +1)+ 2™ P,(x)u(z)=0,

where £ is any integer, positive, negative or zero and P (x), P,(z) and
P,(x) are either convergent series for all sufficiently large values of x or are
developable asymptotically in the form

Pyoy=a+ 24 B 1 EAE) (imose)=0).

For this purpose we begin by making the transformation u(x) = [['(x)]*y(z).
Thus equation (48) takes the form

b
(a.,+;"+£%+~-)y(w+2)
(49) ’ ’

b , b,
+(a{+;;'+%,.+~~)y(w+1)+(a3+—;+---)y(w)=0

* Loc. cit., p. 190.
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in which the coefficients of y(x + 1) and y(x) are of the form just indicated
for P,(«). In particular,

(50) a,=a, b =>b-ak, a, = a,, b, =0b,— a,k.

For convenience, let us drop the primes in (49) and take as object of study
the equation

bs. b b
(51) (ao""f”" : ')y(m+2)+<al+;‘+' : -)y(w+1)+(a2+—:;’+- : -)y(w)=0,

in which the coefficients are of the type P, (x).
Equation (4) becomes in the present instance

b ¢ b, ¢,
62) (a,l-i-a;!-i-:—c—;—l--u)t(w-}-1)+2(a2+;2+;;+~--)t(:c)=0.

Place t(x) =2/(1 + A/x)v(x) where g and A are constants yet to be deter-
mined. Equation (52) then takes the form

h b 1\-7 h b,
(1+9-;—+—1)(a1+;‘+--->v(:c+ 1)+ 2(1 +5) (1 +o—c)(a2+§2+' . .)v(w)=0,

«or, upon deveiopiag (1 + 1/x)~¢ by the binomial theorem,

1 1 1
(al+(b1+hal)‘%+(cl+hbl—kal);2+ .. ~)v(m+1)+2(a2+(b2—gaz+haz)5
+(cz_gbz+hbz+%g(g+ l)az_ghaz);{:‘z*' o ')v(m)= 0.

Let us now choose the undetermined constants g, 4 so that the term in 1/x in
each coefficient of (53) vanishes. In case @, % 0, a, 3= 0, these two conditions
determine ¢ and A as follows:
a,b, — a,b, B b,
S ae e
The constants g, ~ having been thus determined, we may now apply directly
to equation (53) the results embodied in Theorem III of my previous paper*
and write for sufficiently large a

2a,\* = 1
'v(:c)=cl(_7‘:2> (1+€|(m)) (¢,=-const. 1= a, lnzu?bel(x)=o),

and therefore also

ajbg—agh, &
(54) mrmae (=22 ) (T4e(e))  (matn=o)

1
¥ Loe. cit., p. 313.
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We turn now to consider the forms taken by z (), z,() for the equation
(51). In the first place, let us construct the expression

da,(2)a,(x +1)
a,(v)e,(»+1)

referred to in condition (&) of the preceding theorem. Since

“@)_ 4 b —ab, (1
a(w)_al+ a w>+”"

2(“""1) a, ﬂnbz—az_l?_l( 1 )

a(w+17)_*+ a’ x+1

-1

we obtain

G(z)a,(x+1)
)@\ T T —_p_r
a(z)a(x+1)" +1 0 (=),
in which
l/a_——_4a—(7
(65) Y= a,
(56) — 2a,a,b, — a, (:zbo —a,a, bz’

@

and 6(x) vanishes to at least the second order when 2 = oo
Thus, for the function-z, () we Lave

_ r(m+1+—“—)
n=r 7 . 2v(14v)
where g, is a constant and x and » are given by (56) and (65). Similarly,
I‘(m +1— )
2v(1 —v)
7Y = —p ¥+l
(58) 2(v) = g,(1 —»)™ T(z+1)

Let us next consider what conditions (@) and () of Theorem I become in
the present instance. Since

v(u'-—l)—‘lj—i Va —4a,a,,

they will be satisfied if @ a,a,(a? — 4a,a,)4=0. Moreover, the roots of the
quadratic equation ¢ A* 4 a,\ + @, =0 are

A= (1/200.)(— @, + ]’/(E— 4(‘0“2)’ Xz=(1/2ao)(_ al_‘/‘-‘f - 470(72)?

so that
2a,

_— e -2 — e I
1+v= a,’ l—v= a\,’
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Also we have

’

B _ Koo -~ _ W
2v(14+v) aya(a N, + 2a,)’ 2v(1—v) aye (e + 2a,)’
where u' = — pal/4 = a,a,b, + a,a,b, — 2¢,a,b,.

Noting that a? — 4a,a, + 0 whenever A 4 A,, we see that if in equation
(51) the roots A, A, of the quadratic @A’ + ¢ X + @, =0 are of unequal
modulus and @ a, @, % 0, there are two solutions of the same equation which,
when considered for all positive integral values of x sufficiently large, take the
forms

(59) yl(w)=wvl‘(w)xf(1+pe.(w))’ yz(x)=wvr(”))‘;(1+p‘=(”))’
r(w+qkz+r) F<m+q7\l+r)

wherein lim,__ ¢ (x) =lim,__ ¢,(22) = 0, and the constants have the values

_ab,—ab

= - —aat, 1=
aa, p=a,ab, + aab —2aab, ¢q=ayal, r=2qa.a,.
2

Moreover, for the cases in which A, A, are distinet but of equal modulus we
see from (57) and (58) that the result just obtained will continue to hold
true, by Theorem I, provided that for all = a we have

|+ #/20(1 4+ ) | = |2 — u/20(1 = »)],
i.e.|®+ ¢ |=|%+c,| where
¢ =—L =L,
P o+

But if this latter condition is satisfied, it is evident that ¢, and ¢, are conjugate
imaginaries, and conversely. Thus the result already obtained when |\, | == |2, |
will continue to hold true when |\ | =]}, |, provided that A, & A , and either
¢, C, are conjugate imaginaries or ¢, = ¢, = 0.

We note also that the form of the solutions (69) may be somewhat simplified
by making use of the well known asymptotic relation

T'(z) ~ V2me a1,
Thus for any constant / we have

T(x+1 I \*? l\*
o~y g) e (14 )~

so that relations (59) may be replaced by
60)  y(z)=2"N(1+ (=), %(=)=2"2(1 + (=)
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wherein
=albz_azb1_ g =albz—azbl_ P
o, a, A+’ : a,a, g\ + 7

h1=g“’cl

8. Besides the cases already considered in which a@,a,a, 4 0 it is deserving
of note that whenever @ a, % 0, @, = b, = 0, the nature of the solutions of (51)
for large positive values of x may still be found by the application of known
results. For after making the transformation

h
the same equation takes the form

Ay(@)o(z +2) + 4 (2)0(z + 1) + 4,(z)v(2) =0,

where

1
Ay(x)=a,+ (b, + lzao); + ey
Al(m)=%+...,
1
A,(x) = a, + (b, — 290, + ka,); + e

Then by choosing % and ¢ so that the coefficients of 1/x here appearing vanish,
i. e

, a,b, — a,b, b,

= —a—, = e— —

2a,a, .a,

’

we may at once apply to equation (51) the Theorem ITI of the aforesaid memoir.
As the roots of the equation @ A’ 4 @, = 0 are unequal but of equal modulus,
we conclude that there are two solutions under the present hypotheses having
respectively the forms

(61) yl(w)=w"7\.“l‘(1 + el(m))’ yz(w)=m;(1 +€z(w)) ( li:lex (= )2::?, g(z) =0),
where

9= (a,b,— a,b,)/2a,4a,.
9. Returning now to the original equation (48) and recalling that
x

u(w)mwnky(w)=(z)h”““?“)‘*y(w)(l+e<w>),

where lim,__e(x) = 0, and making use of equations (50) we reach in summary
the following theorem :
TeEOREM II. Given the equation

P (z)u(x+2)+ »* P (x)u(x+1) + ™ P,(x)u(x)=0,

where k is any integer, positive, negative or zero, while P (x), P,(x), P,(x)
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are convergent series for sufficiently large values of x , or are any functions
of ® developable asymptotically in the form

]—)-‘—'"‘3:4 (=) (lim vy () = 0),

@€ 2=

b, ¢
Py(z)=ay+ 2+ 2kt

Case L If a,a,a, % 0 and if the roots N, A, of the quadratic equation
a, N + a A + a,= 0 are of unequal modulus, there are two solutions of the
given equation which, when considered for all positive integral values of x
sufficiently large, take the respective forms

u (%) = (i:)""xﬁn)\f(l + el(w)) v wy(x) = (‘g)k'nw’”‘)\;(l + ez(oc))
(lim &, () =0, lim ¢, (+=0)),
wherein p, a,, o, are constants defined as follows : - o
a,b,—ab, k

p= — 5
a,a, 2

9 —_ — D
_ 2a,¢,b, — a,a,b, — a,0,b, — ka,a,a,
L]
aoal (alxl + 2a2)

(i:l,‘;’).

Moreover, the same result holds true whenever the roots N, \, are unequal
but of equal modulus, provided that o, and o, are conjugate imaginaries,
including the case in which o, =0,=0.

Case IL  Ifaye,+ 0, a = b, = 0 and if we represent by N, \, the roots
of the quadratic equation a )\’ + a, =0, there are two solutions of the given
equation whick when considered for values of x sufficiently large take the forms

u () = (%)kzm'hf (1+ &(2)), uy(2) = (Z:)hw"xg (1+ e())

(I]i_m ﬁl(x)zliln & (1) =0),
where p i3 defined by the relation

2, bz ) bo k
T 24, 2
10. The results obtained under Case I of the above theorem are in accord
with those obtained by HorN.* To show this we evidently need to show merely
that our values of p 4 o,, p + o, are equal respectively to the quantities p,, p,
employed by HORrN, and defined { by the relation

_ k(a, + 4a\) b, 4 b\ + b\
L= T 2@, + 2a,h,) T an, + 2a M

with a similar formula for p, obtained by replacing A, by 2,.

* Loo. cit., p. 192.
t Loe. cit., p. 191, footnote.
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Now in the sum p + o, the coefficient of 3k is — 1 — 2a,/(a, 2, + 2a,). But
the coefficient of — 34 in p, may be written in the form

S [P— e S | 2“07\1 Ay

a, + 2a,\, a X + 2a,A N,

which beeomes the same as the coefficient of — 3k in p + o since A N\, = «,/q,.
It remains only to show that
a,b, — a,b, | 20,0, — ¢,0,b,— a,a,b, b, 4+ b\ + b\
al az aoal (al x2 + 2a2) - alxl + 2a0k'f

This reduces to an identity by virtue of the relations
a
alxz+2a2=a—§-(al+2ao7\), aN +a\+a,=0.
0771

Similarly, by using A, instead of A we obtain p + o, = p,.

It is to be observed that HorN’s work concerns only case I.

11. As an illustration of the application of the preceding theorem, let us
consider the equation

(62) (1 + ?c)u(:c+2)— (z +i—;)zu(w+ 1)+ (1 +}c)u(m)=o,

one of whose solutions is Legendre’s function of the first kind P (z). For
simplicity, we shall confine ourselves to real values of z.

Here we have k=0, 0)=1, ¢, = —22,0,=1,5,=2, 5, = — 82, 5,=1.
Whence the roots A, A, are those of the quadratic A2 — 222 4+1=0; i. e,
M=24+1V7—1, \,=2—17 —1. Thus, we shall have |\ | & |),| if
|2| > 1, while we shall have |\ | = |A,| but A, % A, if |2| < 1. Applying Case
I of Theorem II, observing that @,¢,@, + 0 when 2 & 0 and that in the present
instance p = — }, o, = g, = 0, we find that for all real values of z except z = 0
the general solution of the above equation, when considered for all positive inte-
gral values of « sufficiently large takes the form

u(w)= ;/1; [%,(z+VZ=T1) (1 + €(x)) + k(z—vZ—1)(1 + ez(w))]
(limg (z) =lime(z)=0).
k,, k, being arbitrary constants. - o
Moreover, precisely the same result holds when z = 0, as appears directly by
applying Case II of the same theorem.
If, in particular, — 1 <2z <1, we may place z = cos £ and write
(2 +V7 —1)"=cos xf + i sinzt. The solution u () then takes the form

u(x)= ;/I;[Icl(l + ¢, (x)) cosxf + k&, (1 + &()) sinwf],
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where k,, k,, ¢, ¢, have the properties already mentioned. Moreover, upon
determining two constants A, u from the equations A sin u =k , A cos p = £k,,

and inserting for the constants k,, k, these expressions, we obtain for () the
form

u(m)=%’[sin(wf+p)+e(x)] (lime(z) =0)

where A and u are arbitrary constants.

This last result for the special case in which u(x)= P, (z) agrees with
other well known results respecting the behavior of Legendre’s function of the
irst kind for large values of x. Previous investigations upon the subject, how-
sver, appear to have been from the standpoint of the differential equation satis-
fied by P_(z) rather than from that of the difference equation (62).*

*Cf. DINI, Studs sulle equazioni differenziali, Annali di Matematica, ser. 3, vol. 3 (1899),
p. 178.




