
FUNCTIONAL DIFFERENTIAL GEOMETRY*

BY

LOUIS INGOLD

It is well known that a certain analogy exists between ordinary vectors or

points and functions of a variable x in an interval a < a; < /3. Such an

analogy, for instance, may be observed in certain formulas of integral equa-

tions! as well as in recent papers dealing with identities connecting integrals.{

It is the purpose of this paper to give some details of this correspondence in

the case of differential geometry of curves and surfaces.

In the ordinary theory a surface is defined by a vector whose projections

on the axes are

yi =/(*; «ii Ui) a = 1.2,3),

depending upon a parameter i.    We consider here instead n-dimensional

spaces defined by a function

f (X)   Ui,   U2,    •■■ ,   Un) (a^X^ß),

depending upon a continuous parameter x; i. e., n-dimensional spaces in a space

of infinitely many dimensions.

For curves in the space of infinitely many dimensions a sequence of directions

are obtained which are generalizations of the tangent, principal normal, and

binormal of ordinary curves; also a sequence of curvatures which correspond

to the usual first curvature and torsion. For spaces of higher dimensions the

usual tangent properties of ordinary surfaces are generalized, and formulas

analogous to the formulas of the Grassmann theory are obtained which express

relations among the tangents to subspaces.    In the concluding sections the

* This paper combines two papers : Curves in a Function Space, and Surfaces in a Function

Space, both presented to the Society November 26, 1910.

t This analogy was emphasized by Professor E. H. Moore in lectures on integral equations

at the University of Chicago, 1905-07; see his Introduction to a Form of General Analysis in the

New Haven Mathematical Colloquium, Yale University Press, New Haven, 1910. The author

owes to Professor Moore the suggestion that the ideas there expressed might be extended to

differential relations.

t Richardson and Hurwitz, Note on determinants whose terms are certain integrals,

Bulletin of the American Mathematical Society, vol. 16 (1909), pp. 14-
19; also Curtiss, Relations between the Gramian, the Wronskian and a third determinant connected

with the problem of linear dependence. Bulletin of the American Mathematical

Society, vol. 17 (1911), pp. 462-467.
319
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two fundamental forms of surface theory are generalized and formulas are

derived which are the extensions of the well-known relations of Gauss and

Codazzi.

It is assumed that the functions defining the spaces have partial derivatives

of all orders with respect to the parameters u, and these derivatives as well

as the functions themselves are assumed to be continuous functions of x.

Part I.   Curves in a Space of Infinitely Many Dimensions.

§ 1.    The notion of curve and the parameter s.

As explained in the introduction, a function f (x; u) is considered to be

analogous to the defining vector* of a curve in ordinary space. We shall say

that this function defines a curve in space of infinitely many dimensions

and shall refer to the curve as the curve /. The expression pdf / dx, where

u is independent of x, will be called a tangent to /.

If the parameter u is replaced by a function of some other letter s, say

u = u (s) ,f (x;u)is transformed into a new function <p (x;s). Itis possible

to choose the new parameter so that

For
dip (x; s) _ df (x; u) du

ds du        ds '
and hence

r(^)MS)T(W*-
Equation (1) is satisfied if

from which s may be found in terms of u.

* This part of the present paper contains the essential features of a previous paper entitled

Outline of a vector theory of curves, which was presented to the Society, November 27, 1909.

Since then has appeared a paper by E. Rath, Die Frenetshen Formeln in Rn, Jahresbericht

der Deutschen M athematiker-Vereinigung, vol. 19 (1910), pp. 269-272,

which also treats the subject of space curves vectorially. See also W. Fr. Meyer, Ausdehnung

der Frenetschen Formeln und Verwandter auf den R,,, Jahresbericht der Deutschen

Mathematiker-Vereinigung, vol. 19 (1910), pp. 160-169; and Bbunel, Sur les Pro-

priétés Métriques des Courbes Gauches dans un espace linaire à n dimensions, M a t h e-

matische Annalen, vol. 19 (1882), pp. 37-55.
t The integral of the product of two functions is analogous to the inner product of two

vectors, i. e., the product of their lengths into the cosine of the included angle.   See Kowalet

ski, Einführung in die Determinanten-Theorie, p. 320 ff.
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§ 2.    The sequence of normals and curvatures.

It will be assumed from this point on that the parameter s is so chosen that

equation (1) is satisfied.    The derivative

m !ÜÄ£2.

which is tangent to/, will be denoted by t (x: s).

The following formulas define, in terms of f(x; s) and its derivatives with

respect to s, a set of functions which we shall call the normals. For uniformity

t ( x; s ) is included in the set and is denoted by no ( x; s ).    These formulas are

(3)

n0 (x; s) == t (x; s),

ni (x; s)     dt (x; s)

ri(s) ds

n¡ (x; s)      dm-i (x; s)  , n¿_2 (a:; s) x /•>,»

~W(sT~~   Ts +    n-i(s)   jt (t = 2)'

where the expressions l/ri(s) are called the curvatures ki(s) and are defined

by the equations

It follows at once that

(4) C n2(x; s)dx= 1.

If the integrand vanishes identically when i = n, the integral which defines

ki (s) vanishes and the series of equations (3) terminates. Otherwise there

is an infinity of normals.

From the definitions (3) it is possible to write the normals as linear expressions

* This is analogous to the tangent vector of an ordinary curve determined by the set

of derivatives df¡ ( s ) / ds, where .

Xl = /l ( S ) ,        Xi = /j ( s ), Xs = ft ( 8 )

are the rectangular coordinates in terms of length of arc at a point on the curve.

t These are the well-known Frenet formulas. They do not appear to have been used pre-

viously for the purpose of defining the normals. They have been obtained for a curve in func-

tion space by Kowalewski in the paper, Les Formules de Frenet dans l'espace fonctionnel,

Comptes Rendus, vol. 151 (1910), p. 1338.
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in t (x; s) and its derivatives with respect to *.    For from (3) by differenti-

ation we find

drei (x; s)     flVi (s) dt (x; s) d2t (x; s)

ds        -~ds~       ds       + r^s>       ds2      •

After substituting in (3) we have

/       n      r2 (*) , ,      ,  \ dn (s) dt (x; s)
U2^X' ä) =rT(s)+r2^S^~ds-da-*" n ^r2^ ' l (a;; s^ >

and continuing in this way we obtain:

m= A(s) -t + Ai(s)fs+ ■■■ +A;-i(s)~

(5) Q<t
4 ri (s) ■ r2(s) ■■■ ri(s)—it

where the coefficients A, Ai ■ ■ ■ J,_i are functions of s depending on the r's

and their derivatives.

It is easily seen that the first normal rei (x; s) is orthogonal to the tangent

t(x;s).    For from the equation

I    re2 (x; s)dx = 1

it follows by differentiation that

f»     dno, 1      f
I    re0 — dx = —t—r I    re0 rei ox = 0.

Ja        ds ri(s)Ja

Hence reo and rei are orthogonal.

It will now be shown that all the normals are mutually orthogonal. Assume

that re0 (x; s), rei (x; s), • • • , Uh (x; s) form an orthogonal system. The

following considerations show that the system re0(x; s), rei(x; s), •••,

Uh(x;s), refc+i ( x; s ) is also orthogonal.    We have immediately the equations :

f ' ,        f 0 if t * i
(6) |   mnjdx" j j .* .     ".     (»,3 -0, 1,2, ••., A),

and from (6) by differentiation:

(7) J   m-^dx+J   rey —ox = 0     «,/-0, 1,2, ••-, h).
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In (7) substitute for dn{ / ds its value from (3).    This gives

f'njm+ij Cß n, n,_i _, f     dn¡ .
I    ———da;—   I    —-dx 4-   I    n,-^—dar=0    (t,j=0,1,2, •■•, ft).*

J.     ri+i Ja       ri Ja        ds

Hence by (6)

rß     gn.
(8) ni—'dx=0    (¿=0,1,2, ...,h-l;j=0, 1,2, ...,*;<+i±l),

and by (5) and (6)

(9) I    ny+i-r— da; =—
J.     3+   ds rjA

r dUj

ds
dx = —

(j =0, 1, 2, ••■, Ä-1),

(j-0, 1, 2, •••, Ä).

By using these results nh+i (x;s) is seen to be orthogonal to all the previous

n's; for from (3) by multiplying by n¡ and integrating

r8nA+,n,- Cßdnh
I    -a.r =        -r— n, ax 4~

as

Pg n„-i n,

Ja »"A
da;    (j =0, 1, 2, Ä).

In this equation if j < A — 1 the two integrals on the right vanish by (6)

and (8). If j = h — 1 they cancel each other by (9) and (4), and if j = h

they vanish by (6) and (7).    Thus the induction is complete.

§ 3.    On the vanishing of the j-th curvature.

In the ordinary theory of curves it is shown that in case the second curvature

(torsion) vanishes identically the curve is a plane curve. A corresponding

result holds for curves in a function space. In order to obtain this result,

it is convenient to have another expression for the j-th curvature which we pro-

ceed to develop. Let x, xi, • • ■ , x¡, be j -\- 1 independent variables on the

interval a < .r¿ </3, and consider the following integral:

f. 1

(i + D

n0 (a-; s)    n0 (xi; s)

ni (x; s)    nx (xi; s)

n,- (x; s)    n, (xx; s)

no (x,-, s)

ni (x,-; s)

Uj (xj-, s)

dx dx\ ■ ■ • dxj.

* If i = 0 it is to be understood that the second term of this formula does not appear.

This is the same as defining the curvature fco to be 0.
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For convenience, we write this in the form

-»3

I [ re0, ni,. • • • , n, ]2 dx, dxi • • • dx¡,

where the bracket stands for the above determinant divided by the square

root of (j -\- 1)1 and is analogous to the Grassmann outer product of j + 1

vectors.

To determine the value of this integral, consider that the determinant

expanded consists of ( j 4 1 ) ! terms which are squares, together with certain

cross products.    The general squared term contributes the value

i      rß i
( j _|_ i ) i J nmo(x; s)n2mi(xl; s) ■ ■ ■ n„,(xy; s)dxdxi, • • • , dxy = . + j ^ ¡

since by equation (4)

I
ß

re|L((x; s) dx = 1-

Hence all of these terms together yield unity.

The integral of each cross product is zero since each such term must con-

tain as a factor at least one combination like re¡ (x,; s) ■ nn (x¿; s), where h

and I are different, and the integral of this product is zero because re¡ and

nn are orthogonal. The entire integral, therefore, reduces to unity. The

square root of the integral of the square of a function F (x, xi, • • • , x¡) taken

over the region a < x¡ < ß is called the norm of F with reference to the vari-

ables x, Xi, • • • ,Xj.    We have, therefore,

(10) Norm [re0, rei,  • • •, n,\ = 1.

We may, therefore, write the j-th curvature k,- in the form

,11 r .kj = — = — norm [ re0, rei,  • • • , n, \,
r¡     r¡

and substituting for re, its value from equation (5), we may write the result

as the norm of a linear combination of bracket terms

re0, rei,  ••■ , n#-i>a¿¡ <* = 0> *> 2> '">J >•

These terms all vanish except the one for which i = j.    Hence

,       ri r2 • • • rj dH 1
kj =-norm \ n0, rex,  • • • , re,_i —.    .

Substituting in like manner for n,-_i, re;_2, ■ • • , re0, we have finally

.   . . . Y    dt   d2t dH~\
(11) k^^ri-   •••Vinorm^,-,^, ••-,-].
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We now prove the following theorem.

The necessary and sufficient condition that there exist a finite series for t (x; s)

of the form

(12)     t (x; s) = ai (s) ei (x) + a2 (s) e2 (x) + ■■■ + a¡ (s) e¡ (x),

is that the j-th curvature be the first of the curvatures to vanish identically.

For, if k}; = 0, we have

and hence
dUj-i 1
—z—■ =-n,-2.

dS fj-l

If the values of n;_2 and dn,-i / ds obtained from (5) are substituted in this

equation, it becomes an ordinary linear differential equation of order j for

t (x; s).

Let ai (s), a2 (s), • • • a}■ (s) be j independent solutions of the differential

equation satisfied by t(x; s). Then every solution which is a function of

both x and s can be written in the form (12), and hence t can be written in

this form. Conversely, if t has the form (12), substitution in (11) shows that

kj = 0. The functions ei (x), e2 (x), • • •, e}- (x) are linearly independent.

For if not, suppose that all can be expressed linearly in terms of g oí them

(g < j). Then, from (12) t can be expressed linearly in terms of g of the

e's, and hence by (11)

ko = 0(g<j),

but this is contrary to the assumption made above that kj is the first of the

curvatures to vanish identically.

Part II.   Spaces of n Dimensions in Space of an Infinite Number of

Dimensions.

§ 4.    The notion of space vector.

We go at once from one parameter u to any number n of independent

parameters and consider a function f (x; u\, u2, • • • , Un) of x and n

parameters Ui ■ ■ ■ un Such a function will be said to characterize a space of

locus of n dimensions which will be called the space /. The different func-

tions of x obtained from / by giving fixed values to the parameters u, may be

regarded as the points of the space in question, or they may also be thought

of as vectors from the origin to points of the space /.

It is assumed that no linear relation connects the partial derivatives

df (x;ui,u2 • • ■ un) I dui.    It foliowü that the function/, for arbitrary values
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of Mi, u2, • • • u„, cannot be written as a function of x and fewer parameters.

In case only such values of the parameters u are considered as can be expressed

in terms of k parameters »i, v2, ■ ■ • , Vk ( k < re ), the function / becomes a

function of the form

f (x; ui,u2, ■■■ , un) = ip (x; Vi, v2,  ■ ■ ■ , vk).

The function ¡p then characterizes a space of k dimensions.    We shall say that

the space ip lies in the space /.    In the special case k — 1, ¡p is a curve lying inf.

The curves defined by

ui, u2,  ■ ■ ■ , Ui-i, wti-i,•■.,«»= const.    (¿ = 1,2, .--,»1).

will be called the parametric curves corresponding to the parameters re,-.

The space

ip = «i ei (x) 4 "2 e2 (x) + ■ ■ ■ + unen(x),

where the m's are independent parameters and the e's are linearly independent

functions of x alone, will be called a linear space of re dimensions.

It is known from the theory of orthogonal functions that there exists a set

of normed and mutually orthogonal functions

«i (x), €2 (x), ••• , en (x)

in terms of which the e's can be expressed linearly.    We may therefore write

n

e. (x) = 53 «¿y «,- (x).
j=i

If these values are substituted in the expression for the linear space above,

it becomes
n n n     /   n? \ n

í> = Z«¡E«<f «y ( x ) = 53 ( 53an Ui ) tj(x ) = 53 »y «y ( x ),
<=i     y=i y=i \ i=i / y=i

where the coefficients
n

i>3 — 53 a¡j Ui
i=l

are independent parameters. Thus the function ip characterizing a linear

space can be expressed in terms of a normed orthogonal set of functions ob-

tained from the e's.

From the above definitions it is seen that if

/ ( x; Mi, m2 ,  • • •, un ) = Oi ei 4 o2 e2 + • • • 4- ar er        ( n < r ),

where the a's are functions of Mi, m2 , • • • , un, and the e's are functions of x

alone, the space / lies in a linear space of r dimensions.



1912] IN  A  FUNCTION SPACE 327

§ 5.    The first fundamental form.

If the total differential of the function / (a;; Ui, u2, • • ■ , un) with respect

to parameters u¡, be squared and integrated with respect to x from a to ß

there results a quadratic differential form in the variables w,;

E - /' («F* - jf (Ig*.)"* =  t ( jf g g*)* *
n

=  ¿2 En dui du,.
i,j=l

The form E is called, the first fundamental quadratic differential form associ-

ated with the function /. It plays the same rôle as the differential form giv-

ing length of arc in the ordinary theory. The coefficients Ei3 are called the

first fundamental quantities.    The discriminant of E is denoted by

2= \Eijl (i,j -1, 2, ••-, n),

and X always denotes the positive square root.

In the symbolic theory of the invariants of differential forms* E is repre-

sented symbolically as the square of a linear form. It has been shown that

the expression

f! itM^ldx
may be used as such a symbolic representation of Pf and that all of the iden-

tities of the symbolic differential invariant theory may be interpreted as iden-

tities involving ordinary functions and their integrals.

If i>i, v2, ■ ■ • , vn are any n functions of the parameters ut we may use the

notation

d («1,112,    ••-,   Vn)
(vi, v2, •••,»„) = X 7-7-^.

d(Ui,   U2,    ■■■ ,   Un)

In case two sets of functions a, b are used, we may write

(ai, a2, • • • , ak, bi, b2, • ■ ■ , bn-k) = (a, b) = (a, b; k, n — k),

with similar notations for the Jacobian of n functions made up of three or more

sets.

* See Maschke, A symbolic treatment of the theory of invariants of quadratic differential quan-

tics in n variables. Transactions of the American Mathematical Society, vol.

4 (1903), p. 448.
t See the author's paper, Note on identities connecting certain integrals, Bulletin of the

American Mathematical Society, vol. 17 (1911), pp. 184-189.
Trans. Am. Math. Soc. 91
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§ 6.    Tangents and normals.

The function udip (x; s) / ds, where u is independent of x, has been called

the tangent to the curve \f> (x; s). The tangent to any curve lying in a space

/(x;mi, • • ' ,Un) will be called a tangent to/. All of the tangents to/ at a

given point ü (i. e., for given values of the parameters, say Mi, M2, •••,&»)

lie in the linear space

3/ ~df d~f
«=Vld~Ui + V2du'2+-'-+Vndul>

where df/dUi represents the value of df / du¡ at the point ü. For if the para-

meters are all functions of s so that

/(x; Mi, M2,  ••• , m„) = d,(x\ s),

then
d\J/ _ df dui      df du2 df_ dun
ds      dui ds      du2 ds dUn  ds

which is of the form of ip above. Conversely, any linear function of df/dui,

df/du2, • • •, df j dun is a tangent to some curve lying in/ and is therefore a

tangent to/.

If the coefficients í>¿ in the expression for ip are independent parameters,

<p is called the tangent space to the space / at the point ü.

In case / is the linear space

(13) / (x;   Mi,   M2,    • • • , M»)  = M1/1+ M2/2 +   • • •  4- Unfn,

where /1, /2, • • •, /n are linearly independent functions of x alone, the tangent

space tp coincides with/.

Suppose that we wish to determine the tangents at a given point of a sub-

space of n — 1 dimensions determined for the space /(x; Mi, «2, •••, m„)

by an equation of the form

vi (mi, m2, • • •, Un) = const.

We may select re — 1 other functions v2, • • •, vn so that the re functions

»1, v2, •••,»„ are independent and transform the coordinates in / from.,the

u's to the v's.   Then

/(x; Mi, m2,  •••, Un) = 4, (x; «1, v2, •••, vn),

df     ^d^dVj
^=53^7" «-1,2, •••,»»),du,      ¡=i dVj dUi

and the solutions of these equations are

dj, _ (Vi,V2,  ••• , Vj-i , /, Vj+i, • • * , t>n )

dVj («1, v%, •••,»»)
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Any curve in the subspace of n — 1 dimensions can be determined by properly

selecting v2, «?, ■ • • ,v„ and letting all but one, say v„, remain constant. The

tangent to the curve so determined is d ip / dv„, or what is the same thing, the

vector

<p = (wi, Vi, v3,  ••■ , tw-i, /).

where Vi is replaced by wi to show that it is the locus Wi = const, which we are

studying. The totality of tangents to this locus is found by using arbitrary

functions in place of v2, • • •, »„_i.

By a similar argument it is seen that the totality of tangents to a subspace of

n — k dimensions,

Wi = const.,   Wi = const.,    • • •,   Wk = const.,

is given by the formula

(14) (Wi,  Wi,   •■•,Wk,Vk+l,   •••,«„_!,/),

where Vk+x, • • •, "n-i are arbitrary functions.

Consider now the case in which / is a linear space as in equation (13), with

the functions /i, • • • , /„ normed and orthogonal.

The expression

(15) W-±f¥i=! âUi dut

is called the normal to the space w — const, in the space f, since it is orthogonal to

every one of the tangents.

To prove this let <p be expanded in the form

<P = 2ZVi
dUi'

where Vi is the co-factor of df / dw¡ in the determinant representing <p.   Then

X\<pdx=±Vid^ = 0,
i=i      dUi

since the second member is the determinant for <p with/ replaced by w.

§ 7.    Auxiliary notions.

Let <pi(x), <pi(x), •••, <pk(x) represent any k functions of x and any

other parameters.   Then we may use the notation

<Px(Xi)      (pl(Xi)      •■•      <pl(Xk)

<Pi(Xi)      <Pi(Xi)      ■•■       ipi(Xk)

[<PX, <P2, , <pk] =
1

Vk\

<f>k(Xi)      <pk(xt) Vk(Xk)
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where Xi, x2, ■ ■ ■ , Xk are independent variables in the region a s Xi ^ ß.

This expression is analogous to a Grassmann outer product of k vectors, called

by him a simple element of the A>th order, or of k dimensions. A linear com-

bination of simple elements which cannot be reduced to a single simple element

is called a compound element.

We shall assume for the present that the functions/i (x) ,f2(x), ■ ■ ■ ,fn (x)

occurring in the function / in equation (13) are normed and mutually ortho-

gonal. The factor X defined in §5 is then unity. The determinant (f(xi),

f ( Xi ), •••,/( xn ) ) defined at the end of § 5 and all its minors are clearly

simple elements except for constant factors.

The simple elements corresponding to minors of the fc-th order will be

called the fundamental simple elements of the k-th order with reference to the

functionsfi,f2, •••,/„.

The following notations will be found convenient.

If (x), f(y); k, n — k] = (f (xi), ■ ■ ■ , f (xk), f (yi), ■■■, f(yn-k)),

[f(x), a; k, n — k]= (f (xi),  ■■■ , f (xk), au  ■•■ , an-k),

\tl    \    M        iff    Ï Z. M * {f M* f M ,  •••./(**))If (x); k]= [f (x), uc; k, n — k] = X -

= Vk\

d (uc¡, uCí,  • • • , uCk)

'df(x)    df(x) df(:
duCi duCi duCk?]■

/       , v       / , , s        â (ai, a2,  ■■■ , ak)
(ac; k) = (ac, ucr, k, n — k) =

3 («<,,, uH,  ■■■ , uCk)'

In these formulas c = (ci, c2, ■ • ■ ,Ck) represents any combination of k of the

integers 1,2, • • • , n, and c = (c\, c'2, • • • , c'n_k) is the complementary set

arranged so that the permutation ( C\, c2, ■ ■ ■ , Ck, c\,c2, ■ • • , cv_* ) can be

obtained from the permutation (1,2, • • • , n ) by an even number of transpo-

sitions.

The elements so defined satisfy the following relations:

¿!'

Cß i
(16) I    [fc (x), uc,; k, n — k}2 dxi dx2 ■ ■ ■ dxk = rj

(17) I    [fc (x), uc,; k, n — k][fd (x), ud,; k, n — k]dxidx2 • • ■ dxk = 0,

where c and d represent different combinations.*   The proof is the same as

for formula (10).

* These are special cases of the formula

/    l<pi(x¡), <p,(x¡), •■•, <Pk(xk)][<l'i{x1), H(xt), ■■■, <^k(.Xk)]dxi •■•dxk

(M)    *'" I M I
=   J   <Px ( x ) <£,• ( x ) dz\
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The normal in the space / to the locus o¿ (mi, m2, • • ■ , m„) = const, will

be denoted by the corresponding german letter a.    In the element

[ ai, o2, • • •, ak ]

let a, be replaced by its value from formula (15).    Then

2l(4)=[ai,tt2, •••,a,]=-^=53(oc; k)[fc(x); k].
Vkl    e

This is analogous to the expansion of a fc-dimensional vector in terms of the

¿-dimensional units.    But it follows by use of formulas (16) and (17) that

1 P"
•-, ,,  /r¡ I    [f(y),f(x);n-k,k][f(y),a;n-k,k]dyidy2---dyrt-k
(n— k)\V k\Ja

= 77^53 («<=; *)[/«(*); *]•

Hence

_     ■»--r= f  [f(y),f(x);n-k,k]
(I) (n-k)WklJa   U Kyj'JK

X[f(y),a; n- k,k]dyu ■■■ , dw„_jb.*

In particular

1 /'"
(n)   a= (ra_ i)jj    U(y)>f{x);n-l,l]{f(y),a;n-l,l]dyi---dyn-i.

The expression

/TTT,    \Wk)=--1 ( [f(y),f(x);k,n-ky
(III)    ' Vk\(n-k)\Ja   vjyy"JK

X [a(yi), •■■, a(yk)]dyi ■ ■ ■ dyk

is called the complement of 3l(*'.    If we expand the element

[f(y),f(x); k,n — k]

in terms of the elements [fc(x); k] and write 2l(4) also in terms of them, we

where the determinant on the right is of the fcth order, î and j ranging from 1 to fc, and where

<pi, <P2< •", « and <]/i \¡/i, • • •, <//k are any functions of x which are such that the products

ipiipj are integrable. This result was first published by Richardson and Hurwitz in the paper

already referred to, and later by Landsberg in the paper, Theorie der Elementarteiler linearer

Integralgleichungen, Mathematische Annalen, vol. 69 (1910), pp. 227-265. The for-

mula is a special case of a formula proved by Professor Moore in a course on Determinants

at the University of Chicago, summer, 1907.

* The formulas of this and the following section are closely analogous to formulas given by

Grassmann. See the Ausdehnungslehre (1862), in Grassmann's collected works edited by F.

Engel.
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have by means of (16) and (17)

Taking complements again, we find

(V) (n—k)\Vk\Ja

X [f(y),a; n-k,k]dyi--- dVn.k = (- 1 )*t—*> SP*> .*

§ 8.   Properties of the elements.

The three following formulas, (VI), (VII), (VIII), are frequently useful in

making reductions:

P aw#«<fat, • • •, dxk =  f 12l(i) I S8(t)dt/i, - • •, dy„_t

(VI) J' !        ^ J"
= (n_ jfc)¡ J    [/(«)» a5 n—fc, *].[/(*), 6; n—*,ir]dxi ••• da^_*,

i    r*
Vn- ]c)\ J    U(x)>a'> n—k,k][f(x), b;n-k, k)dxi • • ■ dxn-k

(VII)

=    I    [f(x),ai-, n—1, l][/(a;), bj; n—\, l]dxi • • • dx„_i ,f

«,¿-1, 2, • ••, fc).

(VIII) J   l/^)'/(a;)'n-Ä;'Ä;H/(y),a;n-Ä;,Ä;][/(a;),6;Är,n-Ä;]

Xdyi ••• dyn-kdxi ■•• dxk = k\(n — k)\(aif ••• ,ak, bit ••• ,&„_*).

Formula (VI) is proved by showing each expression to be equal to

]C(ac;fc)(&e; k).
c

Formula (VII) can be proved by the use of (VI) and formula (M) of the foot-

note p. (330). For by (VI) the left hand side is the left hand side of ( M ), and

also by (VI) the general term in the determinant on the right is equal to

(n — 1)1 I    Oibjdx.

Hence the determinant reduces to the right hand side of (M ) and the formula

is proved.   By expanding both sides of formula (VIII) in terms of (ae ; k),

•See Grassman, 1. c., No. 92.

t Ibid., No. 175.
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(bc; k), they are reduced by formulas (16) and (17) to the same expression

fc! (n -fc)! £ (o.;fc) (&.;*)•
c

The preceding formulas enable us to prove that the elements [fc (x) ; fc]

are linearly independent. For suppose there is a linear relation connecting

them, say
53 P< 1/ (x ) > u°' '> k,n — k]-Q,

e

then

53pc I    [/(x),/(y);fc,re-fc][/(x),Mc,;fc,ra- fc][/(y), m»; n - fc, fc]
C t/o

X dxi • • • dxfcdyi • • • dy„_* = 53P«fc!(n—£)!(««,', • • • ,«,£_,,«*,, • • • ,«a,) = 0,

by (VIII). But every term of this vanishes except -the term for which the

combinations c and h are the same, and this reduces to fc ! ( n — fc ) 1 p». Hence

p» = 0 for every h.

In the proofs of the remaining formulas of this section, the following theorem

on determinants is needed. If | m, '•• ,ctn\ and | jSi, • • •, ßn | denote two

determinants of the nth order, then

n

(D)    \ai, ■•',an\\ßi, •••,j8»| = 53|/5i»«2, • • -, a»||0i, •••,&_!, ai,0i+i, •••,A»|*.
|ml

The theorem can be applied to each term of the sum on the right by putting

a2 successively in place of ß\, ß%, etc. ; and clearly this process can be repeated

until ai, ■ • •, ak replace in all possible ways a like number of columns of the

second determinant.

In this form the theorem will be used to prove the following formula:

[f(x),f(y); re- fc,fc][/(z),o; I, n- I]

X [/(m),/(2), b; fc, Z,r]dyidw2 ••• dykdzxdz2 ••• dzt

^^ kill Pß
= (fc+TTj 23 [/(*). ae; re- fc, fc] J    [/(«), ac,; n - r, r]

X [/(y), b; n — r, r]dyidy2 •■■ dy^^r,

where fc 4-1 = re — r and ae denotes any combination of fc of the o's and ae'

denotes the combination of the remaining r of the o's.f   To prove formula (IX)

•See Maschke, Differential parameters of the first order, these Transactions, vol. 7

(1906), p. 70, equation (1).
t If r ■= 0 there is only one combination a which consists of all of the o's. The right hand

side reduces to a single term and the integral factor of this term reduces to n! = ( fc -f I )! ;

whence it is seen that (IX) reduces to (VIII) in this case.

r
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apply the theorem (D) to the first two factors under the integral sign on the

left and exchange in all possible ways f(yi),---,f(yk)oi the first factor for

a like number of elements of the second. Adding the results and denoting the

left side of (IX) by P, we have

P=53 f  U(x),f(zt); n-k, k][f(y),f(zt,), a; fc, I - fc, re - I]
h   Ja

X [f (y), f (z) ,b; k, l, r] dyi ■ • ■ dykdzi ■ ■ • dzt

4 53 1    [/(x),/(zfc), o,-; re— fc, fc— 1, 1]
h, i Ja

X[f(y),f(zhr),ay,k,l-k+l,n-l- 1]

X [f (y), f (z), b; fc, l, r] dyx ■•■ dykdzx ■ ■ ■ dzt

+ 53 (*[/(*),/(*.), «y; n-k, fc-2, 2]
m, j t/tt

X[f(y),f(zm,), ay, k,l-k+2,n-l-2]

X [/(y), /(z), b; fc, Z, r]dyi ■■■ dykdzi ■■■ dzt

4.

4 53 I    [/(x), a,; re- fc, fc] [/ (y), f (x), a,,; fc, l, r]
8    Ja

X[/(y), /(z), 6; fc, l, r]dyi  ■■■ dykdzi ■•■ dzt,

where f (zt) is any combination of fc of the quantities /(Zi) • • • / (z¡), and

/ (zt>) is the combination of the remaining ones. This series of sums is for

the case in which fc is at most equal to I. If fc = I — g the first g sums will

not appear. Each term of the first sum is equal to P, except perhaps for sign.

By applying theorem (D) to the first two factors of each term of any sum except

the first, interchanging in all possible ways the / ( x ) of the first factor for a

like number of terms of the second, each sum is reduced to a series of sums of

succeeding types, and by successive reductions they are all reduced to a sum

of terms of the type appearing in the last sum, each term being multiplied by a

numerical factor.    Thus we have

P = ^Kc[f(x), ac: re — fc, fc] I    [f (y), ac,; n — r, r]
c Ja

X [/(y), b; re- r, r]dyi--- dwn_r,

where the coefficients Ke depend only on the integers fc, I, n, r, and not at

all on the functions a, b.

Now let

{ &1, b2, ■ ■ ■ , bT\ = { m,,, M,,,  • • • , uir) = { ah[, ah't, ••■, ah'r],

I ahl, • • •, aht} = { u0l, ■ ■ ■, u0t}.
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Then on the right all terms vanish except the one for which the combinations

c and h are the same, and the term which remains has the value

Kh(l+lc)l[f-h(x); n-k]/V(n-k)l.

But the expression for P becomes k\l\[f, (x); n — k] / V (n — k)\. Since

all of the functions [fc ( x ) ; n — k ] are independent, [/, ( x ) ; n — k ] and

[ fh ( x ) ; n — k ] are the same and we have finally

K   __*L!i^*
Aa~ (k + l)\

for every h, and formula (IX) is proved.

From the formulas given, many others can be obtained by multiplying both

sides by a factor involving the function / and integrating. For example,

taking complements of both sides of (IX), we have

J    lf(x),f(y), b; k, I, r][f(y), a; I, n — l]dyx ■ ■ ■ dy¡

(X) (k +
11 Cß

l)\(n-k)\^-' J    [/(y)'a<"n_r'rl[/(2/)>&;n-r>»i

Xdyi---dyn-, j    [f(z),f(x);n—k,k][f(z),acr, n—¿, fc ]dzi • • • dz„_*.t.

The proofs of formulas in this and the previous sections are for the case in

which/ is a linear space whose coefficients fi are normed and orthogonal. The

formulas hold, however, when / is general. Formula (VIII)t for the special

cases k = 1 and k = 2 and formula (VII) § have been proved by Maschke in

symbolic notations. His argument applies equally well to functions. The

proofs will therefore not be repeated here.

Formula (VIII) can be shown by induction to hold for any value of k.

Denoting the left member by Mk and using the determinant theorem (D),

* This represents the number of terms of the type of those on the right side of (IX) which for

a given h are found in the form to which P reduces by the above process. The same expression

could be obtained for P for a general space f and the same reductions would lead to the same

number of terms of the above type.   Hence K has the same value for the general case.

t See Grassmann, 1. c, No. 173.

Î Maschke, A Symbolic Treatment etc., loc. cit., formulas (34) and (39).

§ Maschke, Differential parameters of the first order, these Transactions, vol. 7 (1906),

p. 74, equation (8).
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we find

Mk = f\f(y),f(x), n-k, k]
Ín—k

T,(f(yx), •••,/(y*-i), b1,f(yi+i), --^fiyn-k))
»=i

X(/(*l),   ••-,/(**),   fiVi),    bit    ■■-,    bn-k)
k

+ 2Z{f(yi), '■■, f(y»-k), ax, •••, Oí_i, 61, a^i, • ••, at)
<=i

X (/(xi), ••• ,f(xk), at, b2, ■•• ,bn-k) \ dyi---dyn-kdxi---dxk-

By interchanging equivalent variables Xi • • • x* «1 • • • y„_¡t each term of

the first summation is seen to be equal to — Mk.   Hence

Mk = (n — k) Mk+i — kMk,

k + 1
Mk+i = ^ZTïcMk = (k+1) l(n- k- l)l(ai, ••■ ,ak,bi, •••, &„_*).

Consequently the formula holds in general, since it holds for k = 1 and k = 2.

It is clear that the same proof is valid in case any of the quantities a<, bt are

functions of x or an equivalent variable distinct from the variables of inte-

gration.

Formula (VIII) may now be used to show the linear independence of the

expressions [/ (x), ue; k, n — k] for the general, non-linear, case precisely as

at the beginning of this section for a linear space. The proofs given for

formulas (IX) and (X) hold for the general case.*

There remain formulas (I), (II), •••, (VI). Formulas (II) and (III)

may be taken as definitions of 0 and [ u^, a2, • • •, <x* ] respectively for the more

general space. Let the expressions for at, • • •, at from (II) be substituted

in the determinant 21 in (I).   The result is

^T)Tp|X'I/(y)'/(x<);n"1,11
Vk\ i(n

X [/(y), a,; n - 1, 1 ]dyi • • • dy^-x

where the determinant is of the kth order, i and j ranging from 1 to k.   This

expression by (VII) can be written

IIP3
Vk\(n-k)\J    IfW'fW'' n~k> k][f(y), a; n-k, k]dyt ••• dyn-k,

* See the footnote to the proof of formula (IX).
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the right-hand side of formula (I), which is therefore proved. Using this

formula and formula (VIII) with/ (xi ), • • •,/ (x„_* ) in place of 61, • • •, b„-k,

we have

19t(t) = -^=i-f [f(y),f(x);k,n-k]-7=
' Vk\(n-k)\J.   uyy"JK   " \n-k)\Vk\

X J    [/(z) ,/(y); re-fc, fc][/(z), a; n—k,k\dzx • • ■ dzn-kdyx • • • dyk

= 7T7-*A      ,„fi/(»),/(y); »-*.*]
fc!(re— k)\V(n— fc)!«/«

X[/(z),a; n —fc,fc][/(y),/(x); fc,re-fc]dzi • • • dz„-kdyi • • • dyk

=      ,.      _k)[(ai'a*>   ••• «a* »/(«O»/(*»)»  "••»/(«»-*)),

and this proves formula (IV). In a similar manner formulas (V) and (VI)

can be proved.

§ 9.   Functions orthogonal to all tangents of a subspace.

Given a subspace Rk lying in /, it is possible to find functions tangent to

/ but orthogonal to all tangents to Rk. In fact, if / is of n dimensions there

should be precisely re — fc independent functions satisfying this condition.

These functions are given in the following theorem:

Every function

*(*) = J   U(y),f(x), U;k,l, re-fc- l][f(y),a;k,n-k]dyi---dyk,

where the U's are arbitrary functions of Ui, u?, • • •, m», is orthogonal to all

tangents of the subspace Rk in f defined by the equations

01 = const.,       o2 = const.,        • • •,       o»_i = const.

By formula (14), § 6, all tangents to Rk may be written in the form

*>(*) = [/(*). V, o;l, fc- 1, n- fc],

where the V's are arbitrary functions of Mi, ut, • • •, w». It is to be shown,

then, that

j <p(x)t(x)dx = J [f(y),f(x),U;k,l,n-k-l][f(y),u;k,n-k]

X [/(x), V, u; 1, fc — l,n— fc]dxdyi ••• dyk = 0.
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By formula (X)

*(*) = ¿  fß[f(y),ur,k+l,n-k-l][f(y), U;k + l,n-k-l]
i=l Ja

X J   [/(z),/(x);n— 1, l][/(z), a,-; re— 1, l]dyi •• • dyk+tdzi ■ • • dz„_i.

Hence, by (VIII)

f v(x)^(x)dx = t,Mi f [/(z),/,(x);re-l,l][/(z),o,;re- 1,1]
«/a <=1 Ja

X [/(x), V, a; 1, fc— 1, re— fc]dxdzi • • • dz„-i

»
= (re— l)!53^i(a;. V, a; 1, fc — 1, n — fc).

i=i

But each term of this sum contains a determinant having two columns identical.

Hence the sum vanishes, and this proves the theorem.

§ 10.    Normal properties; Christoffel symbols.

If all of the parameters Mi are functions of the same parameter s, the function

/ determines a curve/(x; s). The tangent to this curve is given by formula

(2) of § 2. Let s be so chosen that the condition (1) holds. Then the first

normal re to the curve is defined by (3) to be

1    _ d2/(x; s) _ -A d2f(x;s) duj duj     A. d£ tPuj

r as2 i¡J=i    dUidUj     as   ds       i=idUi   ds2 '

where 1 / r is the first curvature and is so chosen that

I n2dx = 1

Thus the first normals to all curves lying in f are linearly expressible in terms of

the tangents df / du i  and the second partial derivatives d2f / dUi du¡.

A function which is linearly expressible in terms of the derivatives df j ¿)m¿ ,

and d2f/dUidUj, and which is orthogonal to all of the tangents, df-j dUi,

we shall call o first normal to the space f.

If the second derivatives d2f / 5m, dUj are linearly independent there are

re ( re 4- 1 ) / 2 linearly independent first normals to / in terms of which all

others can be expressed.    We write

where the coefficients { \J } are to be determined as functions of the para-
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meters Ui from the condition that the functions N^ are orthogonal to the

functions df ¡ du¡. To calculate the { V Í > multiply both sides of equation

(18) by df I dui and integrate, remembering equation (6).    This gives

Ja    dUidUj dui t=i I  k  J

Now the expressions on the left may be shown to be the Christoffel triple

index symbols* of the first kind belonging to the quadratic differential form

(E), and can be expressed in terms of the functions Ei}- and their derivatives.

Denoting them by [*/] we have the system of equations

from which we obtain

{VHI4Y].
where ©¿u denotes the co-factor of Eki in the determinant | En |. The expres-

sions { Y 1 are the Christoffel triple index symbols of the second kind belong-

ing to the differential form (E).\

§11.    The second fundamental form.

For the study of properties depending upon the second derivatives of the

function / certain other fundamental quantities are important. These may

be taken to be the quantities of either of the sets

Cß   d2/      d2f rß
lHriHrdx> NijNr.dx,

Ja   dUidUj durdus Ja

or perhaps still others which can be expressed in terms of either of these sets

and the first fundamental quantities E. Under certain restrictions the number

of these quantities is reduced. Thus in the ordinary theory of spaces of n

dimensions lying in a Euclidean space of n 4- 1 dimensions, the number is

reduced to n ( n -p- l)/2, the fundamental functions being the coefficients of

the second quadratic differential form. Here, however, for the corresponding

developments it is not assumed that / lies in a Euclidean space of n -\- 1

dimensions, but only that all first normals to / have the same direction; i. e.,

that any two of the normals Nij differ from each other at most by a factor which

is independent of x,% so that we may write

Nij = LiiN,

* See Maschke, A Symbolic Treatment, etc., loc. cit., p. 455.

t See Maschke, A Symbolic Treatment, etc., loc. cit., p. 456, equation (67).

t The further assumption, that the third and higher derivatives are linearly expressible in

terms of the first and second derivatives of / leads to the ordinary case mentioned above.
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where Z¿¿ is independent of x and where

f N2dx = 1.

Equation (18) may now be written

Multiplying both sides of this equation by N and integrating, we have, since

N is orthogonal to df / dUk,

l<>= r N^í~dx-
' Ja dUidUj

The Li,- are the coefficients of a quadratic differential form obtained in the

following manner.   We have

»       ai/ n   df
**f = 23 J—T- d«.-d«y +Ir-(í!«¡.

i, J=l «Mt OMy i=i dUi

If we multiply by N and integrate, we find

/•$ "   Í       32f        1 *
I    (d2/) Ndx = 53 1 AT-—— dx \ duiduj = 53 Lijduidu,-.

«/« «,¿=i I     ouidUj     J iii=i

This is called the second fundamental differential form and the coefficients

La are called the second fundamental quantities associated with the function/.

The following relations are easily obtained by differentiation under the

integral sign.   From

we have

,„m    rß „ a2/ ,        rß dN df a        cßdN df ,    _
(20) I    AT      '    dx=-   I    — r=L3x=-   I    — ~dx = Lij,

Ja dUidUj Ja    du,  dUi Ja    dUi   dUj '

Cß     dN
(21) X^^"0-

§ 12.    The relations of Gauss and Codazzi.

We now apply the formulas just obtained in the proof of the extension of

the well-knçwn Gauss and Codazzi relations.   From equation (19) we have
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_a2/

du

iduj     h\ r \dUr^L,lDI'

^ = ±\ik\^+LikN.
iduk     " I   r  J dur

Differentiating the first with respect to uk and the second with respect to u¡

and equating the results, we find

it j

y—H'J^ + t^'é+LM+^NdUi dUj duk      r=i\  r  J dUr duk      r=1     duk    dur u duk       duk

i k
dN ,  a Lit_^ ft fc)    a2/       A"]   r \ df ¿_

Si I    r    J dM^M;       Sí       dUj      dUr"+"     '* ÖMy Í~   ÔMy        *

Multiplying in turn by N and df / dUm and integrating, we obtain, by the use

of (20) and (21), after transposing,

Si r J L m J " S 1  r \[ m J + S~äö
(23)

;

J?rm + La Ljm — £y Z*m = 0 .
r=l OUj

The last relation contains the result that the expression L,* ¿,m — La L*m

can be expressed in terms of the Eij and their derivatives.

University op Missouri,
May, 1912.


