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CALCULUS  OF VARIATIONS  IN SPACE*

BY

GILBERT AMES BLISS

For the problem of minimizing the definite integral

f F(x, y,z,p, q, r)dt,

.„. dx dy dz
(1) V=dt'       q = dt'       r=Jv

where the function F has the homogeneity property

(2) F(x,y,z,kp,kq,kr) = kF (x,y ,z,p,q,r) (*>0),

the Weierstrass E-function

E(x, y, z; p, q, r; p', q', r')
has the form

E = F(x,y,z,p' ,q',r') - p' Fp(x, y, z, p, q, r)

- q' Fq(x, y,z,p, q, r)

- r' Fr(x, y, z, p, q, r).

Behaghelt has deduced a very useful expression for the E-îunction in terms

of the quadratic form

Q(x,y, z; p, q, r; £, 7?, f)
(3)

= Fpp e + Fqq n2 + F„ r2 + 2Fgr 7/r + 2Frp H + 2Fpt &,.

In his proof he makes use of functions, in his notation A, B, C, which are

analogous to one which is used for a similar problem in the plane.    For the

space problem, unfortunately, these functions may become infinite even for

very simple integrals of the type (1), and in such cases his proof of the formula

would not be valid. J

* Presented to the Society, December 26, 1913.

fMathematische  Annalen,  vol. 73 (1913), p. 596.
X For the function

F = Vp' + î' + U + r)»
the expression for A is

A = -FP/flr = (l-^)/[p«-ö, + (5 + r)«P»,

and this is infinite for any direction in the ¡/-plane or z-plane not perpendicular to the rc-axis.
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In the following sections it is proposed to give a proof of a formula some-

what more elegant than that of Behaghel and which can be reduced to his

by a simple transformation. The objections mentioned above are avoided,

and the special case when the directions ( p, q, r) and ( p', q', r') are in

the same line but opposite, treated separately in Behaghel's paper, is here

quite unexceptional. * The method used applies at once to problems in space

of any number of dimensions. In § 2 some useful consequences of the formula

are deduced, and in § 3 some peculiarities of the extension of the results found

to spaces of higher dimensions are explained.

1. The Formula for the P-function

It will be supposed that for a fixed set of values (x, y, z, p, q, r) the

function F has continuous first and second derivatives for arguments

(p', q' ,r') defining directions in a cone shaped region Pe, shown in Fig. 1

Fig. 1.

about an initial direction p, q, r. This and other directions will be referred

to hereafter by their first letters only, as illustrated in the figure. Analytic-

ally the region is defined by an inequality of the form

(4) l»l<«
* A formula given by Mason and Bliss, these Transactions, vol. 9 (1908), p. 459,

is less effective than the one proved in the text for a similar reason. It does not necessarily

hold when the two directions x', y', z' and xu, ya, zu are opposite.
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where <o is the angle between p and p' defined by the formula

pp' + qq' + rr'
COS O) = -p , = (0^u<7f).

V + 92 + i-2V  +o'2 + r'2

In as much as the properties of the P-function to be considered in this

section do not depend upon the arguments x, y, z, the latter may be omitted

in most of the equations. It is understood that for the direction p the quan-

tities p,q,r are not all zero, and a similar remark applies for other directions.

The function F satisfies the relation

(5) pFp + qFt + rFr = F,

found by differentiating (2) for k and putting k = 1, and also the relations

pFpp + qFpq + rFpr = 0,

(6) pF„ + qFqt + rFv = 0,

pFrp + qFra + rFrr = 0,

which follow by differentiating (5) for p, q, r, respectively. Furthermore the

first derivatives of F are positively homogeneous with order zero. For by

differentiating (2) with respect to p, for example, it is found that

Fp(x, y, z, kp, kq, kr) = Fp(x, y, z, p, q, r) (k > 0).

From these results it follows readily that the P-function itself has the homo-

geneity property

E(x, y, z; kp, kq, kr; k! p', k' q', k' r') = k' E(x, y, z; p, q, r; p', q', r')

(k >0, k' >0),

and the direction ratios which occur among its arguments may be taken

without loss of generality to be direction cosines.

It will be helpful to use the notation

*(p,é,¿') = r(pPp? + Ppî'? + Pprr)

+ v'(FqPï + FqqV + Ftrn

+ r(Frp£ + Frqr, + Frrn-

The form 4> has the following properties to be used later, the first of which

gives an expression for the quadratic form Q in terms of $:

(7) Q(x,y,z; p,q,r; £,77, f) = $(p,£,£),

(8) *(?,€,£') =*(?,€',€),

(9) *(?,{, «£'+*£") =«#(?, i,C) +»*(?,€,€"),

(10) *(p,f,p)=0,
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where in the third formula w£' + v!-" is a symbol for the values

uf+v?',        un' + vn",        u? + vt".

The first three of these formulas follow readily from the definition of $>,

while the last is a consequence of the homogeneity properties (6).

■?

Fig. 2.

Consider now the two directions p and p' indicated in Fig. 2. There will

always be a direction tt which is orthogonal to p and co-planar with p and p'.

Let a and a be two directions orthogonal to each other in the same plane

with p, p', and tt .    Their direction cosines are expressible in the form

a = p cos t + ir sin t ,        a = — p sin r + 7r cos t ,

(11) 6 = q cos t + k sin t , ß = — q sin t + k cos t,

c = r cos t + p sin t ,        7 = — r sin t + p cos 7,

where t is the angle between a and p.    By changing the sense of the direc-

tion tt , if necessary, it can be effected that for t = w the direction a coincides

with p'.

The ^-function has then the expressions

E(p,p') =£fT{p'Fp(a)+q'Fg(a) +r'Fr(a)]dr

=   I *(a, a,p')dr,
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which follow readily from (5), (11), and the definition of $. From the

relations

p' = a cos ( co — t ) + a sin ( co — t),

q' = b cos ( w — r )+ /3 sin ( co — t),

r' = c cos ( co — r ) + 7 sin ( co — t ),

and the formulas (9) and (10) it is seen that

E(p, p') =   I    sin (co — t) 3> (a, a, a)dr,
Jo

or, by applying the mean value theorem for a definite integral,

(12) E(p,p') = (1 - cos w)*(a*. a*, a*),

where a* is the direction a corresponding to a suitably chosen value r* between

0 and co, and a* is the corresponding direction perpendicular to a*.

Hence the function

E(x, y, z; p, q, r; p', q', r')

is expressible in the form

(13) E = (1 - cos ca)Q(x, y, z; a,b,c; a, ß, 7).

In this formula co 75 the angle (0 = co = 7r) between the directions (p, q, r)

and (p', q', r'), ivhile (a, b, c) and (a, ß, 7 ) are directions orthogonal to

each other in the plane of the other two and defined by the formulas (11) for a

suitably chosen intermediate value of t satisfying the inequality 0 < r < co.

The relations between these directions is clearly shown in Fig. 2.

It is easy to derive Behaghel's formula from this result.    The relations (11)

give

p = a cos r — a sin r,        q = b cos r — ß sin t ,        r = c cos r — 7 sin t ,

and with the help of (9), (10), and (8) it follows that

$ (a, p, p) = sin27- <P(o, a, a).

Hence the expression (12) can be put into the form

r?t       >\      ,1               ,3>(a*, p, p)E(p,p') = (1 - cosco)-^—r—

,« N Q(x,y,z; a*, b*, c*; p, q, r)
= (1 — COS co )-.  ,    *-,

sin2 t*

which is the formula required.

2. Consequences of the Formula

Consider an arc C defined by the continuous functions

(C) x = x(t),       y = y(t),       z = z(t) (íi==<=Sí»)
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and having a continuously turning tangent whose direction cosines will be

represented by p(t), q(t), r(t). The neighborhood Cc of order zero of

this arc is the totality of values (x, y, z, p, q, r) for each of which the

inequalities

\x - x(t)\<€,        \y - y(t)\ < e,        \z - z(t)\< e,

(C.)
(p,?,0*(o,o,o)

are true for at least one value of t between ti and t2. The neighborhood C'c

of order one is similarly defined by the conditions

|x-a:(f)|<i,        \y~y(t)\<€,        |z — a(i)| < e,

(C )
(p,?,0* (0,0,0),        \6\<e,

where 6 is the angle (0 Si 6 =i t) between the directions p and p(t). Be-

sides the region Pt of § 1 and the two neighborhoods just defined, there is a

fourth region involved in the following theorems and defined by the conditions

(R)     (x, y, z) in a continuum of xyz-points;        (p, q, r) 4= (0, 0, 0).

For each of the theorems the function F is supposed to be continuous and to

have continuous first and second derivatives with respect to p, q, r in some

region including the one involved in the statement of the theorem.

If for a fixed set of values (x, y, z, p, q, r) the condition

(14) E(x,y,z; p, q, r; p',q',r') gO

is satisfied for all directions (p', q', r') in a neighborhood Pe of the direction

(p> q, r), then the condition

(15) Q(x, y,z; p, q, r; ¿, n, f) S 0

¿5 also satisfied for any values whatsoever o/ £, ij, f. 7n other words the necessary

condition of Weierstrass, for either a strong or a weak minimum, at any point of a

given curve, implies the necessity of Legendre's condition also.

If in the formula (13) the direction p' approaches the direction p while

remaining in a fixed plane through the latter, the directions a and a approach,

respectively, p and a direction ir normal to p in the plane. Hence the in-

equality (15) must be true when the direction £ coincides with it . But p'

may be made to approach p in any plane through p, and consequently tt may

be any normal to p. If £ lies in a plane with p and it and makes an angle

t with p, the formulas

¿ = p cos T + TrsinT,     v = q cos t + k sin t,      f = r cos t + p sin r,
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together with (9) and (10) show that

Q(x,y,z; p,q,r; £, n, f ) = sin2r Q(x, y, z; p,q,r; tt, k, p).

Hence the inequality (15) is true for all values of £, n, ¿".

The form Q in the expression (13) is said to be regular in a region of

values (x, y, z; p, q, r) if it does not take opposite signs for different values

of its arguments and vanishes only when £, n, f are all zero, or when the

directions (£, n, f ) and (p, q, r) are in the same line.

If the function Q is regular at all values (x, y, z, p, q, r) on an arc C,

then there exists a neighborhood C's in which it remains regular and does not take

opposite signs.

For Q can always be transformed by a homogeneous orthogonal linear

transformation of £, n, f* into a sum of squares whose coefficients Xi, X2, X3

are the roots of the equation

(16)

f pp + \ -t1Pq r pr

" qp " qq  +  A r qr

■0rP 0rq " rr + "

The term independent of X in this equation is zero since it is the determinant

of the coefficients of p, q, r in the equations (6). Hence one of the roots,

say X3, is always zero; and the other two are different from zero and of the

same sign for any set of values (x, y, z, p, q, r) corresponding to a point

of the arc C, since for such values Q is regular and can vanish for one direction

£, n, f only. Since the roots Xi and X2 are continuous functions of the argu-

ments x,y,z,p,q,r, they will remain different from zero and will not change

sign in a sufficiently small neighborhood C's.

Suppose that Q is regular along the arc C and that the inequality

E[x(t),y(t),z(t); p(t), q(t) ,r(t) ; p',q',r'] >0

is satisfied at every point of C whenever the direction ( p', q', r') is distinct from

that of C. Then there exists a neighborhood C't such that in the region of values

(x, y, z; p, q, r; p', q', r') defined by the relations

(x,y,z,p,q,r) inC',,        (p', q', r') # (0, 0, 0)

the function E does not take opposite signs and vanishes only when the directions

(p, q, r) and (p', q', r') coincide.

To prove this consider the function Ei defined by the equations

Ei(x,y,z; p,q,r; tt, k, p; co) = E/(l - cos co) (0 <û><t),

(17)
Ei(x,y,z; p,q,r; it, k, p; 0) = Q(x,y,z; p, q,r; tt, k, p),

* See Kowalewski, Einfuhrung in die Determinantentheorie, § 116.
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the first of which is formed by replacing the values (p', q', r') in E by ex-

pressions similar to (11) with r = co. From its definition Pi is continuous for

all values of its arguments for which the point (x,y,z) is sufficiently near to

C, and 0 < w ^= irr ,* while the other arguments are the direction cosines of

two perpendicular directions. It is continuous also for co = 0, since the for-

mula (13) shows that as co approaches zero the values of the quotient in the

first part of the definition of Pi approach continuously the values defined by

the second of equations (17). Along the arc C the quotient Pi is different

from zero for directions w normal to p(t), and for 0 ^ co ̂  if, on account of

the hypothesis of the theorem and the expressions (17). Since it is continuous

it retains these properties when the values (x, y, z, p, q, r) are in a neigh-

borhood C\ of the arc C. The function P has therefore the properties de-

scribed in the theorem, since E is expressible as a non-vanishing factor times

Pi whenever p and p' are distinct.

Consider a problem which is regular in a region R of the kind described in the

first paragraph of this section, that is, a problem such that the form Q is everywhere

regular in R. Then the function E(x,y,z; p,q,r; p', q',r') does not take

opposite signs when (x, y, z, p, q, r) and (x, y, z, p', q', r') are in R,

and vanishes only when the directions (p, q, r) and (p', q', r') are coincident.

At every point of the region R the quadratic form Q is regular, and hence

the expression (13) for the P-function vanishes only when p and p' coincide.

Further any two sets of values (x, y, z; p, q, r; p', q', r') can be joined

by a continuous path over which p and p' are nowhere coincident. Hence

the sign of the P-function is always the same at points where it does not vanish.

The regularity or non-regularity of the quadratic form Q is controlled by

the behavior of a function Pi defined by the equations

p2 Fi = Fqq Frr — Fqr,       qrFi = Fpg Fpr — Fpp Fqr,

q2 F i = FrT Fpp — Frp,       rpFi = Fqr Fqp — Fqq Frp,

r2 Fi = Fpp Fqq — Fpq,      pqFi = FTp FTq — F„ Fpq.

The existence and continuity of this function are consequences of the relations

(6). The coefficient of the first power of X in the equation (16) is precisely

Pi, and consequently Xi and X2 will be different from zero and have the same

sign if and only if Pi is positive.

A necessary and sufficient condition that the quadratic form Q be regular at a

set of values (x, y, z, p, q, r) is

Fi(x, y, z, p, q, r) > 0.

* The symbol irr stands for x radians.
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3. Extension of the Preceding Results to Higher Spaces

The formula (13) which was the goal of the discussion of § 1 has an analogue

for an integral' of the form

fF(y,p)dt,

where y and p are symbols for sets of elements of the form

y = (yij 2/2, ■••, yn),

, s     (dyi   dy2 dyn\

The function F is supposed to have a homogeneity property with respect to

the arguments p similar to (2), and relations analogous to (5) and (6) are

readily derived.

The E-function and the quadratic form Q have the forms

E(y,p,p') =F(y,p') -¿p,í\-,
n

Q(y,P,Z)= 2Z Fij(y,p)Hi£j
i,3=l

where P¿ and F a are symbols for the derivatives dP/dp» and d2 F/dpi pj,

respectively.    The iJ-function has the homogeneity property

E(y,Kp, k' p') = k' E(y,p,p') (« > 0, *' > 0),

and as before there will be no loss of generality if all the directions p are sup-

posed to be normed, that is, to satisfy the relation

The condition for the orthogonality of two directions, p and 7r, in 7i-dimen-

sional space is

Pi TTl  + p2 W2  +   ■ ■■   + p„ 7T„   =   0 .

The auxiliary form 4> has the definition

$(p,H,a') = ¿ Fi3(y,p)h£j
i,j=l

and satisfies four relations analogous to (7)-(10) of § 1.

There will always be at least n — 2 independent directions q'.,q", • • •, g(n-2)

orthogonal to both p and p', which with p itself form a system of n — 1

independent directions; and the last system of n — 1 directions determines a

unique direction tt orthogonal to each of them. The directions tt and p are

independent, and orthogonal to each of the directions q', q", • • ■, f7(n-2).

Since every other direction having this property must be expressible linearly
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in terms of p and tt , it follows that p' must have the form

p'i = Pi cos co + 7Ti sin co    (¿ = 1,2, •••, n;0:5«Si»O.

In order to satisfy the last restriction in the parenthesis it may be necessary

to change the sign of the direction tt .

If the directions a and a are defined by the equations

o¿ = pi cos r + Ti sin r,        a{ — — p» sin r + tt; cos t    (i = 1, 2, • • •, r»),

the argument proceeds exactly as in § 1, and the formula found for the E-

function is

E(y,p,p') = (1 - cosco)Q(y, a, a),

where a and a are defined by the equations just given for a suitably chosen

intermediate value of r between 0 and co.

All of the results of § 2 except the last can be proved for n dimensions in a

manner analogous to that which is effective for three dimensions. The

analogue of Pi is a function defined by relations of the form

PiPkFi = Aik (i, k = 1, 2,  •••, n),

where Aik is the cofactor of P,* in the matrix of these derivatives. In the

equation corresponding to (16) for n dimensions the term independent of X

vanishes as before, and Pi is the coefficient of the first power of X. Hence if

Q is regular at a set of values (y, p) it will remain so in any neighborhood of

those values in which Pi is different from zero. But more than the require-

ment that Pi shall have a certain sign is needed in order to insure the regularity

ofQ.
The University of Chicago.


