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BY
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1. Introduction f

A sequence of numbers u(m) may be regarded as a function of a discrete

variable m. To generalize the notion of the limit of this sequence, a new

sequence v ( m ) is defined by means of the transformation

m

v(m) = ~%2k(m, n)u(n),
n=l

where k(m, n) is a function of two discrete variables. This transformation

is regular if the existence of

lim u(m)
m=oo

implies the existence of

lim v(m)

and the equality of the two limits. Examples of regular transformations are

those of Cesàro and Holder, of which the following are simple cases :

j     m E  llu(p)
v[(m) = v['(m) = — J2u(n),       v'2(m) =n-=ljt^-,

(1) m"=1 En
n=l

1    -m,

v'2(m) =-T,v'x'(n),
m n=l

where the superscripts refer respectively to the definitions of Cesàro and

Holder and the subscripts to the order of summability. A necessary and

sufficient condition that a transformation be regular is:J

(a) lim ^,k(m, n) = 1,       (b) lim k(m, n) = 0,

\¿) m

(c) E I k ( m, n ) | < A.

* Presented to the Society, January 1, 1915.

11 wish to express my indebtedness to Professor W. A. Hurwitz for a number of suggestions-

t Toeplitz,  Prace matematyczno-fizyczno,  vol. 22 (1911), p. 113.
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It is natural to replace the discrete variable m by the continuous variable* x,

u(m) by u (x), the auxiliary function k(m, n) by k(x,y), a function of

two continuous variables, the sign of summation by an integral sign, and

then to study the transformation

(3) v(x) =   I   k(x,y)u(y)dy,
Ja

where m (a:) is bounded and integrable, a Sü x =i Xi, and k (x, y) is integrable

in y for each x, a Si y =i x. The function k (x, y) is the kernel of the trans-

formation. The transformation is regular if limx=n u(x) implies the exist-

ence of lim^a, v(x) and the equality of the two limits. Corresponding to the

examples (1) we have, taking for convenience a = 0, the transformations^

nyu(s)dsdy

(4) J° f ydy
Jo

1   fx
«2 (*) =-J   vïiy)dy.

Changing the order of integration in the numerator of the expression for

v2 ( x ) and integrating once, we have

2 r
hi*) =—2 I    ix - y)u(y)dy;

X   i/o

so that the kernels for the transformations of Cesàroî of orders 1 and 2 are

respectively

(5) kt(x,y)=-,       k2(x,y)=--2-.

Following the case of series we are led to inquire whether conditions similar

to (2) constitute a necessary and sufficient condition for the regularity of

the transformation (3). In answer to this question we have the theorems

which follow in the next section.

* The first to carry out this idea to extend Cesàro's and Holder's definitions of summa-

bility of series to the case of integrals was Du Bois-Reymond, Journal für Mathe-

matik, vol. 100 (1887), p. 354.
t See Landau, Die Identität des Cesàroschen und Hölderschen Grenzwertes für Integrale,

Sächsische Berichte, vol. 65 (1913), p. 131.
X That is, the transformations in the case of a continuous variable corresponding to those

of Cesàro for the case of sequences.
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2. Conditions for regularity

Theorem I. Let k(x, y) be defined, a < x, a í= 2/ = ^ > and integrable in y

for each x; then a sufficient condition that k(x, y) correspond to a regular trans-

formation is:

(a) lim  I   k(x, y)dy = 1,
a:=ao va

(6) (b) lim k ( x, y ) = 0 uniformly in y,       a =i y S= q,

(c)    I    \k(x, y)\dy < A,       a<x,
«/a

where q is an arbitrary constant and A is a positive constant.

We wish to prove that for any bounded and integrable function m (a;) the

existence of lim u(x) implies the existence of

lim  j   k(x, s)u(s)ds

and the equality of the two limits.

Let lim u(x) = I; then by (a) we may write,
x—oo

I = I I   k(x, s)ds + r¡(x),

where lim r¡ (x) = 0; so that
x=oo

rk(x, s)u(s)ds — I =   I    k(x, s)[u(s) — I] ds — r¡(x).

Choosing p so large that \u(x) — l\< e, x ^ p, then holding p fixed and

denoting by M a number greater than \u(x) — l\ in the interval a Sa x Si p,

we have for x > p,

rk(x, s)u(s)ds — l\^=  I    \k(x, s)\ \u(s) — l\ds

+ f |jfc(a!,*)||«(*) -l\ds + \n(x)\

^M (   \k(x, s)\ds + e j   \k(x, s)\ds+\v(x)\.

Since by (c)

r\k(x,s)\ds ^  I    \k(x, s)\ds < A,

and by (b)

j[\H*,s)\ds<M{pe_a)£ds=-M,       x>X,
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it follows that, if X' is the greater of the numbers p and X,

<e + e4+|ij(a;)|,       x > X',ft'a k(x, s)u{s)ds — I
1 «-'a

so that

€+ (A.r
lim sup    I   k(x, s)u(s)ds — I

z=ao       j Ja

Since the superior limit is less than an arbitrarily small positive constant,

the actual limit must be zero.    Therefore,

lim  I   k(x, s)u(s)ds = I,
x=<c Ja

Theorem II. Let k(x, y) be defined, a < x, a Si y Si x, and continuous

in y uniformly with respect to x, x > h > a, and let the zeroes of k(x, y) for

each x consist of a set of segments* and of a set] of points of measure zero; then a

necessary and sufficient condition that k(x, y) correspond to a regular trans-

formation is that k(x, y) satisfy (6).

That these conditions are sufficient has been proved in the preceding the-

orem; we proceed to show that they are necessary. We accordingly assume

that whenever
lim m (a;) = I,
x=ao

then

lim  I   k(x, s)u(s)ds = I,
a;=oo Ja

and we prove that each of the conditions (6) follows as a necessary consequence.

(a) Consider the special case in which m ( a; ) = 1, a Si a;, so that

lim m ( x ) = 1;
£=00

then

lim  I   k(x, s)ds = 1.
¡E=oo Ja

(b) Consider the special case in which

m (x) = 1,       a Si x Si y,

= 0, y <x;
so that lim u ( x ) = 0.

Letting

k(x,s)ds = g(x,y),f•Ja

* The set of segments is necessarily countable.   See Hobson, Theory of Functions of a

Real Variable, p. 82.

t Either of the sets may be null.

Trans. Am. Math. Soc. 19
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we have

k(x, s)u(s)ds =   j    k(x, s)ds = g(x, y);
Ja Ja

so that lim g ( x, y ) = 0 for each y, and hence
z=oo

£ = 00 '

Since

m v   9Jx,y + r) - gjx,y)     dg(x,y)
(7) b-T      - = —8y— = kix>y)>

it will follow that

r    ? i       \     v    i-w. 9Jx,y + r) - gjx,y)lim k(x,y) = lim lim-
a:=oo £=00  r=0 '

= limlimg(a:'y + r)~g(a;'y) = 0,
r=0  £=oo '

if we show that for each constant y the limit in (7) is approached uniformly

for all x i= h.   To show this, we write

gjx,y + r) - g(x,
- =-J      ¿(a:,*)d» = k(x,yx),

where yx lies between y and y + r.

From the assumption regarding the uniform continuity of k ( x, y ) when

y = a, we have

\hix, yi) - k(x,y)\ < e,      |yi-y|<S,      i = l,

where e is a given arbitrarily small positive constant and 5 depends only

upon e and h.   Thus for all x =; h and for | r | < 5, we have, since

\V - Vx\ <\r\ < S,        \k(x,yx) - k(x,y)\< e.

The limit in (7) is accordingly uniform in a;.    It follows that the limit of

k (x, y) is zero for each y.

We shall now show that

lim k(x, y) =0 uniformly in y,       a Si y Si q,
£=00

where q is arbitrary. Suppose this limit exists non-uniformly in y in some

finite interval, pi SÍ y Si qi. Then the limit must exist non-uniformly in

one of the half-intervals. Subdividing the half-intervals and proceeding in

the usual way, we define a value £ of y such that in every interval about £ the

limit of k ( x, y ) exists non-uniformly in y. We shall now obtain a contra-

diction by showing that in at least one interval about £, the limit oí k(x, y)

exists uniformly in y.
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Since k ( x, y ) is continuous in y uniformly with respect to x, we have

\k(x, £) - k(x,y)\ <g,        |£-2/|<5,       x ^ h,

and since the limit of k ( x, y ) exists for each y, including y = £, we have

|*(*,i)|<|»       a;>Z.

Adding these inequalities, we obtain

\k(x,y)\<€,       x>X',        |í-y|<í,

where X' is the greater of the numbers h and X.   We have thus proved

that the limit of k(x, y) can exist non-uniformly in no finite interval; hence

lim k ( x, y ) = 0 uniformly in y,       a S= y =; q.
x=tx>

(c) We are now to prove that there exists a constant A such that

<p(x) =   I   \k(x, s)\ds < A,       a<x.
Ja

Let us assume this assertion untrue; then for some Xi, d>(x\) > 102.    Con-

sidering the special case in which*

u(y) = ^sgnk(xi,y),       a^.ySxi,

u(y)k(x1,y) = TV \k(xuy)\,
so that

and letting

we have

g(x)=       k(x, s)u(s)ds,
Ja

i r*1
S(x^=iqJ    I¿(zi, s)\ds = iV<Mzi) > 10.

Furthermore, from the uniform approach to zero of k (x, y), proved in (b), it

follows that

lim I    \k(x, s)\ds = 0,
x=oo Ja

so that

|fc(a:,»)|<fo<l,       a;>Xi>a-i.

Now choose a;2 > Xi so large that

(9) c6(a;2) > 104 + 10 + 1.

* The function sgn z is defined, as usual, to have the value | z | / z when z + 0, and the

value 0 when z = 0.
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The function u(y) has been defined for the interval a 2= y = Xi; let us now

extend the domain of definition to the interval Xi < y Sa x2 as follows :

u(y) =jQ2sgnk(x2,y),       X!<ySàx2.

Then

g(xi) =   I    k(x2, s)u(s)ds
Ja

=  I    k(x2, s)u(s)ds +  I    k(x2, s)u(s)ds
Ja J*l

k(x2, s)u(s)ds + T7p I    \k(x2,s)\ds

= ÏÔ~2J    \k(x2,s)\ds - J    \ YQ2\k(x2,s)\-k(x2,s)u(s) Ids.

i   i i rrir i ii
\g(x2)\^jiy<p(x2) -    j    I jçp\k(x2,s)\- k(x2, s)u(s) \ds\

= yy4>(x-i) - J    I ïôi\k(x2, s)\ + \k(x2, s)\ \u(s)\\ds

= ^-20(a;2)-J    yjQ2 + jQJ\k(x2,s)\ds.

From (8) and (9) it follows that

10* + 10 + 1       1        1
?(^)=-   -If?"   ^-ïo2--ïô=1°-

Continuing in this way, we can define a sequence of numbers xn such that

lim xn = °° ,        lim | g ( xn ) | = °° ;
fl —00 71 = 00

therefore it is not true that the limit of g ( x ) is zero.

On the other hand, from the hypothesis as to the roots oí k(x, y), u(y)

is integrable,* and from its definition u (y) is bounded; hence, since

hm u(x) = 0,
x=oo

it follows from the fundamental property of regular transformations (§1)

that

* The end-points of the set of intervals mentioned in the theorem form a countable set

(see first footnote, p. 287); the measure of the set of all the points of discontinuity of u (y) is

accordingly zero.    Hence u ( y ) is integrable.    See Hobson, loc. cit., p. 342.
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lim g ( x ) = lim J   k(x, s)u(s )ds = 0.
£=00 £=00 Ja

The contradiction proves that

\k(x, s)\ds < A,       a < x.

3. The case of infinite kernel

It will be seen that the kernels given in (5) of the transformations of Cesàro

satisfy the conditions of the preceding theorem. To see whether also the

kernel of the transformation* of Holder of order 2 satisfies those conditions,

let us find the expression for k2 (x, y ).   We havet from (4), for x > 0,

"*'(*) ~ äj   v'iiy)dy=~j   J   "u(s)dsdy

= l[mz I   I 7,uis)dsdy
e=o *!/, Jo y

= Hm-   logy I   u(s)ds     - lim- I   u (y) log y dy
I=0 X |_ J0 J, e-o Ii/,

M(y)dy,UMÍ)
since

log e I   m(í)
«/o

¿5 < Me | log « |,

where M, a constant independent of e, is an upper bound of u ( x ).    Thus

h'l(x,y) =-log^.

This kernel does not satisfy the conditions of the preceding theorem, since

it fails to be continuous for y = 0. We are thus led to study the trans-

formation

v(x) =   I   k(x, s)u(s)ds,

where k(x, y) may become infinite for x = a while the integral converges;t

to define as regular any such transformation for which the existence of

lim m ( x )

* The kernel of Holder's transformation of order 1 is identical with that of Cesàro of order 1.

t It is here assumed that u ( x ) is continuous; everywhere else in this paper u ( x ) is assumed

to be merely bounded and integrable.

Î As in § 1, u (x) is assumed to be bounded and integrable, a Si x Si x\.
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implies the existence of

lim I   k(x, s)u(s)ds
£=00 Ja

and the equality of the two limits; and to inquire whether the results of the

preceding section can be extended to this class of transformations. It will

be observed that the third condition of (6) will now necessitate the further

assumption that
f*x

\k(x,y)\dyf'Ja

converge. With the additional assumption that this integral converges

uniformly in x, a theorem similar to Theorem I of the preceding section can

be proved for the more general class of transformations under consideration.

Theorem III. Let k(x, y) be defined, a < y Si x, and integrable in y for

each x; then a sufficient condition that k(x, y) correspond to a regular trans-

formation is:

| k ( x, y ) | dy converges,        lim I   \k(x, y)\dy = 0,
£=00 Ja

(10)     lim I   k(x,y)dy = l, I   \k(x, y) \dy < A,        a<x,
£=00 Ja Ja

where b is an arbitrary constant greater than a, and A is a positive constant.

In order to prove this theorem it is necessary to bear in mind that the

convergence of the integral*

r \k(x, y)\dy

implies the convergence of the integral

\kix,y)\ \u(y)\dy,
£

since m ( y ) is bounded. We may now follow the successive steps of the

proof in Theorem I, observing that every integral involved is necessarily

convergent.

We shall now state a necessary and sufficient condition that a kernel k(x,y),

for the more general class of transformations considered in this section, corre-

spond to a regular transformation. In this theorem, however, a far greater

restriction is put on the kernel than in the preceding ones; we assume, in fact,

* That is, the existence of the limit, as h approaches zero, of the integral

PV \k(x,y) \dy.
J a+h
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that the kernel is positive. It should be pointed out that the kernels corre-

sponding to the transformations of Cesàro and Holder satisfy this condition.

Theorem IV. Let k(x,y) be positive or zero, a < y S= x, and integrable

in y for each x; then a necessary and sufficient condition that k(x, y) correspond

to a regular transformation is

(11) I   k(x, y)dy converges;        lim I   k(x,y)dy = 0;
Ja x=<a Ja

lim r
x=a¡ Ja

k(x,y)dy = 1,

where b is an arbitrary constant greater than a.

That the condition is sufficient follows immediately from Theorem III,

if we make use of the hypothesis that k(x, y) is positive; we accordingly

proceed to the proof of the necessity of conditions (11). The hypothesis is

that the convergence of u ( x ) to the value I implies, for every bounded and

integrable function u ( x ), the two consequences,

f k(x, s)u(s)ds

converges, and

lim J   k(x, s)u(s)ds = I.

To prove the first two conditions (11), consider the special case in which

«(*/) = 1>       y = b,

= 0,       y>b,

so that lim u(x) =0.   Hence, since

/•x /»&

k(x, s)u(s)ds = I   k(x,s)ds,
Ja Ja

the integral on the right converges; which proves the first of conditions (11).

Furthermore

lim I   k(x, s)u(s)ds = lim I   k(x, s)ds = 0;
*=oo Ja x=ao Ja

which proves the second of conditions (11).    The third condition is proved

as in Theorem II.

4. Conclusion

Three things may be said concerning the generalization for the limit of a

function of a continuous variable as that variable becomes infinite. In the

first place, improper integrals are included as a special case; for if we have
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under consideration

we may write

and inquire as to the

lim m ( x ).
£=00

Secondly, we need not restrict ourselves to the case where the independent

variable approaches infinity; if we wish to study lim m (a;), we may make

the substitution

x = a + ]

and study

lim m ( a + —
í=M0 \ t

In particular we may generalize the notion of continuity. Finally, we wish

to call attention to the fact that the class of transformations considered does

not include the identity. We shall therefore study transformations of the

form

v(x) = au(x) + (1 — a)  J    k(x, s)u(s)ds,
Ja

which gives for a = 0 the transformations already considered, and for a = 1

the identity.    It is clear that the conditions for regularity obtained in the

preceding section apply to this case also; in fact, the statements and proofs of

Theorems I-IV may be repeated word for word for this more general class of

transformations.

In another paper we shall discuss the consistency and equivalence of these

transformations.

Cornell University,

August, 1915

u

existence of

I    tj>(x)dx,
Ja

ix) =   I   <biy)dy
Ja

)•


