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1. Introduction

Many definitions have been proposed for the value of a divergent series,

those of Cesàro and Holder being familiar examples. All of the definitions

proposed are generalizations of convergence ;f that is, they evaluate any

convergent series to the value to which it converges. Thus all these definitions

give the same value to a convergent series. The fundamental question as to

whether, when each of two definitions gives a value to a divergent series, the

two values are the same, seems as yet to have received no attention. % That

two definitions, both generalizations of convergence, may give different values

to the same divergent series, is seen by the following example. Let the

sequence defining the series be x„ = ( — 1)"+1 log n (n = 1,2, ■ • •); and

let the value of the sequence be defined in two different ways by the limits

of the sequences (yn), (z„), where

1 " 1 * r        ( — l)*"1"1!
yn = -T,xk,       z„ = -12    1 +    ,/,     \xk    (»-2,8, •••)■

«ti nt=2\_ log k    J

It can easily be verified that each of the definitions is a generalization of

convergence; whereas

lim 7/„ = 0,       lim zn = 1.
71=00 71=00

Furthermore the sequence ( ar„ ) may be made to give any preassigned value X

whatever if we choose as the definition for the value of ( xn ) the limit of sn,

where «» = ( 1 — X)t/„+ Xz„. It is accordingly a matter of the first im-

portance to know under what circumstances two definitions are consistent;

that is, under what circumstances we have a right to assert that whenever

each of two definitions gives a value to a sequence, the two values are the same.

* Presented to the Society, September 8, 1914.
t Such definitions are sometimes said to satisfy the condition of consistency; the word

consistency is used in this paper in a different sense.

Î Of course consistency is self-evident in the trivial case in which one definition evaluates

all series evaluated by another definition, giving the same values.
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The principal result of this paper is that all definitions of summability of a

certain class are consistent.

Another result of some interest is the determination of a criterion for the

equivalence of two definitions of summability; two definitions being defined

as equivalent when each evaluates to the value £ every sequence evaluated

by the other to the value £. The interest in this idea seems hitherto to have

been directed to the proof of the equivalence of Cesàro's and Holder's defini-

tions for the same order of summability, though other similar special questions

have been considered. In this paper a criterion is established for the equiva-

lence of any two definitions of a certain class, from which criterion the equiva-

lence of Cesàro's and Holder's definitions follows as a very special case.

Other points considered are: the specification of a definition which shall

evaluate the sum of two given sequences summable by two stated definitions ;

the establishment of a necessary condition for summability, analogous to the

well-known conditions for the cases of convergence and of Hölder-summability ;

and the permissibility of omitting or adjoining an element at the beginning

of a summable sequence without altering either its summability or the value

to which it is summable.

We shall be concerned with a special type* of definition of summability.

Let (xn) = x,y, x2, • • • be a sequence, and

(dn.k)

ai, i, 0,        0,

a2, i,    a2,2,    0,

a3, i,    a3,2,    «3,

an infinite matrix of numbers, real or complex.    Then the transformation

n

yn = J2an, k xk (n - 1,2, •■•)
*=i

defines the sequence (yn) — yy,y2, ■ • • .    We indicate the transformation or

the matrix by A and the relation by (y,t) = A (xn) ■   If

lim yn = £,

we define £ to be the value given to ( xn ) by the definition or transformation A ,

If ann + 0(n = l,2,.-.),we may solve for xn,

^n       / . an, kyk (n = l,2, •••);

* This type was first studied by Silverman, Missouri dissertation, 1910, and University of

Missouri Studies, Mathematics Series, vol. 1, No. 1 (1913) ; Toeplitz, Prace maternât-

yczno fizyczno, vol. 22 (1911), p. 113; Smail, Columbia dissertation, 1913; and

Schur, Mathematische Annalen, vol. 74 (1913), p. 447.
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we denote this transformation by A-1 and the relation by ( x„ ) = A~l ( yn ).

If (yn) = A(xn) and zn = B(yn), then zn = P> (^4 (x„) ), the transforma-

tion being BA. If AB = BA, A and B are permutable. If A and P cor-

respond to (an, k) and (£>„, *) respectively, a^4 + 0P will correspond to

(aan, * + ßbn, k)- If Ai, A2, ■ ■ ■ correspond to (an%), (ai%), • • • respec-

tively, ai Ai + a2 A2 + ■ • • will correspond to (an, k) if

lim [ ai aiW + a2 ai% + • • ■ + ap aHfl ]
i>=00

exists and equals an,k.    If (yn) = A (xn), and (yn) has the limit £ when-

ever ( xn ) has the limit £, A is regular.    It will be seen that if A and P are

regular, then ^4P, and for any constant a, aA + ( 1 — a ) B are regular.

A necessary and sufficient condition that A be regular* is

71 71

(1)    (a)    lima„,k = 0, (b)    lim 22 an, k = 1, (c)    121«», k\ < K.
71=00 71=00 k=l k=l

The simplest examples of regular transformations are

E :   an,k = 0,       n ^ k;       a,h „ = 1;

and

M :   a»,t = -,
71

Schur has studied the transformation aE + ( 1 — a ) M. It is natural to

consider the more general transformation

a0E + aiM + a2M2+ ••• + an Mn,

or still more generally the symbol

ao E + ai M + a2 M2 + • • •,

and to ask under what conditions it defines a regular transformation.

Theorem I. If f(z) = a0 + «i z + a2 z2 + • • • is analytic within and on

the boundary of a circle of unit radius about the origin, and / ( 1 ) = 1, then the

symbol ao E + ai M + a2 M2 + • • • gives rise to a regular transformation.

Let E, M, M2, ■■■ correspond to matrices m(^k, mn^k, m^k, •••, re-

spectively.    Then we have

p p
(a) 12 ! a, mir,'* | Si 12 |«r|,

r=0 r=0

* The sufficiency of the condition was proved by Silverman and the necessity by Toeplitz

in the papers previously cited. We shall use only the fact of sufficiency; indeed certain results

obtained by Schur by means of the necessity of the condition are here proved without this

part of the criterion.
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since 0 Si m£?* Si 1.    Hence

!»
lim X «r WÍi'i
p=oo r=0

exists uniformly in k; call its value an, a.    Therefore*

p p
lim a„, * = lim lim J] ar m$k ■= lim lim ^ ar mi»?A = 0.
n=co n=oo p=oo  r=0 p=oo n=oo  r=0

n n p p n

(b) 2 a«, k  =  2 1™ Z) «r W47* = Hm J2 Or 23 ™»,'i

= lim¿ar=/(l) = 1.

n co

(c) X) I a». fc|= Z) l«r|,
¿«I ,- = 0

since, from the hypothesis, the series for / ( z ) converges absolutely for z = 1

As the conditions (a), (6), (c) of (1) are satisfied, the theorem is proved.

Corollary.    The numbers a„, * are given in terms off(z) by the formula

(2) a   k = ±(-l )«_^~1)'_ffn
""•*     ¿T        '      (n- h)l(h-k)l(k-l)lJ\h)'

We prove this first when / (z ) = zr, so that the transformation defined is

Mr.    It is to be shown that

(o\ m(r)   _V'_'iu-i. .      (n-í)\_1_

W "'*".£!. ;      (« - Ä)!(Ä - ¿)!(Ä; - 1)!A>--

Suppose this holds for any r; to see that it holds for r + 1, we write

mtk'^-tm^
"• q=k

--tè(-i)"- —   (g~1)!_i
*éí¿» J      (?-A)I(A-i)!(i- 1)1 A'

ntkt^u }      (q-h)l(h-k)l(k -l)\hr

1A        (-1)^ 1A(î-_1)I
n£i'(Ä-*)!(*- l)lÄ%ti(g-Ä)!

-E(-n
(n-1)!       _       1

(7i - h)l(h - k)l(k - ÍJIAT«'

: Osgood, Lehrbuch der Funktionentheorie, vol. 1, 2d ed., p. 593.
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As evidently (3) is true for r = 0, it is true for all values of r.   Finally, to

prove (2) in general, multiply (3) by ar and sum from r = 0 to r = <x>.   Then

f M     - V  V / _ 1 U-*_("-D'_Or
har^h~hÙLK      '    (n-h)\(h-k)\(k-i)\hr

~ tkK       '      (n - *)!(* - k)\(k - 1)!¿ÍA'■*

which agrees with (2).

2. Consistency of transformations permutable with M

We shall now determine a sufficient condition for the consistency of two

regular definitions of summability. We shall refer to any transformation of

the form

(4) yn  = fn Xn

as a multiplication.   We have occasion to use Euler's transformation*

(5) yn = 22 ( - 1 )*"» {n_ Jfc)l(i._ i)i**'

which we shall call A.    It satisfies the condition

(6) A2 = E,

as may be seen by actual repetition of (5) or more easily by solving the ex-

panded formulae:

y\ = xlt

7/2  = Xi - X2 ,

7/3 = xi — 2x2 + a:3,

Lemma 1.   If M' denotes the multiplication

(7) yn=-xn,

then

M = AM'A,       M' = AMA.

To prove this, form MA ; we have

.iff,   M1W_L¿ j^1!1_
_ Vn~nhhK      L)      (k-h)l(h-l)lXh

* Bromwich, An Introduction to the Theory of Infinite Series, p. 303.
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ntyK       }       h\tl(k-h)\(h-l)\)

1A,      .%E , n\
,xhnS(     l)hl (n~h)\hV

»tr    ;   (« — ä)I(ä — i)iva^*
But this is obviously the result of applying A to the sequence ( xn/n ),—that

is, to the result of transforming ( xn ) by M'.    Hence

MA = AM'

and the proposition follows at once by (6).

Lemma 2.    A necessary and sufficient condition that A be permutable with M

is that A' be permutable with M', where A' = AAA.

If AM = MA, then

A'M' = (AAA) (AMA) = A(AM)A = A(MA)A

= (AMA) (AAA) = M'A'.
Conversely, let A'M' = M'A'; then

AM = (AA'A)(AM'A) = A(A'M')A = A(M'A')A

= (AM'A)(AA'A) = MA.

Lemma 3.    A necessary and sufficient condition that a transformation be

permutable with M' is that it be a multiplication.

Suppose the transformation A',
n

(8) yn = Z a„, * xk
k=l

is permutable with M'.   Then writing M'A' = A'M', we have

1    * " ~
1 V1 V Xk
~ 2-,0-n, kXk = Z-,0'n,k~r.
n*=l k=y K

Hence

On, k _ an, k

n   ~~k~'
or

(n - k)an, k = 0.

Therefore, when k +- n, aH, k = 0.    Writing an, „ =/„, we have the multi-

plication (4).

Conversely, if we denote by A' the transformation (4), obviously

M'A' = A'M'.

Combining the two preceding lemmas, we have
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Lemma 4. A necessary and sufficient condition that A be permutable with

M is that there exist a multiplication A' such that A = AA'A.

We shall now say that A corresponds to A' if A = A^l'A.

Lemma 5. If A and B correspond to A' and B' respectively, then AB corre-

sponds to A'B'.

For AB = (AA'A)(AB'A) = A(A'B')A.
Lemma 6. Two transformations, each permutable with M, are permutable

with each other.

For two multiplications are obviously permutable; hence if A, B correspond

respectively to A', B', then .¿4P and BA, which correspond by Lemma 5

to A'B' and P'^4', are equal.

Theorem II.   All regular definitions permutable with M are consistent.

Let A and B be any two regular definitions permutable with M, evaluating

the sequence (xn) to £ and t? respectively. Then (x„) is evaluated by P^4

to £ and by AB to n.   Since by Lemma 6, AB = BA, it follows that £ = n.

Theorem III. If A, B are regular definitions permutable with M, and if A

evaluates (xn) to £ and B evaluates (yn) to n, then AB evaluates (xn + yn) to

£ + r>.

For evidently ^4P evaluates (a:n) to £ and (y„) to n.

Theorem IV. A necessary and sufficient condition that A be permutable

with M is that there exist numbers fi,f2, • • • such that

(o) a t_y/_nw_(n-i)\
W an,k-jUK     I)      (fl_A)i(A_jfc)|(jfe_i)i/*-

If A is permutable with M, then by Lemma 4, A = AA'A, where A' is

given by (4).    Hence we have for A the formula

Vn     &iK        '     (n - h)\(h - l)\h

<10) x(È(-1)W(*-i)7(i-i)^)

-trt(-i)«_(n~i)l_h)xk
*tíUtr       ;      (n-Ä)!(Ä-*:)!(£-1)!>V*'

which proves (9).

Conversely, if (9) is satisfied, (10) shows that A = A^4'A, where A' is a

multiplication.

3. Regularity of transformations permutable with M

We have seen that the symbol a0 E + ai M + a2 M2 + • • • gives rise to a

regular transformation if f(z) = «o + ai % + «2 z2 + • • • is analytic in the
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unit circle. We consider next a general function f(z) of the complex variable

z; and we define f(M), the corresponding function of M, to be a trans-

formation for which the numbers an, k are given by the formula*

a«   ■».-¿(-1)"(. _ t),|; zi^ _„,/(!)•

It is evident from Theorem IV of the preceding section that f(M) is permut-

able with M, and from Lemma 5, that if h(z) = f(z)g(z), then h(M)

= f(M)g(M). We shall now prove a theorem which contains Theorem I

as a special case.

Theorem V. The transformation f ( M) is regular iff(z) is analytic within

and on the boundary of the circle C of radius % about the point f, and / ( 1 ) = 1.

By hypothesis / ( z ) is analytic in a circle Ce of radius \ + e about the

point §, where e is a sufficiently small positive number. Since all the points

1 > \ > 3 • • ' ' he inside C,, we have by Cauchy's integral-theorem

f(!h) = hii~\du
1 h

Substituting this value in (11),

an-k     2rritk '      (n-h)\(h-k)\(k-iyjc ,      1

m j_ r ¿(_i)*
2iriJc. h=k

dt

1      h

(n - A)1(À-A)!(A - 1)!        1
1      h

Butt

n »? i 1 n     1

¿J<     i;     (»-A)!(A-A)!(fc-l)l      1     *       M,     1'       n>fc'
<"A

so that

ir JL    i

h
^'¿¡lSj^^È-Tï'-t

27Tzn Jç
^11-rdf,       n>A.

Ce        - n—r* -j

ht

* This formula is identical with (2) of Section 1.

t This may be proved at once by resolving the right-hand side into partial fraction-!
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Now Ct is a circle whose diameter joins the points — e and 1 + e. Thus

when t lies on C,, ht lies on a circle whose diameter joins the points — he

and h ( 1 + e), and l/ht lies on a circle whose diameter joins the points — 1/Ae

and 1/A(1 + e); hence

1

1     ht
S 1 -

A(l + e)'

Let i be a constant greater than the absolute value, on Ce, of f(t)/t2, and

letô = 1/(1+ €), and A^ = P(| +€).   Then

■     .    L  r -ft   i    ,    n^   ä
M**zJjLr-**= »Arn»   n>k-

1 7

To prove that/(M) is regular we shall show that the conditions (1) are

fulfilled.

(a) We find

I        i^TT    h

n n=k A — 5

k-S(n _ k)k-3_1-2.("-*)_
Kn     K)      (k-5)(k + l-8) ■•■ (n-5)

1 -2
(n      k)" k(k + l)

(n - k)
N

(n- k\s   1

V    n    ) n1-6'

n

Hence

limlo,,J-ri?„./)-
r(fc)

(¿>) We have

¿ a», » =
Ti        ra (n-

*=i *=i *=*

71       h

(ti- h)\(h k)\(k- l)lJ\h)

= EE(-D h-k . (n-

k)\(k- l)\J\h)h=ik=i (n - h)\(h

Now the coefficient of /(1/A) may be written

(ra~1)!       T(    IV"       {h~1)l
(n-h)\(h-l)\hK       '     (h - k)\(k - l)V

which equals* unity for A = 1 and zero for all other values óf A.   Hence

71

Z«,.,*=/(i) = 1.

* The summation is obviously equal to the sum of the coefficients in the expansion of
(- 1 + x)h~l.
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(c) We first find

,ii!       ^TT     A ÍVtt     h
a„, i +   a», 2 =—JLLï-7 + -1J.7—-j

n Ä=i h — o      n h=2h — à

_N 2        ̂ r        h

~ n 1 - ô ü A - S '

and then, by mathematical induction,

2.   O», k  ^     n        7T  II  T-> (P<»),*=i n ( 1 — o ) k=p+y ti — o
so that

Vi       i< #<>- 1)
¿—i   On, k =       / i s',   ■
1=1 n ( 1 — o )

Since the limit, as n becomes infinite, of the expression on the right exists,

it follows that there exists a positive constant H such that

n—1

Z   | «n, k | < H.
1=1

Furthermore, since a„, „ = f(\/n), there exists a positive constant J such that

\an,n\<J.
Hence

Ê|o.,*|<F + J.i=i
Corollary.    The Holder and Ceshro means of order r are respectively f (M)

and g(M), where

(12) f(z) =-- z\

r\ zT
(13) g(z) =

(l+z)(l+2z) ••• (1+r-lz)

The proof is immediate. It may at once be verified that the Holder and

Cesàro means are permutable with M ; it is therefore sufficient to give for

each case a function analytic in C, having the value 1 for z = 1 and the value

an, n for 1/n. For the Holder mean of order r, an, n = 1/V; hence the trans-

formation is defined by / ( 2 ) = zr.    For the Cesàro mean of order r,

r\

(r + n - 1) (r + n - 2)

ri

»'(^)K)-(-^)'
so that the transformation is defined by the function g ( z ) given above.
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4.  A  CASE  ©F  IRREGULARITY

As a case of irregularity it will be of value to study the effect of poles of the

function / ( z ). The simplest function possessing a pole of the first order and

having the value 1 at 2 = lis/(z) = (1 — p)/(z — p), where p =)= 1.

Lemma 1.    The function

ti  \     1 ~ p

where p =(= 1 is a point within or on the boundary of the circle C, does not define

a regular transformation.

Disregarding the cases in which p is the reciprocal of a positive integer,

since in those cases the formula (11) for the coefficients of the matrix corre-

sponding to / ( z ) breaks down, and excluding the case p = 0, since in that

case/(z) defines the transformation M~l, which is obviously not regular,

we proceed to set up a sequence (a:n) and the transformed sequence (yn) in

such a way that the former has the limit zero, while the latter does not. It

will be simpler to define (yn) first. We may then find (xn) by performing

the transformation corresponding to \/f(z) = (z — p)/(l — p), so that

1 ™
(1 - p)a;n =-Zz/a - pyn.

n h=i

T(n) 1

The restrictions on p show that R ( p ) SO and that p + 0,1,2, •••.    From

these two facts we see that yn is defined for n = 1,2, • • • ; and that*

lim yn = oo ,       if       R(p) > 0;
71=00

lim  \yn\ = 1,       if       R(p) = 0;
71=0O

so that in neither case does yn approach zero.

On the other hand we find

r(n+l)_       r(n)       _ r(n)
T(n-p)     T(n-p-l)      KV ̂   ' Y (n - p) '

so that

r(»+l) T(n)
Vn ~ PT(n-p)     PT(n-p- 1) '

* The ratio r(n)/r(w — p)is readily studied by Stirling's Theorem. It is seen that

the limit is 0 or °o according as R (p) < or > 0; if R (p) =0, the absolute value of the

ratio has the limit 1.

(14)

We take

(15)
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and

™ V r(n + l) 1

Denoting by c the expression p/T ( — p), which is independent of n, we have

from (14), (15), and (16),

n      ï r(»)    _£        r(n^     _c
U      p)Zn~ PT(n-p)     n     pT(n-p)~      n*

so that

lim ar„ = 0.
71=00

Lemma 2. If f(z) is analytic within and on the boundary of the circle C

except for a single pole of the first order, and / ( 1 ) = 1, / ( z ) does not define a

regular transformation.

If p is the pole, we must be able to write

(17) f(z) = a1-^£+g(z),       a * 0,

where g(z) is analytic throughout C. Assuming first g(l) 4= 0, we have

from (17)

1 - P      1,,   v        1    ,   V
:—- = -/(*) -~/,9{z)z — p     a a

(18)
-ht y _9(l)9(z)
~aHZ) a    gil)'

Suppose now that / ( 2 ) does define a regular transformation. Then calling

A and B the regular transformations defined by / ( z ) and g ( z ) /g ( 1 ) re-

spectively, we should find that the transformation

a a

is regular, since* from the assumption/( 1 ) = 1 and from (18),

I _ sJD = !
a       a

Hence it would follow from (18) that the function (1 — p)/(z — p) defines

a regular transformation, in contradiction to the preceding lemma.

In the case g ( 1 ) = 0, it follows from (17) that a = 1 ; and (18) becomes

_¡-^-/(»>-*(■>.

* See p. 3.



1917] DEFINITIONS   OP   SUMMABILITY 13

so that

|(i+;^rj)-V(«) + *[i-*(*)]•

If it is now assumed that / ( z ) defines a regular transformation it will follow,

since 1 — g(z) defines a regular transformation, that

*«=K1+^)-
and hence that

1-P

z — p
= 2<p (z) - 1

defines a regular transformation. But this again contradicts the preceding

lemma.

Theorem VI. If f(z) has at least one pole, but is analytic except for poles

within and on the boundary of the circle C, and/( 1 ) = 1, then f(z) does not

define a regular transformation.

The number of poles must be finite; denote them, each repeated as often

as its multiplicity indicates, by pi, p2, • ■ •, p„.   Then

/(z) =:- •--~.:-~g(z),
z — pi    z — p2 z — p„

where g ( z ) is analytic throughout C. If / ( z ) defines a regular transforma-

tion, so will the product of / ( z ) by the analytic function

z - P2 _ z — p3 ^      ^ _ z — p„ _

1  — P2      1   — P3 1   — p„ '

this product, however, possesses a single pole pi of the first order, and by

Lemma 2 does not define a regular transformation.

5. Analytically regular transformations

We shall now use the term analytically regular to describe a transformation

f(M) defined by a function/(z) analytic throughout C, having the value 1

for z = 1. A number of properties of such transformations follow immedi-

ately from the results of the two preceding sections.

Theorem VII.   All analytically regular definitions are consistent.

This is evident by Theorem II, since all these transformations, being of

the form (9), are, by Theorem IV, permutable with M.

Theorem VIII. Iff(M), g(M) are analytically regular transformations,

a necessary and sufficient condition that f(M) should evaluate every sequence
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which g(M) evaluates, giving it the same value, is that all the zeros of g (z)

in C should be zeros of at least as high order off(z).

If (a:„) be any sequence transformed by/(M) to (m„) and by g(M) to

(vn), then (vn) is transformed to (un) by h (M), where A (2) = f(z)/g(z).

In order that the condition of the theorem be satisfied, it is necessary and

sufficient that h(M) be regular. As the only possible singularities of h (z)

are poles due to the zeros of g(z), h(M) will be regular if there are no poles

(by § 3), that is, if the zeros of g(z) are zeros of the same or higher orders

of f(z) ; and will not be regular in the contrary case (by § 4).

As an immediate deduction we have the two following theorems.

Theorem IX. If f(M), g(M) are analytically regular, a necessary and

sufficient condition that they be equivalent is that f(z), g(z) have in C the same

zeros with the same orders.

Corollary.    The Holder and Cesàro means of like order are equivalent.

For the functions /(2), g(z) of (11), (12) are analytic in C; each has no

zeros except z = 0, and this is in both cases a zero of order r; hence the

two definitions are equivalent.

Theorem X. A necessary and sufficient condition that the analytically

regular definition f(M) be reversible (equivalent to convergence) is that f(z)

do not vanish in C.

6.   A  NECESSARY  CONDITION  FOR  SUMMABILITY

In the cases of convergence and of Cesàro and Holder summability, there

exists a simple form of necessary condition, applied usually to the general

term of the infinite series, that is, to the difference of two elements of the

sequence. We have a similar test in the case of a wide range of definitions

of the type which we are considering.

Theorem XI. If the sequence (xn) is transformed into a convergent sequence

by the analytically regular transformation f(M) defined by a function f (z)

which has no zeros within or on the boundary of the circle C of radius \ about

the point \, then

lim (xn — av_i) = 0.
n=oo

We suppose that the function/(z) defines the transformation f(M) which

has as coefficients of its matrix (/„, k), and that similarly g (z), a(z), b (z)

define respectively the transformations g(M), a(M), b(M), with coef-

ficients (gn, k), (an, k), (bn, k), where

°^ =/(z)'       a(z) =—gJïj—'       &(z)=-a(2).
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Since f(z) has no zeros in C ,f[z/(z + 1)] has no zeros in C, hence a(z)

is analytic in C and a(M) is analytically regular.    Now let

71

yn = 12fn, k xk;
i=j

then
H

Xn = 12 gn, k yk,
k=l

so that
71 — 1

Xn — Xn-1 = gn. n 7/ti + 12 (¡7n, k ~ Qn-1, k) Vk •
4=1

From

we find

Hence

q    k = ±(-iy-*_in~1)l_qf1-)
9n'k     hK       ]      (n-h)\(h-k)\(k-l)\9\h)'

g,t, k — g,i-i, k = ttz.~y      ' h~1 '

gn, 1 — On-i, 1 = —0(2) «n-l. 1,

yn, n —       _   -i "n—1, n—1 •

yk
Xn  - Xn-\   =   - g(h)On-l, 1 2/l + 9 ( 2 ) 12 &..-1, i-lY

4=2 Ä  —   1

71—1

=   - 9 ( 2 ) «n-1, 1 7/1 + g (\ ) J2 bn-1, k "4^ ■
4=1 n-

The expression given by the summation sign is the result of applying the

transformation b(M) to the sequence

„ y* y±
y 2 ,      9   7      q   ,

Since b(z) = a(z)/z, it suffices to apply to this sequence the transformation

M~l, and to the result the transformation a(M). Hence the expression

given by the summation is equal to

n-l

2_, an~\, k Vk,
k=\

where

, n N       7/„ 7/n_i
7)„_i = (ti - 1)^33 ~ (n ~ 2)n~~2 = Vn ~ V"'1'
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n-1

- g(i)an-i, iyy + o(§)Za»-i, k(yk+i - Vk)
*=1

g(h) [fln-i, 1(2/2 - 2yi) +a„_i. 2(2/3 - 2/2) + •••

+ a„_i, „_i ( yn — yn-i ) ].

As the transformation a(M) is analytically regular, and as, on account of

the convergence of ( yn ),

lim (y„
71=00

it follows that
lim (x„
71=00

as we wished to prove.

Corollary.    Under the same hypotheses as in the preceding theorem

lim^ = 0.
n=oo  ^

As proof we have only to consider the Holder means of the sequence Xy,

X2  — Xy,X3  — X2,

We obtain a more general theorem by taking a function/(2) which has a

zero of order r at z = 0, but no other zeros in C. Using the same notation

as before, we have again (19). In the present case zra(z) defines an ana-

lytically regular transformation; since the limit of the sequence (y„— yn-i)

is zero, the result of applying to this sequence first a(M), then Mr, must

give a sequence whose limit is zero; therefore the sequence xn — aw-i is

evaluated to zero by Mr.   The usual test for Holder summability gives

,.      Xn        Xn—1        /-
hm-= 0.
»=00       ^

Thus we have

Theorem XII. If a sequence (xn) is transformed into a convergent sequence

by the analytically regular transformation f(M) defined by a function f(z)

which has, except at z = 0, no zeros within or on the boundary of the circle C

of radius \ about the point |, then

lim/( ~)(xn- av-i) = 0.

7. Omission and adjunction of elements at the beginning of a

sequence

It is natural to ask under what circumstances the evaluability of the sequence

xy, x2,x3, • ■• by a definition insures the evaluability of the sr^uence 3:2,3:3,

16

That is,

Xn        Xn—l =

(19)

- yn-y) = 0,

- a:„_i) = 0,
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Xi, • • • by the same definition to the same value, and conversely. Two

remarks should be made regarding this problem. In the first place, it is essen-

tially equivalent to that of omitting or adjoining a term at the beginning of a

series. To the series Ui + tí2 + u3 + • • • corresponds the sequence Xi = u\,

x2 = Tii + Ui, x3 = Tii + u2 + u3, • • • ; to the series u2 + u3 + m4 +

corresponds the sequence x2 — ui, x3 — Ui, X\ — ui, • • •, which differs,

element by element, from the sequence x2,x3,xit • • •, only by the convergent

sequence Ui,ui,Ui, • • •. Secondly, it is clear that in the case of any regular

definition the possibility of adjoining an element is independent of the value

of the element adjoined; it is the mere fact of alteration in rank of the ele-

ments which affects the summability.

Lemma. If, by the rth Ceshro mean, the sequence xi, x2, x3, • •• is trans-

formed into 7/1,7/2,7/3, • ■ •, and the sequence x2,x3,xi, • • • into ni,v2,n3, • • •,

then

r n + r r
(20) yn - Vn = -*i - —— (yn+i - yn) - -t/„,

ft lb lit

(2D       yn-Vn=^T7^1Xi-n + r_l(vn-V^l)-n + r_1Vn.

From the formula for the Cesàro mean, we have

(n-l)l    f(n + r-ifc-l)l
(n + r-l)!£3        (n - k)\(n  —  h\} Xk,

(n-2)\    f (n + r-i-l)!
""-1 " r (n + r - 2)\h        (n-k)\        Xk]

from these formulae follows at once

(n + r - l)yn - (n - I)nn-i = ra;i.

Solving for yn, we obtain easily the second of the results to be proved; solving

for ?7n-.i and replacing n by n + 1, we obtain the first.

Theorem XIII. // a sequence (xn) is transformed into a convergent sequence

by the analytically regular transformation f(M) defined by a function f(z)

which has, except at z = 0, no zeros within or on the boundary of the circle C,

then the sequence obtained by omitting or adjoining an element at the beginning

is transformed by f(M) into a sequence converging to the same value.

Suppose that/(z) has at z = 0 a zero of order r, and write*

7"! ZT

_/(2) = (l+z)(l+2z) ••• (l+r~^lz)9{Z)'

* The factor multiplied into g ( z ) is exactly the function which defines the rth Cesàro

mean given by (12).

Trans. Am. Math. Soc. 2
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then g(z) is analytic in C and has no zeros in C. Using the notation of the

preceding lemma, it suffices to show that if either of the sequences ( yn ),

(r¡n) can be evaluated by g(M), the other will be evaluated to the same

value. This will be shown by proving the stronger statement, that if either

(yn) or (?7„) is évaluable by g(M), then

lim (yn — Vn) =0.
n=oo

If (yn) is évaluable by g (M), then by Theorem XI and its Corollary,

11
lim (yn+y - yn) = 0,       lim — = 0;
n=oo n=oo **■

hence by (20) the assertion follows.    Similarly if ( r\n ) is évaluable by g ( M ),

lim (r\n+y - Vn) = 0,        lim   n = 0,
n=oo n=oo U

which by (21) yields the result.

It will finally be shown that the condition on/(2) is essentially necessary,—

more accurately, that for any p =(= 0 in C it is possible to construct a func-

tion / ( 2 ) vanishing at p, and a sequence évaluable by / ( M ) for which the

dropping or adjoining an element is not permissible.

Theorem XIV. If f(z) = (2 — p)/(l — p), where p #= 0 is within or

on the boundary of C, then there exists a sequence (xn) which is transformed by

f(M) into a sequence converging to zero, and such that the sequences obtained by

omitting and by adjoining an element are transformed by f(M) into sequences

which do not converge to zero.

As in §4, write p = 1/p — 1. Since p is in C, R(p) == 1; assuming

first that p4=2>3>4> ■ • •, we find that p#= 1,2,3, •••.    Define*

T(n)
Xn~T(n-p)'

then denoting the transformed sequence by ( yn ),

_ 1
Vn ~ nT(l-p)'

so that

lim yn = 0.
71=00

If we apply f(M) to the sequence x2,x3,Xi, • • •, we have

1 1        T(n)

'"     np2T(- p)+pT(n- p + 1)'

*The sequences (xn), (yn)-heie are exactly the sequences (yn), (xn) respectively of §4.
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and applying f( M ) to the sequence 0, x\, x2, ■ • ■,

' - 1 1      T(n - 1)
Vn~nT(l-p)     pnT(n-p-l)-

It is evident that

lim 7j„ = oo
71=00

for R ( p ) > 1, that is, for p inside C" ; for p on the boundary of C", R ( p ) = 1,

and

lim M = nr*0-
n=oo i y |

We see likewise, by writing

T(n- 1) Ti-2     r(?i -2)

Tir (n — p — 1 ) n     T (n — p — 1 )

that

lim r]'n = «j
71=00

unless p is on the boundary of C", and in this exceptional case,

lim  l'-l =^ + 0-
71=00 i y i

We have excluded the cases p = \,\, ■ • • ■ Ifp has any one of these values

some of the earlier elements of the sequence (a:„) defined above become

meaningless, since they involve in the denominators gamma functions of

zero or negative integers; if, however, we replace each such meaningless ele-

ment by zero, the preceding proof holds without alteration.

8. Conclusion

The class of analytically regular definitions considered in the preceding

pages obviously includes a wide variety of definitions given by linear trans-

formations. It does not, however, include all such definitions; for instance

it fails to cover the logarithmic definitions of Riesz,* which are not permutable

with M.

The consistency of all analytically regular definitions and the simplicity

of the criteria for the equivalence and the relative generality of any two of

them introduce a considerable degree of system into the study of such divergent

series as may be successfully treated by this particular class of definitions.

It is all the more important, therefore, to point out some desiderata in the

theory.    In the first place, some substitute for Theorem V, involving only

* Paris Comptes Rendus, vol. 149 (1909), p. 18.
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real variables and conditions appropriate to real variables, is desirable, in

order to remove the irksome requirement of analyticity in C. Again, con-

sistency breaks down if the notion of limit be extended to include real one-

signed infinity; for instance, the sequence 0, 1,2,3, • • • is evaluated by the

analytically regular definition* 2il/ — E to the value 0.

It is probable that a natural generalization exists of Cesàro's results! on

the Cauchy-product of summable series, and of the theorem of FrobeniusJ

on the behavior of a real power-series summable at an end of its interval of

convergence.

Finally, the general results of the paper should admit of extension to the

case of the limit of a continuous variable. The foundation for this extension

exists in a paper by Silverman§ establishing conditions for regularity similar

to (1). The further theorems analogous to those of the present article will

be treated in a future paper.

* Other examples of the same type are contained incidentally in the proof of Theorem XIV.

t Bromwich, An Introduction to the Theory of Infinite Series, p. 315.

% Bromwich, 1. c, p. 312.

§ These Transactions, vol. 17 (1916), p. 284; see also Bulletin of the Ameri-

can Mathematical Society, vol. 22 (1916), p. 459.


