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INTRODUCTION*

A new sequence of integral tests for the convergence and divergence of

infinite series has been developed by the author. Some of the tests of this

sequence, and the principle by which they may be discovered will be set forth

by him in another article. In the present paper it is his desire to give a central

one of these tests, together with some of its applications. This particular

integral test appears to play the same rôle when the ratio of successive terms

is explicitly known, that the Maclaurin-Cauchy test plays when the indi-

vidual term is explicitly known.    In testing a series of the form

U0 + «1 + «2 +

du Bois-ReymondJ called those tests that make use of the test ratio

rn   =  Un+l!un,

tests of the second kind to distinguish them from tests using the general term

of the series un itself, which he called tests of the first kind. Similarly, the

integral tests developed in this paper, which involve a function r (x) such that

r(n) = r„, may be called integral tests of the second kind; while the Maclaurin-

Cauchy integral test, involving a function ti(x) for which u(n) = un, is an

integral test of the first kind.

Integral tests of the second kind thus apply to series for which a function

is known that for successive integral values of the variable takes on the suc-

cessive values of the ratio of one term to the preceding term. Such a series

can be written in the following normal form:

c -f ea0 + cd0 di + ca0 tu «2 + • • • ,

* Presented to the Society, April, 1916.

t The thanks of the writer are due to Professor Birkhoff for many suggestions furnished

by him during the preparation of this paper.

{Journal für Mathematik, vol. 76, p. 61.
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where an = a(n), a(x) being a known function; and it is to such series that

the theorems of this paper apply.

The general method employed to discover the tests of the sequence sug-

gests the test set forth in the first section of the present paper. This test

may be considered as the fundamental integral test of the second kind. From

it are derived the test given in the second section, and the very simple and

useful integral test of the third section. The fourth section gives a test

applicable to a series of products of rather general form. The fifth extends

the fundamental test to multiple series.

1. Fundamental integral test of the second kind

Theorem I.   Given the series

u0 + ui + u2+---        (un>Q,n^p).

Let r„ = un+i/un, and suppose that from a certain point x = p on, r(x) is a

continuous, positive function such that r (n) = r„, and suppose that a constant

m exists, positive or zero, such that r(x') is r(x) when x' ^ x + m. Then a

necessary and sufficient condition for the convergence of the given series is the

convergence of the integral

,0°    fX log r(x)dx,
eJV dx.r

Proof.    Under the conditions, from a certain point on either r(x) > 1 or

r ( x ) == 1.    Suppose that r(x)^=l,p<x.   We take p to be an integer.

Then

Jf»»+i
log r(x)dx S logrn+i+m,       p^n.

»

We write

r* /- log r{x)dX A   r+i r+i + r+;+ •••+/" + nog «*)**,
I      er* dx =   I      eJ *        «v+i ♦'»-i    J» dx.

vn vn

where, as elsewhere in this paper, the bar over the signs of integration indi-

cates that the integrals under it have the same integrand.   Therefore, by (1),

Xn+1    ]    log r(x)dx . rn+l  log ïv+1+ct + log »v+2+m +-h log rn+m ,
tJn- dx ^=  I       e dx

Jn

Likewise

— ^V+l+nt  '  ^¡j.+2+m.rn^-m Wn^-i_j_n
WM+l+m

(4)      f
"+l    fCloSr(x)dx , 1

*V a. Are > r      ...   .  r    ■ -.    ....r_   _.   = -
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Similar inequalities hold if r(x) > 1, pi < x.    Since the integral

/   log r(x)dx

£
eJ*    ' dx

'¥■

cannot oscillate, the theorem follows at once from a comparison of the two

series

V a        V   r+I r^gr(x)dx
¿_, Un,       and        ¿_,   I      è * dx
n—fj. n—fi »/»

by means of (3) and (4).

Example.   Discuss the convergence of the series

00

H Un,

where un = eV^M-r*- — "^»-î,

/i n • l2 n.lk n + h n • l3 n.lk n + • • • + lkn + p

n • /i » • l2n.lk to '

and 4 a; = log ( lk-i x ), h x = log x.   Of course p is to be taken large enough

for all terms of the series to be defined.

For this series r„ = ePn, and

llX -kx.lyX + IjX -1¡X.IhX + • • • + IkX + p

r fx\   —   gP(l)   —   g X -llX -ItX.ZtZ

This function satisfies the conditions of the theorem, and we have

r,    , .,     r   ¿i*.ihx + ••• +hx + pj
I   log r(x)dx =   I--,—-,-,--dx

ft/,0 ft/c„ xhxliX.4 x

= c — log [xiia: • ■ • lk-ix (lkx)v].

Therefore

dx

Jxc JxB  X   •   llX   ■   I!2 X.lk-lX(lkx)p'

Hence the given series converges or diverges according as p > 1 or p S 1.

The theorem can be extended as follows:

Theorem II.   Given the series

Mo + Ui + to2 + • • • (u„ > 0, n^n).

Let r(x) be a function with a continuous derivative r' (x), x = p, such that

r (n) = rn = u„+i/un. Suppose that 0 < A Si r(x) si B, and that the

integral

H \r'(x)\dx
Ju.
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converges.    Then a necessary and sufficient condition for the convergence of the

given series is the convergence of the integral

f f  log r(x)dx ,
e*7* dx.

Proof.   Write

X»+ilog r(x)dx - log r„+i

U-> /*n+l ¿

= J      [logr(¡r) - logr^.i]-¡-(x - n)dx.

Integrate by parts.   Then we find

r+l        y(x)
d»-~l     (x-n)^dx.

Therefore
Jrn+11 r' (

Now by hypothesis the integral
/»«

\r'(x)\

converges, and therefore the integral

dx.

I \r'(x)

\r(x)
dx

converges since
|r'(x)|      \r'(x)\

\r(x) |=      A

Consequently the series
00

n=n

converges absolutely, and we can write

¿141 = 0,
Now

r+»  J" log r{x)dx . r+1  T*+1 + /-+2 + ... +  r    + r leg r(z)d* .

*/n vn

C+l dp +dli+i -\-|-án-i +log (.r^.+1-r^+i.r») + f log r(x)da;
=  I      e Jn dx.

Jn

Since 0<^4ëjr(z)Si;5, we can set  | log r ( x ) | Su G.    Consequently we
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+I   rlogr(x)d              a+i>
-Mn+i = I      e*'" ox =i-u„+i.
M^ + 1 i/„ Mn + 1

The theorem then follows as before from a comparison of the two series

» -     p+i    P log r(z)dz
¿_, un       and       ¿_,   \      eJo- dx.

The method used in the following alternative proof is sometimes useful.

Define two functions r(1) ( x ) and r(2) ( x ) such that

r«(x)- r<-2Ax) =r(x),

and such that r(1) (x) monotonically increases and r(2)(x) monotonically

decreases when x increases. We can do this in the following way. Denote

r<« (n) by rnl), and r«> (n) by r(„2>. Take log r<¡> = log r„ and log r<,2) = 0;

if r'(x) S Otake

d log r(1) ( x ) _ d log r ( a; ) d log r(2) ( a; )

dx dx       ' dx

iîr'(x) ë 0, take

d log r(2) (x) _d\ogr(x) d log r(1) (a;)

Then
dx dx

logr(1)(x) + |logr<2>(x)| =   Í

Since the integral

dx

\d log r (x)

0;

= 0.

dx

£

I d log r ( a: )

dx
dx fl- (x)

». k(*)

da; + log r^

dx

converges, log r(1) ( x ) and log r(2) ( x ) are finite, and we can write

0 < a < r«(x) < 6,        0 < a < r<2> (x) < 6.

f
Now

+1    |   log r(x)a
da;

rn+1    f ' [log rOi + x) + log rOi + x + 1) H-+ log r{x + n - l))dx + Ç* log r{x)dx ,
=    I 6Jo Jn dx

Jn

rn+1 log[r<»(M+9)-ra'(í.+9)-r<1)(íi+9+l)-r<2)(Jl.+9+l)---r<«(n-l+9)r«>(n-l+e)]+ /"lograda; ,
=  I      e Jn dx

vn
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0 < 6 < 1.    Therefore

f+1eJ, l°zr{x)dxdx ̂  ec ■ W+1 • rf ■ ft, • r%.ri» • ri3!,
Jn

Likewise

r+l   r log r(x)dx ,       e-° ë
Un.

un       e°b2
——< — 1

un+l        un+l
e° ■ ¿? • ri,1'-

r+1   fZ\ogr(x)dx,

Jn

The theorem then follows as before.

Instead of testing for the convergence of the integral

i^OO

I    \r
vn

(x) \dx

it is sometimes convenient to test directly for the convergence of the integral

dx,
r\r'(x

J*   \r(x)
which is equivalent.

It is clear that Theorem II is included in the following theorem.    We thus

have still a third proof of Theorem II.

Theorem III.   Given the series

u0 + Ui + u2 + • • • , (un>0,n^u).

Let r(x) be a continuous function such that, for x is p,

r \ r    \ Un+1(a) r(n) = r„ =——,
«71

(b) 0 <A ^r(x) ^B,

(c) \r(x')-r(x)\^f(x),

whenever 0£(i'-ï)^1, the series YlZ=*f(n) being a convergent series.

Then a necessary and sufficient condition for the convergence of the given series

is the convergence of the integral

r jI    eJ*
J*

Jlog r(x)dx
dx.

Proof.   By condition (c),

(1) r(*')^r(*)+/(z)<r(*)[l+^],
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(2)        r(*')Sr(*)|l -^p 1,       O £*'■-* SI,       x^p.

We have

/""+1    r\ogr(x)dx . f"+1 log (rijt+9)-r^-l-l-r-ö) ••-r(n-l+Ô))+ riogr(z)áx ,
I      e«,c dx =  I      e «'» dx,

«/n «A»

where 0 < 6 < 1..   As : before, we write |log r (x) | S log C.   Then by (1),

.-0+'-^)]
= ÇWng/+/(TO)\

Mu        n=^  \ A      )

Since the series

£/(»)

converges, and/(to) ==: 0, the product

converges to a value F.    Therefore

r+1   flogr(x)dx ,        CF
f      eJ* dx ^ — to„ .

Jn U^

Similarly, by (2), the product

converges, say to 71!, and we get

C"+1 fx\ogr(x)dx, Fi
I       eJ y- dx =t ~— m„ .

J„ tu^

The theorem then follows by comparison.

2.   A  DERIVED   TEST

The following test is based upon Theorems I, II, and III, in much the

same way that Ermakoff's test* is based upon the familiar Maclaurin-Cauchy

integral test.

'Bulletin des sciences mathématiques vol. 2 (1871), p. 250.
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Theorem IV.   Given the series

Uo + Mi 4- u2 + ■■• (m„>0, n>M).

Let rn = un+i/u„, and suppose that r(x) is a function satisfying the preliminary

conditions given in any one of the Theorems I, II, or III, and that r(x) 2= 1.

Then the series converges if

[»•(«*)]*        ^1

and diverges if

[rie*)? 1
-,   x     > v > - ,       mSix.

r(x) e

Proof.   Since the preliminary conditions hold for one of the earlier tests, the

series converges if and only if the integral

I ^ log r{x)dx
dx

converges.   Suppose first that

[r(e*)f „        1
-rJxT<V<~e'       » = m = x-

Then
[r(ex)f < v • r(x)

and
ex log r ( ex ) < log p 4- log r ( x ).

It follows that

I   exlog r (ex)dx < (x — in) log v + I   log r(x)dx,       m < x;

or, after a change in the variable of integration,

I    log r (x)dx < (x — m) log y +  I   log r (x)dx.

Consequently

f e» • el>^x)dxdx <4 f «* ■ ̂X>r(x)dxdx,       m <x0 <x.

Then, once more changing the variable of integration, we have

rx   fX log r(x)dx, 1    f'l     f* log r(x)dx,
I    eJem dx <— I   r^eJ™ dx,        X > 1.

«/«*n "    Jm  A
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Therefore, since log r ( x ) =i 0,

r   F log r(x)dx , 1    fit
I    eJ"" dx <— J   -rz ,       m <x0 <x.

But the integral
r*dx

converges.    Consequently the integral

f °°   H loS '•(z)dz
I    eJem dx,

Jexo

and therefore the given series, converge.

Now suppose that

[r(e*)r 1
-7—r— >v>-,       p^m<x.

r(x) e

We can take 1/e < v < 1.    Then

[r(ex)T > v ■ r(x),        -<v<l,       m<x.

As before, reversing inequalities, we get

f    f log r(x)dx, 1    f\x    fX log r(x)dx
I    eJem dx > — I   \x eJm dx,       X > 1

That is

C'x    F log r(x)dx, 1    f" fX log r(z)dz, f    Plogr(z)dz
I    eJem dx > — I   \z eJm dx —  I   eJem dx

Jx v    "xa Je*t¡

^ 1    f\«    /* log r(z)d* i™        fl<*r(z)dx
> ~^ ]   *■  e dx —  I   X1eJm dx,

Then, since v < 1,

f log r(x)dx , Ce\        |   logr(z)dz
? ̂  em Hv   >>    I Ax p J m

m' < x0 < x,

dx >  I    \x eJm dx = c > 0.
f*    /   lograd* f'
I    eJem dx >  \

This inequality holds for all values of x beyond a certain point.    If we take

xi some number beyond this point, and set

x2 = e"1,       x3 = e**,       x\ = e*3,        • • •,
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each term of the series

|    log r(x)dx f"s    |    log r(x)dxneJeJogr(x)dxdx+   r

J*l J xi

dx +

is greater than the positive constant c, and this series therefore diverges.

Therefore the integral

Jj0

I    log r(x)dx
eJem dx,

and consequently the given series, diverges.

By the transformation x = ex', the test is changed to the following form,

sometimes more convenient :   The series is convergent if

[r(x)]x 1
< j» < -,       m < x,

r ( log x ) e
and is divergent if

[r(x)]x  v 1
-71-t>v>-,        m<x.
r ( log x ) e

In case
lim r (x) = 1,
X=Qt

this test is no more than the test of Schlomilch which may be stated as follows :

The series converges if x log r(x)<vi<— 1, m < x ; and diverges if

x log r (x) > vi> —1, m < x. From the point of view of the integral

tests, Theorem IV may be used as a proof of Schlömilch's test.

3. An integral test involving (r(x) — 1)

The following is the most generally useful integral test of the second kind.

Theorem V.   Given the series

Uo + ui + u2 + ■ ■ ■ {un>0,n>ß).

Let rn = un+i/un, and suppose that r(x) is a positive, integrable function satis-

fying the preliminary conditions of one of the Theorems I, II, or III, and the

further condition that

\r (x) — 1| < a < 1,       pi<x.

Then a sufficient condition for the convergence of the series is the convergence of

the integral

'*    fX{r{x)-l)dxr
Jx0

This condition is also necessary for the convergence of the series if from a certain
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point on

\r(x)-l\<l,
where k is some constant.

Proof.   We have the expansion

(1)    logr(x) = (r(x) - 1) - ±(r(x) - l)2 + i(r(x) - 1)*-.

Then
log r ( x ) S r (x) — 1,

so that

r   fXlogr(x)dx, r   F(r(x)-\)dx
I   er** dx Si  I   erx° dx.

Therefore, since the preliminary conditions of one of the Theorems I, II, or III

are satisfied, so that the given series and the integral

(""   piogr(z)dx
I    eJx° dx

"xa

converge or diverge together, the convergence of the integral

H   F(r(x)-l)dx
I     e^xo dx

is sufficient for the convergence of the given series.

The expansion (1) converges uniformly for |r(x) — l| < o < 1, that is,

for pi =i x. We can therefore integrate it term by term over any interval

Pi = x =i A.    Then

f log r(x)dx =   f (r(x) - l)dx -\ f (r (x) - l)2 dx + • • •,

pi < Xo < X,

and

X*   F log r(x)dx
er** dx

J= r/xi^-^-^^-^+U:^)-^--^^ M1<a;o<a;.
Jx0

We have

\r(x) - 1  <-,
1 '     x

so that

(r(x)-l)> --x, -(r(x) -1)2> -^,

k3
(r(x) - l)3 > --¿,    etc.,    x>pi.
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Therefore

rj\gr(x)dxdx

Jx„

r* c*,, s   «j   ! r^j   i rts.   iff,
_     /       /    (r(s) — l)tw — s /    -„dx — ñl    —„dx — -:}    -¡dx— •••,
> |   e*'xi> 2jïox2        S^^ox3        4i/^ox4 dx

Jxq

.     /       /   (r(x) — l)dx - s /    -;dx-~/    -¡ dx --7 I    -¡dx----,
> I   eJx° 2Jx0 x2        3JZ0 x3        4*'*o x4 dx

/•x    C I k2 k3 k* \
=   i    ed,o(r(x)~1)dx_l2^ + 3^2x| + 4^3x1+*'7dx,     pi<X0<X.

J*o

If x0 is taken greater than k, the series in parentheses converges to a value Ci.

Consequently

r   f log r(x)dx, r*    f (r(x)-l)dx,
I   eJx" dx > c2 I   erx* dx.

«7r„ •/x0

Therefore when x increases indefinitely, if the second of these two integrals

diverges, the first one also diverges, and the given series diverges.

In most cases of interest r ( x ) is a monotonically increasing function with

unity as its limit.    In such a case the condition \r(x) — 11 < k/x becomes

(r(x) — 1) > — k/x.   This condition is not a very great restriction.    For

in case the integral
_    /»j

(r(x) —l)dxrfj
Jia

dx

diverges, if X is any constant greater than unity the product of the integrand

by Xx is not finite for x infinite, and it is natural to assume that

k    r<r(*)-l)d*
xA eJx<> > 1,       m < x,

or

J( r ( x ) — 1 ) dx > — X log x,       m < x.

That is, if x0 is properly chosen,

I   (r(x) — l)dx>—   I   -dx,       m<x0<x.
Jx0 Jx0   X

If this condition holds it is clear that for considerable intervals, at least,

r ( x ) — 1 > — X/x.

So the condition that r (x) — 1 > — k/x, m < x, is a condition that we
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may expect to hold rather commonly when the integral

,M    f (r(z)-l)dx
eJx<> dx

/»ot

Jxc

diverges.

As a corollary to the theorem we see that if r ( x ) satisfies the preliminary

conditions of the theorem, and if

!r(x) — 11 < k/x,       p = x,       k =i 1,

the series diverges.    For

r J\r{x)-i)dx      r -Fh-dx,     red
I   eJxo dx ^  I   e   Jx° x    dx =   I   —

Jx0 Jxq Jx0    X

cdx
k   ■

Similarly, if r ( x ) — 1 < — k/x, k > 1, the series converges.    In this way

Raabe's test* may be proved.

The test of Theorem V is stronger than any test of the logarithmic scale, for

by means of it we can test the series

n=lln ■ Un ■ l2n.¿À_ito • (lKn)p'

For this series

xlixliX.ZA_i x ( lK x )p
r(x) =

(x + l)/!(x + l)Z2(x + l).h-Ax + l)(h(x+ 1))*'

In all cases all of the preliminary conditions of the test hold for this series,

except perhaps the condition that | r ( x ) — 11 < k/x. Therefore if the integral

of the test converges the series is known to converge. Suppose that the

integral diverges. The series also will then diverge. For in case that it

converged we should have

and
r ( x ) — 1 > — 2p/x,       x > m,

which shows that all of the preliminary conditions of the theorem are then

satisfied. Consequently, since the integral diverges, the theorem leads to a

contradiction of the assumption that the series converges, or the integral

and the series always converge or diverge together.

Just as we were able to establish d'Alembert's test and Raabe's first test,

we can establish by means of Theorems I, II, III, and V most of the standard

tests that use the test-ratio.

'Journal für Mathematik von Ettinghausen und Baum-

gar tn e r, vol. 10; Journal de mathématiques, vol. 6 (1841), p. 85; Jour-

nal für Mathematik, vol. 11 (1832), p. 309.
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Thus consider the series for which

r   \      i      1        1 1 Vr(x)  =  1-:-•• •-j-:-:-£-:-.
X        Xti X X  •  ii X.lk-i X       X  •  ii X.lk X

This series clearly satisfies the conditions for Theorem V.

l)dxr*    f(r(x)
I    eJm

Jm
dx

r _rr-1+-i-+...+_*_+_v~_i
=   |     e     Jm\_x     xhx x-hx.Z*_ix     x-lix- ■ ■ ■ hxj

Jm

/»oo

Jm    xtl

dx j
dx

xl2x ■ • • 4-1 X (lkX)v'

Therefore the series converges if p > 1, and diverges if p == 1.

We thus have the tests of de Morgan* and Bertrandt:   7/ r(x) can be

expressed in the form

f   \      1      1        X 1 «(»)r(x) = 1--,-•••-;--,-j-j—
X      Xii X Xti X • • • tk-l x      xti x ■ ■ • lk x

and if
lim co (x) = I,
x=tn

the corresponding series converges when I > 1, and diverges when I < 1.    In

stating these tests it is more common to express the reciprocal of r ( x ) as

1,11                              1 coi(x)
-1+I + -Î—+ ••• +zr-„-1—„ +r(x) x     xhx xlix ■ ■ • lk-ix     xlix • ■ • Ikx'

then the series converges if
lim coi (x) > 1,
x=oo

and diverges if
lim coi ( x ) < 1.
x=n

The same tests are often stated in the following form.   If of the following limits

xtX{rT*-)-1) = h>

¡ïï^GGè)"1)-1)"*1*

lim l2 x ( h (x) ( x ( —r-; — l\ — \\ — \\ = k2,   etc.,

* Differential and Integral Calculus, 1839.

tJournal de mathématiques, vol. 7 (1842), p. 37.

Trana. Am. Math. Soc. 14
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km is the first that is not equal to unity, the corresponding series converges if

km > 1, and diverges if km < 1.

In his study of the hypergeometric series Gauss* gave the following rule.   7/

_ nk + di n^1 + ■ • ■ + ak

r" = to* + 6iTO*-1+ ••• +bk'

where kis a positive integer, the series converges if ( 61 — di ) > 1, and diverges if

( b\ — di ) =i 1. This test of course is merely the first test of the logarithmic

scale. It is easily established directly by means of Theorem V, through one

integration. This gives perhaps the easiest method of testing the hyper-

geometric series. The same results can be found by applying Theorem V

directly to the hypergeometric series, though Gauss's test, so easily established

by means of the theorem, is more convenient.

It is not difficult to show that in Theorem V the condition \r(x) — 11 <kjx

may be replaced by the condition that the series £ñ=" (1 — Tn ) converges,

and r» S 1. Then by the Maclaurin-Cauchy integral test, we see that the

series 52îS"un diverges if the series Z)"=" (1 — rn) converges and r„ =i r„+i. Of

course this test is very weak.    In the case of the series

2" - 1      (2* - 1)(3P - 1)
1 4--1--—- 4- • • •

^     2p (3!)p

for example, where

r"      l      n"'

this test, like Raabe's first test, indicates divergence only for p > 1, though

by Theorem V we see that the series also diverges for p = 1.

4. A series of products

We have noticed the normal form to which may be reduced any series

capable of being tested by means of a test of the second kind. This normal

form suggests a somewhat more general class of series. Suppose that we are

given the two-dimensional array of numbers

doo doi do2

dio du dl2

d20      d21      d22

and suppose that they form a series as follows :

doo + doi  •  dio + do2  •  du  • d20 + do3  ■  Û12  ■  d-2i  • d30 +   " • • .

* Gesammelte Werke, vol. 3, pp. 123-163.
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The following theorem then holds

Theorem VI.    Let a(x,y) be a positive, integrable function for x =£ 0,

y =: 0, such that

(a) a(m, n) = am, „;

(b) 0 < c < a(x, y) < k;

(c) one of the two relations

a(x',y')^a(x',y"),       0=ix',       0 == y' < y"
or

a(x',y')^a(x',y"),       O^x',       0 ^ y' < y"

always holds; and

(d) such that one of the two relations

a(x',y')^a(x",y'),       0 ^ x'< x",       0 =1 y'
or

a(x',y')^a(x",y'),       0 ^ x' < x",       0 S y'

always holds.

Then a necessary and sufficient condition for the convergence of the series

oo n

£ un       where       un =   JJ a™. n-m
n=0 m=0

is the convergence of the integral

ft

{ — x)dxr J!x°za{-x'
'df.

Proof.   We can take c < 1 and k > 1.    Take the case that a ( x', y) and

a ( x, y') monotonically decrease as y and x respectively increase.    Then

/.n+l

(1)  log d ( n 4- 1, £ — n )_= I      log d ( x, £ — x ) dx =1 log a (n, l- — n — 1),
Jn

and

r1 J!^««* « -*>*di m r1 eS!+JÎ+--+£,+ft**«cm -^xd¡í
Xn+l

glog a(0, í - 1) +log a(l, í - 2) + ••• + log a(n - 1, « - n) + log fc¿£

= kao, n—i ■ di, „_2 • a2i n— 3.d„_i, o-

Therefore

(2) r^^-^disk^.
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Likewise

Jn

•/n

^logaa.í) + loga(2,£-l) + ••• +logo(n,¿-n + l)+logCdt

C
= Cdi, n+l  •  d2, n  ' - -  d„, 2   —  ~ TOre+2.

do, n+2  * dn-i-i, i • d„+2, 0

Therefore

(3)
r-n+i    f*]06a(x,S-x)dx,.^ c

J      eJo d£^pTO„

Similar inequalities hold if a ( x', y ) and a ( x, y') increase monotonically,

or if one decreases and the other increases.

The theorem then follows from a comparison of the given series with the

series

n=0 *Jií

by means of the inequalities (2) and (3).

The theorem can readily be extended to series for which the function a ( x, y)

satisfies conditions similar to the conditions in Theorems II and III. A

theorem analogous to Theorem V is also easily deduced.

As special cases this theorem in its extended form includes Theorems I, II,

and III.
Example. The following series is conveniently tested by means of The-

orem VI.

e-8/2-a/2    i    e-8/2-0/3-a/3-a/4  _|_ g-ßß-ßß-ß/4-a/4-a/6-a/6  _|_   . . .

This is formed from the array

e-0/2-a/2 e-S/3-a/3 g-ßli-ali

g-ßl2-ali e-/3/3-a/6 g_ß/4-„/S

e-ßl2-al«      e-0/3-a/9      g-0/4-0/12

Here
„ _  <,-[3/(n+2)]-a/[(m+lXn+2)J

and
afXj y\   —  e-lß/(í+»]-o/[(x+lX»+?)]

where O^i, O^y.    If we take the series as starting with the term di, i

instead of with do, o, we can write

a(x,y) = e~ß*+"-<w,        1 S x,        1 S y.
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Then

X)
jíloga(x,£-x)dx=Jif[|TT^-a + 1)J+1_

Consequently

f*   /^Iogafoí-xjcte,.        f*        d¿
I    «Jl of =   I    tß + 0-Äi+D] •

Therefore the series converges for /3 > 1, and diverges for ß s¡ 1.

5. Multiple series

The tests given for simple series are easily generalized for multiple series.

Thus for double series we have the following theorem :

Theorem VII.   Given the double series

00 00

Z—i  ¿^ Umt n , Untl n  ,> U .
m=0 n=0

Let rm = Um+i, o/iím, o, and pm? „ = um< n+i/um¡ n. Suppose that r(x) is a

continuous function for 0 = x, having the properties that r(m)=rm,0<c

< r (x) < k, and r(x) monotonically increases as x increases; suppose also

that p ( x, y) is a continuous function for 0 SI x, 0 SI y, having the properties

that p(m,n) = pm, n, 0 < c < p(x, y) < k, and p(x, y) increases mono-

tonically when either x or y increases; then a necessary and sufficient condition

for the convergence of the given double series is the convergence of the double integral

r c Joiog r{x)dx+foiog p(x>y)dy dx d
Jo   Jo

A proof like that of the first theorem can easily be given.

Example.   Test the series
00 00

*m, n
m=0 n=0

where «oo = 1, and

um, n = e-p-Mi-'pi«)-- w»+»M,       m + n>0.

For this series we have

_ Vl, 0 _        lpKm+v] _ Urn, n+l _        [p/(m+B+1)]
1 m   — — C" > rtn, n   — c ¡

"-m, 0 «m, n

r (x) = e-lpl{x+1)],       p (x, y ) = e-&/WlH-ia.



204 R.  W.  BRINK

Here we have

J   log r(x)dx=J   x-^r\dx = - p log (x + 1),

J   \ogp(x,y)dy = J   x +   P+-¡^dy = - plog(x+y + 1)+plog (x +1),
''O

and hence

Jo  Jo Jo  X  (x + y +

-fJo

(x + y + iy

dy
(p-l)(y + l)p-1-

Therefore the series converges if p > 2, and diverges if p =i 2.

The theorems of this paper have been stated for constant terms. They

can readily be extended to series of functions, not only to test the convergence

of a given series, but also to determine whether the convergence is uniform;

uniform convergence of an integral implies uniform convergence of the cor-

responding series.

Cambridge, Mass.

May, 1916


