A NEW INTEGRAL TEST FOR THE CONVERGENCE AND
DIVERGENCE OF INFINITE SERIES*

BY
RAYMOND W. BRINK

INTRODUCTION T

A new sequence of integral tests for the convergence and divergence of
infinite series has been developed by the author. Some of the tests of this
sequence, and the principle by which they may be discovered will be set forth
by him in another article. In the present paper it is his desire to give a central
one of these tests, together with some of its applications. This particular
integral test appears to play the same réle when the ratio of successive terms
is explicitly known, that the Maclaurin-Cauchy test plays when the indi-
vidual term is explicitly known. In testing a series of the form

Uy 4~ Uy + U+ -0+,
du Bois-Reymond] called those tests that make use of the test ratio
Tn = un+l/un )

tests of the second kind to distinguish them from tests using the general term
of the series u, itself, which he called fests of the first kind. Similarly, the
integral tests developed in this paper, which involve a function r (x) such that
r(n) = r,, may be called irtegral tests of the second kind; while the Maclaurin-
Cauchy integral test, involving a function « () for which u (n) = u,, is an
antegral test of the first kind.

Integral tests of the second kind thus apply to series for which a function
is known that for successive integral values of the variable takes on the suc-
cessive values of the ratio of one term to the preceding term. Such a series
can be written in the following normai form:

¢+ cap 4 caga +capayds -+,

* Presented to the Society, April, 1916.
t The thanks of the writer are due to Professor Birkhoff for many suggestions furnished
by him during the preparation of this paper.
tJeurnal fir Mathematik, vol. 76, p. 61.
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where a, = a(n), a(x) being a known function; and it is to such series that
the theorems of this paper apply.

The general method employed to discover the tests of the sequence sug-
gests the test set forth in the first section of the present paper. This test
may be considered as the fundamental integral test of the second kind. From
it are derived the test given in the second section, and the very simple and
useful integral test of the third section. The fourth section gives a test
applicable to a series of products of rather general form. The fifth extends
the fundamental test to multiple series.

1. FUNDAMENTAL INTEGRAL TEST OF THE SECOND KIND
TrEOREM 1. Given the series
Up + Uy + U + -+ (U >0, n= ).

Let 17 = Uny1/Un, and suppose that from a certain point x = u on, r(x) 13 a
continuous, positive function such that r (n) = r,, and suppose that a constant
m exists, positive or zero, such that r (') = r(z) when 2’ Zx +m. Then a
necessary and sufficient condition for the convergence of the given series is the

convergence of the integral
= [*1 d
f ej; og r@) Yz
I

Proof. Under the conditions, from a certain point on either r(x) > 1 or
r(x) =1. Suppose that r(z) =1, u <x. We take u to be an integer.
Then

n+41
1) log rh—m = log r (z)dx = log Tny14m, w=n.
g n

We write

n+1 L nyl 7utl n+2 . n )
@) f ef; log r(x)d:cdx =f ej; tloan T +-l;-1+j:. log r(x)dxdx,

where, as elsewhere in this paper, the bar over the signs of integration indi-
cates that the integrals under it have the same integrand. Therefore, by (1),

fn+1 6]: log r(z)dz i = fn+1 e]og Fut1+m+10g rus24m+ -+ - +log i
3 n

1
=Tutldm * Tpt2d4m * 0 Tagm = Un+14+m
Ut 14+m
Likewise
+ f'c log r(x)dz 1
(4) en de = Tyem * Tytr-m * " * Tneom = * Unplem-
n n—m
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Similar inequalities hold if r (z) > 1, u; < z. Since the integral

f"e j; log r(a)dz

®

cannot oscillate, the theorem follows at once from a comparison of the two

series
L] ) n+1 d
Z . and Z f ej; log r(:c)d:cdx

n=pn n=uJn

by means of (3) and (4).
Example. Discuss the convergence of the series

]
2 Un,

where u, = ePutPutrt o +en_1, ”=‘L
_ lln.lzn.....lkn_*_lzn.lsn.....lkn+...+lkn+p
Pn = nohn-bn- - -len ’

N
and [, x = log (li—12), iz =logx. Of course u is to be taken large enough
for all terms of the series to be defined.

For this series r, = e, and

_l.xolz:c- et lbx ol oo x4 - +lb:c+p
r(z) =@ =e¢ zohx b oo lix

This function satisfies the conditions of the theorem, and we have

flogr(mx:f_’l“‘“”lk“ thrtp,

zshalbe - -+ - iz

=c¢ —log[azhz - - Lz (lz)?].
Therefore

flogr(x)dz dx
f dz = Cfx e bz haa(hz)

Hence the given series converges or diverges according as p > 1 or p = 1.
The theorem can be extended as follows:
TaEOREM II. Given the series

Up + Uy + U + - - (un >0, n=p).

Let r(z) be a function with a continuous dertvative r' (x), x = u, such that
r(n) =T = Uny1/Un. Suppose that 0 < A=r(x) =B, and that the

integral
f |7 (z)|de
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converges. Then a necessary and sufficient condition for the convergence of the
given series 13 the convergence of the integral

f ej; log r(e)dz

I

Proof. Write

+1

d, = log r (x)dx — log rny1
1) " +1 d
= [log r (z) —logrn+1]d~x(x—n)d¢-

»

Integrate by parts. Then we find

+1 '
d, = — (x — n):((:))dx.
Therefore "
@ FAE f” : ((xx))

Now by hypothesis the integral

J 1@l

converges, and therefore the integral

= (2)
J. [l
converges since
v(2)| _Ir(=)|
r(x) A
Consequently the series
2 dn
n=p
converges absolutely, and we can write
2 ldal=D

Now

j"‘“e‘/\llog r(x)da:dx f“ f’"“+f"+2 '+Lﬂ_1+‘l::}cg r(:c)d:cdx

f"* ed,. +dus14--Fdn1 +1og (rut1:Tpt2e o e oTn) +j: log r(x)dxdx

Since 0 < A =r(xz) =B, we can set |logr(z)|=C. Consequently we
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have

—C-D +1 ef‘ Cc+D

e log r(z)dz e

” Unt1 = f M dx = lun+1.
n

w+1 up.+
The theorem then follows as before from a comparison of the two series
© ) n+41 z 1 d
> un and > f ej:t og (@) Tde.
n=p n=u Jn

The method used in the following alternative proof is sometimes useful.
Define two functions ™ (z) and r® (z) such that

@ (z) - r®(z) =r(z),

and such that r® (z) monotonically increases and r® (z) monotonically
decreases when « increases. We can do this in the following way. Denote
@ (n) by P, and r® (n) by r¥. Take log #) = log r, and log r® = 0;
if 7’ (x) = 0 take

dlogr® (z) dlogr(x) dlog r® (z) 0:
dzx - dz dzx o

if 7 (x) =0, take

dlog r® (z) dlogr(x) dlog r® (z) 0
dx N de ’ dx -

Then
dlog r(x)

g dz +logr,.

log 7@ (2) + |log @ (z)| = ju
r(x)

Since the integral
e [
j,: w 17(2)

converges, log r® (z) and log r® (z) are finite, and we can write

dlog r(x)
dx

0<a<r®(z)<b, 0<a<r?(z) <b.
Now

j""le‘]:hg r(:c)axdx

=f"“eﬁlllogr(u+z)+logr(u+z+l)+-~~+10gr(z+n—l)ldx+ﬁlogr(z)dxdx

_ f"*‘ JOB [ Gurt0) T Gurk) 1O G 041) 10t +1) 1O (0= 140)r (=1 40)l+ [ log rlwdz
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0 <6 <1. Therefore

j‘ IOg (x)dx C (1) (2) (1) “a(2) (1) 2)
eV dx = e ’I’,,+1 N 7" M T" +2 ° T"_,_] A 1',. M T(,,_l
n

ce2
U, e’b
= oC 2 n_-m_

=e% DD = Un.

Up+1  Upta
+1 %) . -0 2
og r(z)dz e a
f o o=y,
n

Up+1

Likewise

The theorem then follows as before.
Instead of testing for the convergence of the integral

f:lr’(x)ldx

it is sometimes convenient to test directly for the convergence of the integral

w 17 (2)
which is equivalent.
It is clear that Theorem II is included in the following theorem. We thus
have still a third proof of Theorem II.
TrEOREM III. Given the series

de,

Uo + ur + U + -+ -, (ua >0, n=4p).

Let r (x) be a continuous function such that, for x = u,

(a) r(n) =r, =1%:1,
) 0<AdA=r(x) =B,
(c) [r(2') —r(z)|=f(2),

whenever 0 = (&' —x) =1, the series 2n=% f(n) being a convergent series.
Then a necessary and sufficient condition for the convergence of the given series
18 the convergence of the integral

f e‘/; log r(x)dxdx.

"

Proof. By condition (c),
) r@) = @) +i@) =1 1+12],

0=2'—2=1, = u.
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v
=

@ rwzr@[1-I2] o=r-a=1, .
We have

n+1 +1 . voor(n— <
j eﬁlogr(z)dxdx =j'" elog (r(u+6) -r(u4146) - - -r(n 1+0))+Llogr(x)dzdx’

n

where 0 < § < 1. As.before, we write |log r(z)|= log C. Then by (1),
+1
f" gj:hgr(z)dxdxéC['r“(l +fLA“‘2)"n+1(1 +&}'ﬁ)

(14122 0)]

C f(n)
=u—u“”,g(1 +4 )
Since the series
Ef(n)

converges, and f(n) = 0, the product
1 f(n))
(e +55
converges to a value F. Therefore

+1 [
j"' ef; logr(:c)dzdx = gEu,..
m

n u

Similarly, by (2), the product

n=p
converges, say to ¥, and we get

+1  f*
j'" ej; ]ogr(z)dzdx = E—l—u,,

Cu,

The theorem then follows by comparison.

2. A DERIVED TEST

The following test is based upon Theorems I, II, and III, in much the
same way that Ermakoff’s test* is based upon the familiar Maclaurin-Cauchy
integral test.

*Bulletin des sciences mathématiques vol. 2 (1871), p. 250.
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THEOREM IV. Given the series
U + Uy + U + - - (ua >0, n=4p).

Let vy = Unt1/Un, and suppose that r (x) i3 a function satisfying the preliminary
conditions given in any one of the Theorems I, 11, or I11, and that r (z) = 1.
Then the series converges of

[r(e)]”

r(x)

lIA
&

1
<v<-, m
e

and diverges if

[r(e)]” -
W>V>;’ m=c.

Proof. Since the preliminary conditions hold for one of the earlier tests, the
series converges if and only if the integral

f ef; log r(z)dz &

converges. Suppose first that

z ) 1¢* 1
[rr((ex))] <v<-e, L=Em=cr.

Then
[r(e®)])” <v-r(x)
and
e®logr(e*) <logv +logr(x).
It follows that

fe"logr(e‘)dx<(m—~m)logv+flogr(x)dx, m < x;
or, after a change in the variable of integration,

falogr(x)dx < (x—m)logw +flogr(x)dx.

Consequently
| *
f.e’ . e\l::logr(z)dzdx <;'—nf er - v’eﬁ.logr(x)dxdx, m<x <.
0 Zo

Then, once more changing the variable of integration, we have

f Jmlogr(x)dxdx <_1,7.f _];xej;logr(z)dxdx’ A> 1.
%o v .%)\



194 R. W. BRINK [April

Therefore, smce log r (z) =0,
¢ 1 X
fgeﬁ"' Ogr(x)dxdx <lm d—ﬁ, m< <.
eTo V" Jx A
[
xo xz

converges. Consequently the integral

| d
f ej;" og r(z) xd:v,

%o

But the integral

and therefore the given series, converge.
Now suppose that

(r(e)]”

1
—_— - -— <
r(z) >V>e, p=Em<ez.

We can take 1/e < » < 1. Then
1
[r(e®)]" > v r(x), g<u<1, m<x.

As before, reversing inequalities, we get

ez o x x d
f efmlogr(x)dzdx >Vlm )‘xe‘f;logr(z) xdx, > 1

o

That is

f efwlog r(x)dzdx S yimf \® 6‘]"‘ log r(x)dxdx _ f efwlogr(x)dxdx

z (20}

> Vl_m f \e efm log r(x)d:cdx _ A= ej:log r(:c)d:cdx’
Jzq

o

m <z <.
Then, since v < 1,

X ""l xo x
f efw 87y > f A e-/:"logr(x)dxdx =¢>0.

This inequality holds for all values of x beyond a certain point. If we take
x1 some number beyond this point, and set

Xy = €7, 3 = €7, Xy =€", cen,
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each term of the series
S d = (7] d
fej;"logr(x)xdx_'_f ej;"ogr(:c)xdx_i—_“
x xo

is greater than the positive constant c¢, and this series therefore diverges.
Therefore the integral

* 7 log r(z)d
f e‘l:"‘ og r(z) xdx,
xo

and consequently the given series, diverges.

By the transformation = ¢*’, the test is changed to the following form,
sometimes more convenient: The series s convergent if

[r(=)] 1
<V<-, m<x,
r(log x) e
and 18 divergent if
[r(z)]* 1
— >y >, m<e.
r(log x) e
In case

limr(z) =1,

this test is no more than the test of Schlémilch which may be stated as follows:
The series converges if zlogr(z) <vi < —1, m <=z; and diverges if
zlogr(xz) >vi > —1, m <z. From the point of view of the integral
tests, Theorem IV may be used as a proof of Schlémilch’s test.

3. AN INTEGRAL TEST INVOLVING (r(x) — 1)

The following is the most generally useful integral test of the second kind.
THEOREM V. Given the series

U + U1 + U + - - - (un >0, n>upu).

Let 1, = Uny1/Un, and suppose that r () 18 a positive, integrable function satis-
fying the preliminary conditions of one of the Theorems I, I1, or 111, and the
further condition that

Ir(x)t-1|<a<1, p <.

Then a sufficient condition for the convergence of the series vs the convergence of
the integral
® [*(r(z) — 1)d
f Joe@w —vaz,
Zo

Thes condition is also mecessary for the convergence of the series if from a certain
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point on
k
|r(z) — 1|<5,

where k 13 some constant.
Proof. We have the expansion

(1) logr(z) = (r(z) = 1) —}(r(z) =12 +}(r(a) 1) = ---.

Then
logr(z)=r(x) -1,

f‘ ej;ologr(z)dx ir = f e‘]; @) ~Dds
o o

Therefore, since the preliminary conditions of one of the Theorems I, II, or III
are satisfied, so that the given series and the integral

® (7 d
f ej;oogr(x) xda:
Zo
converge or diverge together, the convergence of the integral

f“e‘/::(r(x) - l)dxdx
o

is sufficient for the convergence of the given series.

The expansion (1) converges uniformly for |r(z) — 1| <a <1, that is,
for uy = 2. We can therefore integrate it term by term over any interval
m=xz=A. Then

fxlogr(x)dx=f(r(x)—l)dx—%f(r(x)—l)‘zdx+---,

m <z <z,

so that

and

f e‘/; 0log r(z)dz de
o x 1= 1~
_ f' 0@ =0~ 5[ 0@ ~ st g [ 0@ e <20 <z,
xo

We have

k
|r(x) — 1I<_a3’
so that
k k2
(r(z) =1) > —==, —(r(x)—1)2>—;2,

13
(r(x)—l)3>—-F, ete.,, @ > u.
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Therefore

f“ efx : log r(@)dz g,

xo
1 [ *k? 1 MK 1 Kt
>f'ej:(r(x)—l)dx—§ z.,gzd"‘g./:;sd”"zf:;«d"”'dx
xo
% 1 [ok? 1 ok 1 foft
>f o 0@ =iz~ [ e~ [ Rde 3 [ Gt
xp

. BB, R
=_f ,,J:(’(")‘l)d"'(2_x§+3.2zg+4.3xg+"')dx, P <2<z,
N

If x, is taken greater than k&, the series in parentheses converges to a value ¢;.
Consequently
f Jologr(aiz S 62[ o @ =iz
xg */xo

Therefore when z increases indefinitely, if the second of these two integrals
diverges, the first one also diverges, and the given series diverges.

In most cases of interest r () is a monotonically increasing function with
unity as its limit. In such a case the condition |r(z) — 1| < k/z becomes
(r(xz) —1) > — k/x. This condition is not a very great restriction. For

in case the integral N
f GOSN

diverges, if X is any constant greater than unity the product of the integrand
by A® is not finite for « infinite, and it is natural to assume that

—1)d:
x"e‘/:o(r(x) )x>1, m <,
or

f (r(z) —1)de > — Nlog =, m <.
That is, if x is properly chosen,
27 Ix
f(r(x),-—l)dx>—f ;dx, m<ax<z.

If this condition holds it is clear that for considerable intervals, at least,
r(z) — 1> — Nz,

So the condition that r(z) — 1 > — k/x, m < z, is a condition that we
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may expect to hold rather commonly when the integral

f” . j% (r(z) —1)dz i

diverges.
As a corollary to the theorem we see that if r (2) satisfies the preliminary
conditions of the theorem, and if

lr(z) —1|<k/x, p==z, k=1,
the series diverges. For
z7 o X k X
[ ol c@=Dz ) ozt gy - o

Similarly, if r(2) — 1 < — k/x, k > 1, the series converges. In this way
Raabe’s test* may be proved.

The test of Theorem V is stronger than any test of the logarithmic scale, for
by means of it we can test the series

2 1
n=#;n.lln.l2n. . e 'l)\—ln'(l)\n)p'
For this series ’
r(z) = ehalpx - - - Lyx(lx)?
Ve DL+ Dh(e+1) - - ha(e+ D) (h(z +1))7

In all cases all of the preliminary conditions of the test hold for this series,
except perhaps the condition that |r () — 1| < k/z. Thereforeif the integral
of the test converges the series is known to converge. Suppose that the
integral diverges. The series also will then diverge. For in case that it
converged we should have

o= ()= (7

r(z) — 1> — 2p/z, xT>m,

and

which shows that all of the preliminary conditions of the theorem are then
satisfied. Consequently, since the integral diverges, the theorem leads to a
contradiction of the assumption that the series converges, or the integral
and the series always converge or diverge together.

Just as we were able to establish d’Alembert’s test and Raabe’s first test,
we can establish by means of Theorems I, II, III, and V most of the standard
tests that use the test-ratio.

*Journal fir Mathematik von Ettinghausen und Baum-

gartner, vol.10; Journal de mathématiques, vol.6 (1841), p. 85; Jour-
nal fir Mathematik, vol. 11 (1832), p. 309.



1918] CONVERGENCE AND DIVERGENCE OF SERIES 199

Thus consider the series for which

11 1 P
z zhx 2 -he ooy xolixe st

This series clearly satisfies the conditions for Theorem V.

f efm (r(e) = iz |

) 1 1 1 D
=f e fM[§:+zllz+ '+:v~llz--o-'lk_1x+z-llz---~lkx]dxdx
m

- f‘” dz
=¢ m xllxl2m~~-lk_1x(lk:c)”'

Therefore the series converges if p > 1, and divergesif p = 1.
We thus have the tests of de Morgan* and Bertrandf: If r(z) can be
expressed in the form
1 1 _ 1 W ()
z zhe eha - -l zha- - L

the corresponding series converges when | > 1, and diverges when 1 < 1. In
stating these tests it is more common to express the reciprocal of r () as

11,1 1 wi ()
r(x)_1+x+xl1x+‘”+xllx-~lk_1x eha L

b

then the series converges if
lim wi () > 1,

and diverges if B
lim w; () < 1.

=00

The same tests are often stated in the following form. If of the following limats
. 1
im e (05— 1) = ko
lim ¢ ( (i 1 1>—k
NN @ ") )T
lim b ( 1 ( L 1) 1)—1)—k t
zg]i 2 & 1(x) x r(x)_ - = 2, e€lc,

* Differential and Integral Calculus, 1839.
tJournal de mathématiques, vol. 7 (1842), p. 37.

Trans. Am. Math. Soc. 14
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kn 13 the first that s not equal to unity, the corresponding series comverges if
kn > 1, and diverges of kn < 1.
In his study of the hypergeometric series Gauss* gave the following rule. If

et anti 4
"oomb bt 4 b

T

where k 1s a positive integer, the sertes converges if (by — a1) > 1, and diverges if
(by — a1) = 1. This test of course is merely the first test of the logarithmic
scale. It is easily established directly by means of Theorem V, through one
integration. This gives perhaps the easiest method of testing the hyper-
geometric series. The same results can be found by applying Theorem V
directly to the hypergeometric series, though Gauss’s test, so easily established
by means of the theorem, is more convenient.

It is not difficult to show that in Theorem V the condition |r (x) — 1| <k/z
may be replaced by the condition that the series 2237 (1 — r,) converges,
and r, = 1. Then by the Maclaurin-Cauchy integral test, we see that the
sertes 2on=w uy diverges if the series 2n=% (1 — r,) converges and rp = tny1. Of
course this test is very weak. In the case of the series

20 —1 (2? —1)(3” —1)
]'+ 2p + (3!)p + '..,
for example, where
1
T =1-— P’

this test, like Raabe’s first test, indicates divergence only for p > 1, though
by Theorem V we see that the series also diverges for p = 1.
4. A SERIES OF PRODUCTS

We have noticed the normal form to which may be reduced any series
capable of being tested by means of a test of the second kind. This normal
form suggests a somewhat more general class of series. Suppose that we are
given the two-dimensional array of numbers

Qoo Qo1 Qo2
Ao @11 Q12
G20 A21 Q22

)

and suppose that they form a series as follows:
Qoo + @o1 * @10 + Qo2 * @11 * Q20 + Qo3 * Q12 - @21 - A0 + + -

* Gesammelte Werke, vol. 3, pp. 123-163.
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The following theorem then holds

TreoreM VI. Let a(x,y) be a positive, integrable function for =0,
y = 0, such that
(@) a(m,n) = Gm, a;

) O0<c<a(x,y) <k;
(¢) one of the two relations

a(z’,y)=a(2,y"), 0=a, 0=y <y”
or
a(z',y)=za(2,y"), 0=2, 0=y <y’

always holds; and
(d) such that one of the two relations

a(x’,y’)éa(m”,y,), O§m1<x”, Oéyl
or
a(z',y)=za(x",y), O=a'<2', 0=y

always holds.
Then a necessary and sufficient condition for the convergence of the series

0 n
S u,  where Uy = ] Gm nm

n=0 m=0

18 the convergence of the integral

— _
f ej;loga(z,s x)dxds.

0

Proof. We can take ¢ < 1 and k > 1. Take the case that a(2’, y) and
a (z, y’) monotonically decrease as y and x respectively increase. Then

(1) loga(n+1,¢& ——n)ZéfnJr loga(z, { —a)dr =loga(n,{—n—1),

and
n N\
f”‘eﬁloga(x,z—x)dxdg =f"+‘6j:+j:2+-~+f”_l+j:floga(z,£—x)dx d

1
ng elog a0, ¢ —1) +loga(l, § —2) + -+ 4 loga(n — 1, § = n) +1log k g

=kaon-1- Q1,02 G2 n3° *** * Guy, 0.

Therefore

n4-1 (3 _
@ f ej‘: log a(z, £—x)dz dt = Fup .
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Likewise

jm+1 ej;e log a(z, £ — x)dx df

Zf"+leloga(l,£) +loga@,t—1) + --- +]oga(n,£—n+l)+10g0d£
n

4

= —
=cal'n+1 . a’2,n R an'2 =
Ao, n4+2 * Ant1, 1 * Ang2, 0

Therefore

n+1 3 _
3) f ej; loga(z, & :v)dxdg =°

c
kau,,+2 .

Unt2 .

Similar inequalities hold if a (2’, y) and a(x, y’) increase monotonically,
or if one decreases and the other increases.
The theorem then follows from a comparison of the given series with the

series "
© n4-1 _
Z f ej; log a(z, £ — z)dz df
n=0Jn

by means of the inequalities (2) and (3).

The theorem can readily be extended to series for which the function a (z, y)
satisfies conditions similar to the conditions in Theorems II and III. A
theorem analogous to Theorem V is also easily deduced.

As special cases this theorem in its extended form includes Theorems I, II,
and III.

Example. The following series is conveniently tested by means of The-
orem VI.

gBR=alt | o—BR-B[3-af—alt | ,~BR—BB—Bl~ali-af6~af | . .

This is formed from the array

e~ B2—al2 g B/3—af e~ Bli—alt
e—s 2—alt e P /3—al6 6—,3 /4—a /8

e—B [2+a/8 e—B [3—al9 e-B /4—a/12

Here

U, n = e~ [Bln+D)]—a/[(m+1Xn+2)] ,

— (B /(y+2)]—a/[(x+1Xy+2

where 0 =z, 0 = y. If we take the series as starting with the term ay, ;
instead of with ao, o, we can write

a(z,y) = e—ﬁ/(y-l-l)—a/(l(y-i-l))’ 1=z, 1=y.
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Then

feloga(x, E—x)de
/1

I

Jy FEECE—
y LE+1—2 ((+1)(E+1-2)

NGaHk

= "(“sfl)m'

4 sloga(z,z—:c)dz 4 dg
j'; e‘/; g = jﬂ: Pl

Therefore the series converges for 3 > 1, and diverges for 8 = 1.

Consequently

5. MULTIPLE SERIES

The tests given for simple series are easily generalized for multiple series.
Thus for double series we have the following theorem:
TeHEOREM VII. Given the double series

o ®
Zzum,n’ um,n>0.

m=0 n=0

Let 1 = Umi1, o/Um, 0y AN Pm, n = Um, nt1/Um, n. Suppose that r(x) 8 a
continuous function for 0 = x, having the properties that r(m) =rn, 0 <c
<r(x) <k, and r(x) monotonically increases as x increases; suppose also
that p (z,y) 28 a continuous function for 0 =z, 0 = y, having the properties
that p(m,n) = pm,», 0 <c < p(z,y) <k, and p(z,y) increases mono-
tonically when either x or y increases; then a necessary and sufficient condition
for the convergence of the given double series us the convergence of the double integral

0 1" x Yy
f f efo log r(z)dz + j; log p(2, y)dy dx dy.
0 V]

A proof like that of the first theorem can easily be given.
Ezample. Test the series

m=0 n=0
where ug = 1, and
U, n = P PID=(pID=r = plmim) m4n>0.
For this series we have
Um+1, 0 _ Um, nt1 _
Tm = —ts = gTlplont ] Pm.n = T e [p/(m+n+1)]’
um, 0 um, n

r(z) = e~ PlEtnl p(x,y) = e oty
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Here we have

=—plog(z+1),

fylogp(m y)dy = fx_-l-y—+—1d —plog(z+y+1) +plog(z+1),

and hence

f f oo losr@dz + [Jlogoto vy f f( +dx?1)p
z+y

dy
(p -1)(y+1)

Therefore the series converges if p > 2, and diverges if p = 2.

The theorems of this paper have been stated for constant terms. They
can readily be extended to series of functions, not only to test the convergence
of a given series, but also to determine whether the convergence is uniform;
uniform convergence of an integral implies uniform convergence of the cor-
responding series.

CAMBRIDGE, Mass.
May, 1916




