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The object of the present paper is to discuss the nature of an analytic trans-

formation in the neighborhood of a singular point.    Let

(A) Xi = <pi(ui, ■■■ ,un) = ñ-j--—r      d = l, ••-,»),
Vi(Ui,   • • • , Un)

where the functions <pi(ui, • • • ,u„) are meromorphic in the origin, ( u ) = ( 0 ),

and at least one of them has a non-essential singularity of the second kind there.

The functions <7¿, G i are all analytic in the origin, and two of these functions

corresponding to the same value of i cannot, of course, both vanish identically.

We interpret the point ( x ) in the space of analysis, and thus it is not necessary

to exclude the case that a function Gi vanishes identically.

When two functions <¡r¿, Gi both vanish in the origin, it shall be assumed

that they have no common factor there, t In particular, then, if a function g¡

or Gi vanishes identically, the other function shall be taken as not vanishing,

and may be set equal to unity.

In all cases, at least one pair of functions, as gr, and Gi, vanishes in the

origin, and the transformation breaks down at this point (and at others, too,

in the neighborhood, when n > 2 ).

Let the positive numbers rji (i — 1, • • •, n) be chosen arbitrarily small,

and certainly small enough so that each function gi, Gi is analytic throughout

the region

\uí\  < Vi (t - 1, •••,»).

Let the points at which two functions g¡, Gi vanish simultaneously be excluded

from this region, and let the remaining region be denoted by X. Then each

point (u) of £ is carried over into a single point of the (x)-space, and these

latter points form a certain manifold, M.

As the quantities rji are taken smaller and smaller and X is thus reduced

* Presented to the Society, Dec. 27, 1917.

f The leading theorems relating to the factorization of functions of several complex variables

which are analytic in a point and vanish there are contained in a memoir by Weierstrass,

Werke, vol. 2, p. 135.   For a systematic presentation of the theory cf. a paper by the author

in the Annals of Mathematics, ser. 2, vol. 19 (1917), p. 77.
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in extent, this manifold M continually loses points. But there are certain

points of the ( x )-space which are limiting points of M, no matter how small !£

be taken.    The set of these points shall be denoted by 3JÎ.

It is the study of this latter manifold to which this paper is devoted, and a

complete solution of the problem is obtained.*

The result of the investigation is embodied in the theorem of § 10. But the

reader will find it convenient to begin with the special cases p = 1,2,3 studied

in §§ 1, 6, and 8, respectively.

A further problem, which is in a way a continuation of the present one,

is the following.   Let
Xi   =   <pi(Ul,   ••■ ,Un) (i-1,  •••,»),

where 0¿ is meromorphic throughout a fixed region, S, of the (w)-space.

Let o be the manifold of points in S, in which at least one <j>i has a non-essential

singularity of the second kind, and let o contain at least one point. Im-

bed o in a region T of S, remove the points of o from T, and denote the re-

mainder of T by % • Then each point of X is carried over by the above trans-

formation into a point of the (x)-space. Denote the manifold of the latter

points by N.

As £ is steadily reduced in extent, so that an arbitrary point of S not lying

in o ultimately becomes and remains an exterior point of ¡£, there are certain

points of the (x)-space which always persist as limiting points of N. The

totality of these latter points forms a manifold ÍÍ.

In the simplest case, namely, n = 2, o consists of isolated points, and hence,

if S be taken as closed, 9c consists of a finite number of manifolds SDÎ, each of

which is made up of a finite number of algebraic plane curves.

The author reserves the further study of this problem for a later occasion.

1. The Case p — 1.   Preparation for the Higher Cases

Let the equations (A) be so arranged that the first p functions

gi(ui, ••• ,un) ..    , ,

Gi(ui, ■■■ ,u„)

have a non-essential singularity of the second kind in the origin, the remaining

functions, i = p + 1, • • • ,n, either being analytic there or having at most a

pole.    Then 1 =f p =1 n.

The Case p = 1. This case is immediately disposed of, since Xi can actually

assume and retain any preassigned value, as the point (u) approaches the

* This problem has been studied by Autonne, Acta Mathematica, vol. 21 (1897),

p. 249, and some of the results of the present paper are there given. But the treatment is

rather a sketch than a detailed investigation. It is not possible to read between the lines

that which is necessary for rigorous proofs.
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origin, ( u ) = ( 0 ), along a suitable path. No matter what the mode of

approach, each x,, 1 < i, approaches a definite limit, x, = a,. Hence 93? is

seen to consist of the right line

| Xi |  Si  oo , Xi = ai ( i = 2, ■ • •, n ).

The First of Equations (B), and the Regions Ri, Si, Ri, etc.   When u > 1,

we set over against equations (^1) the following equations:

'gi(ui, •••,«») - XiGi(ui, •••, un) =0,

(B)
.gn(Ui,  •■• ,Un)  - XnGn(Ui,  ••• , M„)   =  0.

Every solution of (A), where (x) is a point of the space of analysis, is a solu-

tion of (B).   But a solution of (B) yields a solution of (A) only when, for no

value of i, do gi and G» vanish simultaneously.

We will begin with the first of the equations (B),

(1) 9i(ui, •••, m„) - xi G?i(«i, ••• ,u„) =0.

We may assume without loss of generality that

0i(0, ...,0,w„) #0,       Gi(0, ...,0,»«)#0,

since by means of a suitable linear transformation of the variables «i, •••,«„

these conditions can always be fulfilled.

If, furthermore, Auvn and Bui are the terms of lowest dimension in un when

the functions gi ( 0, • • •, 0, un ) and Gi ( 0, ■ • •, 0, u„ ) respectively are

expanded into power-series in un, then we may assume that p = q, since a

suitable linear transformation of Xi,

axi + ß
x¡ =

7*1 4- o"

together with the transformation

g[(u) = agi(u) + ßGi(u),

G[(u) =ygi(u) + 5Gi(u)

will replace (1) by a new equation of the desired type, while on the other hand

belonging to the group of the space of analysis.*

The term of lowest dimension in un when the function

¿ri (0, ••• , 0, un) - xi(?i(0, •••, 0, un)

is expanded according to powers of uH is, then,

(A-Bxi)un,       A + 0,       5 4=0.

* This transformation is made for convenience of presentation.    Without it, the investi-

gation that follows can be carried through with only formal changes.
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The hyperplane obtained by putting the coefficient of uvn equal to 0 is the

manifold

61: A-Bxi = 0.

From the closed (x)-space we remove the points of ©1 and denote the

remaining space by Ri,—

Rt: 0 < \A - Bxi\ =i 00,       |x,-| =1 » (¿-2, •••,*).

We shall sometimes have occasion to consider only the space of the variables

( Xi, • • •, xk ), k < n, and then, only that part of this space for which these

variables satisfy the above relations.    This region we shall denote by Rk,

Rk: 0 < \A - Bxi\ =1 °°,        |xj| =1 00 (¿ - 2, •••,*).

Finally, let a neighborhood Si of @i,

Si: \A — Bxi\ < h,        \xj\ =i » (¿ = 2, ••-,»),

be removed from the ( x )-space, and let the remaining space, which is closed,

be denoted by Tii,

Ri: h t= \A — Bxi\ ^ °o,        |x,-| =1 «> (¿ - 2, •••,n).

The regions

SJ: \A-Bxi\<h, \xj\ S « (¿ = 2, •••,*);

Rk: h =1 \A - Bxi\ =1 »,        |x,-| =i «3 (¿ = 2, -•-,&),

are now self-explanatory.

Solution of Equation (1). Let (£) = (£i, •••,£„) be any point of Rlt

and restrict ( £ ) to begin with to the finite region. Then the roots of (1) which

lie in the neighborhood of the point (ui, • • ■ ,u„, Xi) = (0, • • • , 0, £1) will

be given by the equation*

(2) upn + Aiun-l+ ■■■ +AP = 0,

where

Ai = Ai(ui, •■•, Un-i, xi)

is analytic in the point (ui, ■ • •, wn_i, xx) = (0, • • •, 0, £1 ) and vanishes

there.

Next, if £l is any point of a certain neighborhood of £1 and the equation (2)

is written down for the new point ( Ui, • • ■ , un-i, Xi ) = ( 0, • • •, 0, £l ), the

new coefficients A\ will coincide respectively throughout a certain neighbor-

hood of the point (Mj, • • •, un-i, xi) — (0, • • •, 0, £i) with the coefficients

Ai, considered for the same neighborhood.

From this it is seen that the coefficients Ai admit analytic continuation

along every finite path of the manifold whose points (ui, • • •, un-i, Xi) are

* Weierstrass, Werke, vol. 2, p. 135.    Cf. also Madison Colloquium, pp. 181-183.
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subject to the condition

uk = 0,       k = 1, ■ • •, n — 1 ;       h = \A — Bxi\< « .

They can, however, also be continued analytically to the point

(«i, •••, M»-l, El) = (0, •••, 0, oo )

along a path in said manifold.   For, let G be taken so that

G>

and let

A

B

, _ 1_
Xi

Then, if |xi| iï G and if (1) is replaced by

(1') x[gi(ui, ••• ,un) - Gi(ui, ■•■ ,un) = 0,

the roots of (1') which lie in a certain neighborhood of the point (0, • • • ,

0, £i ), where

l«|a¿.
will be given by an equation

(2') K + A[u:-l+... +A'P = 0,

where
A'i = A'i(ui, ••■, w„_i, x[)

is analytic in the point ( «i, • ■ •, un-i, x'¡) = ( 0, • • •, 0, £¡ ) and vanishes

there.

These coefficients A', can be continued analytically along any path of the

manifold

uk = 0,       k = 1, ■■■ ,n - 1;        \ x't \ S g.

In the neighborhood of any one of these points ( 0, • • •, 0, £¡ ) for which

£1 * 0,
A\(ui, •••, Un-i, x¡) = Ai(ui, ••■, m„_i, xi),

and hence the above statement is seen to be true.

Finally, since h can be taken arbitrarily small, we are led to the following

result. The coefficients Ai(ui, • • •, m»_i, X\), i — 1, • • •, p, in (2) are

single-valued and analytic at every point of the manifold

(3)      (mi, ...,m^i,*i) - (0, •••,0,xi),       0 <\A - Bxi\^ *>,

and vanish there.
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Concerning the algebroid polynomial F that forms the left-hand side of (2)

we can assert furthermore that it is irreducible, i. e., that a relation of the

form cannot exist:

F = ( ul + Bi uTx + • • • ) ( w„ + & u--1 +•••),

where the coefficients B¡ and Ck are functions of (ui, • • •, un-i, Xi) analytic

at all points (0, • • •, 0, £1), £1 being any point of R\.   For,

(d) F cannot have two essentially distinct factors. Let £i be any point of

7i} • Then it is clear that a point (u[, • • •, ti„_i) can be chosen arbitrarily

near the origin and a point £l arbitrarily near £i so that, if uf and u{2) denote

any two roots of (2) corresponding to the point (wi, • • •, w„_i, Xi) = (u[,

• • •, u'n-i, £1 ), then

Gi(u\, ■■■, w'„_i, uf) + 0 (¿ = l,2).

For, the condition that F and Gi have a common root is given by the vanishing

of the resultant R of (2) and (2'), the latter equation being written for xl = 0:

R(Ul,   ••• , Un-l, Xl)   =0.

This function is analytic in the point (0, • • •, 0, £i) and does not vanish

identically, since ffi and & have no common factor in the origin.

Next, it is possible to join the points (u[, • • •, u'n-i, uf) and (u\, •• •,

u'n-i, w?) by a curve lying in the neighborhood of the origin, in no point of

which does Gi vanish nor does gi/Gi = A/B. Hence a path on the con-

figuration (2) is determined, along which uf is carried over into u(2).

(b) The function F cannot have a multiple factor,

P = ul + Biun-1 + ••• +Bq.

For then the function oi — Xi Gi would also admit this factor in a point

(«i, ••• , tin, xi) = (0, ■ ••, 0, £i), where £i is in R\:

gi-XiGi = PlQ.

Hence

¿(oi-ziGi) =Pl~1Qi = -Gi.

Thus «i — Xi Gi and <?i would have a common factor in ( 0, • • •, 0, £i ), and

consequently Oi and Gi would have a common factor in the origin. But this

is contrary to hypothesis.

2. The Functions Q,

We turn now to the equations (B), for which i = 2, • • •, p.   Let

Wi(«l,   ••• , tin, X.)   =   »¿(«I,   •• • , tin)   -  XiGi(Ul,   ■•• , tin),
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and consider these functions on the manifold (2). It follows from the hypo-

theses that no Gi vanishes identically.    Form the functions

Hi (Mi,  ••• , M„_i, Xi,Xi)  = IIwi(Mi,  ••• , W„_i, uf ,Xi)     (i-2, • ",1»),
*=1

where u^ are the roots of (2). Then ß» is an algebroid polynomial in x¿, and

furthermore it is of degree p, as we will now show.

Equation (2) has been shown to be irreducible. Its left-hand member was

denoted by F. Let (ul, •••,m°_i, xi), where (w?, • • •, un-i) lies in the

neighborhood of the origin and xj lies in R\, be a point in which all the roots

of F are distinct from one another.   Then

F = fl(un-fj),
j=l

where fj(ui, • • •, w„_i, xi) is analytic in the point (u\, • - •, m'_i, x?) and

actually contains Xi.

The coefficient of x? in the expression for ß,- is

V

X (Ml,   • • • , M„_i , Xi )   =   ( -  1 )P II Gi (Ml,   • • • , Un-l, M(„4)) ,
k=\

and we wish to show that this function does not vanish identically. If it did,

then one of its factors, considered in the neighborhood of the point ( u\, - - •,

m"_i , xï ), must vanish identically. Let k = 1 and j = 1 correspond to this

factor :

MÍ1' =/i(Mi,   •• -, Mn_i, Xi),

and let u°n = /i (m?, • • •, w"_i, x\). Then G,- («i, • • • , u„) must vanish

whenever the function

M„ ~/i(Mi,   ••• , Mn_i, Xi),

which is analytic in the point (wî, • • •, w¡¡_i, ul, x?) and vanishes there,

and moreover, is irreducible there, vanishes. Hence Gi(ui, ■ • ■ , u„) must

be divisible by this function at the point in question. But this is impossible,

since /i actually contains Xi, while Gi does not.

The functions ß, are readily seen to be analytic at every point of the mani-

fold

Uk = 0,       k = 1, ••' ,n — 1;       0<|^4— Bxi | ^ oo ,        | x,-1 ̂  oo

U =2, •••,«),

except at those points in which x¿ = oo , and in the neighborhood of such a

point the function

Q'i(«l,  ••• , M„_i, Xi, Xi)  = X7Ptii(Ui,  ■•• , M„_i, Xi, Xi)      [x'i "~)y
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is seen to be analytic. For, in a point ( tii, • • •, wn_i, Xi ) in which each

irreducible factor of (2) has all its roots distinct, fi¿ is evidently analytic.

The excepted points form a manifold of a lower order of dimensions, and in

its points 0¿ is continuous. Hence, by the extension of Riemann's theorem

for removable singularities of functions of a single variable,* fii is analytic in

these points also.

3. The Function $(xi, x2)

It may happen that the function ß2 ( tii, ■ • •, ti„_i, Xi, x2 ) is divisible in

the point ( 0, • • •, 0, £i, £2 ), where ( £1, £2 ) is a point of the region R2, by a

function / ( tii, • • •, tin-i ). Let the other factor, which shall not be divisible

by such a function, be developed into a series of homogeneous polynomials in

( tii, ■ • • , tin-i ), the coefficients being functions of ( Xi, x2 ) analytic in the

region R[ ; and let r be the order of the first of these terms. Then, on making

if necessary a linear transformation of ( tii, • • • , ti„_i ), we can ensure the

presence of the term in ti„_i.   Let its coefficient be Í» ( Xi, x2 ) :

ß2(til,   ••• , Un-l, Xl, x2)

= /(tii, ••• , m„_i){$(xi, x2)ii„_i + (tii, •• • , tin-l)},

where the parenthesis, when developed into a power series in Ui, • • • , ti„_i,

contains no terms of lower than the rth order, and the term in ti„_i is lacking.

The function <E> ( xi, X2 ) is a polynomial in x2 which does not vanish identi-

cally, and the coefficients are each analytic in R\, the degree of $ in X2 being

\ = p. Hence "3? ( Xi, x2 ) itself is analytic at all points of R2 for which

I x21 < 00 , and xF* $ ( xi, x2 ) is analytic at the remaining points of R\.

A necessary condition for a simultaneous solution of the first two equations

(A) is the following:

(4) $(xi, x2)ti„_i + (tii, •• • , tin-l) = 0.

For, if (til, • • •, u'n, xl, x'i ) be such a solution, then Q,2(u\, • • •, ti„_i,

x'i, x2 ) = 0. Suppose / ( til, • • •, ti„_i ) = 0. It is possible to find a point

(ii" ) = (ti" , • • • , u" ) indefinitely near to(u') for which/(u'{ , • • • , tiñ'_i ) + 0.

The corresponding values X\ = x" , x2 = x'2' lie near to x\, x2, and for ( u\', • • •,

tin-i, x'i , x2 ) equation (4) is satisfied. From the continuity of the left hand

side of (4) it follows, then, that (4) is also satisfied in (u[, ■ • •, w„_i, x[, x'2).

We distinguish two cases: Case 1, r = 0; Case 2, r > 0.

Conversely, every solution of (4) yields a solution of the first two equations

(B), but not necessarily a solution of the corresponding equations (A). For,

it makes &2 = 0, and hence

C02 (til,   • • • , tin-l, tin'', Xi, X2)   =0,

* Cf. Madison Colloquium, p. 163.
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and (2) is also satisfied by m„ = itJP. Indefinitely near to a given solution

of (4) lies, however, a second solution of (4) which does yield a solution of (A).

4. Case 1, r = 0
In this case we have

ß2(Mi,  ••• , M„_i, Xi, X2)  =/(Mi,  • •• , Wn_i){$(Xi, X2)  + («i,   ••• , M„_i)},

and (4) becomes

(5) 4>(X!,X2) + (Ml,  •••, ttn_i)  = 0,

where the ( ) vanishes for Mi = 0, • • • , m„_i = 0.

If ( x ) = ( £ ) is a point not lying on ©i and such that

*(*!,&) 4=0,

then it is clear that a neighborhood of (£) and a region X can be so chosen

that, when (x) lies in the first region and (u) in the second, equation (5)

cannot be satisfied. Hence for no such pair of points (x), (m) can (A) be

satisfied, and consequently ( £ ) is not a point of SDÎ. It follows, then, that the

manifold SDî is contained in the hyperplane ©i and the points of the cylinder

(6) xi = £i, x2 = £2, [x,| ^ oo (j-8, ..*,»),

where

*(fi,fc) =0.

In case £2 = oo , $ ( xi, x2 ) is to be replaced by

$'(xi,x2) = Xi-A"i>(xi,x2) \x'2=-)-

We will now show that certain elements (6) of the cylinder

(7) $(xi,x2)=0

contain at least one point of SDÎ. To do this we will show that the degree X

of €> in x2 is positive.

Let £i be chosen arbitrarily. ß2 is a polynomial in x2 of degree p, the

coefficient of x2 being x (wi, • • ■, m„_i , Xi ). We can, then, find in an arbi-

trary neighborhood of £, a point £i, and, independently of the choice of £i,

in an arbitrary neighborhood of the origin a point (u{, • • ■ , u'n-i) such that

x(m¡, ••-,m^_i, £i) + 0,
and hence

f(u\, ■••, u'n-i) 4= 0.

Let <t> ( xi ) be the coefficient of x2 in $ ( Xi, x2 ). We restrict £l furthermore

so that
<MS'i)*o.

Let x2 be a root of the equation
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fi2(til, •••,ii„_1, £l,x2) =0,

and hence of the equation

(8) *(£,*«) + (til, ■■-,uLi) =0.

We now infer that X > 0.    For, if X were = 0, we should have

*(ÉÍ,*0 = <M£1)*0,

and by choosing ( ti¡, • • • , ti„_i ) sufficiently near the origin, the second term

in (8) could be made indefinitely small.    This leads to a contradiction.

The roots of the equation

(9) #(£, X2)  + (til,   •■•, tin-l)   =0

when (tti, • • •, ti„_i) is taken at the origin, coincide with the X roots of the

equation

(10) 4>(£i,x2)=0.

Hence, for all points ( tii, • • • , un-i ) of a certain neighborhood of the origin,

the roots of the former equation lie near those of the latter.

Let the positive numbers 77,-, t = 1, • • •, n, be chosen at pleasure, and let

£¡ be a point of the neighborhood of £, such that <f> ( £l ) 4= 0. Then £l and

a point ( u\, • • •, ti„_i ) can be so determined that the corresponding roots un

of (2), xi being set = £¡, will be distinct, and each will yield a point for which

I ti* I < Vi (* = 1, ■•-,»)•

Moreover, if £¡ be an arbitrary root of equation (10) and an arbitrarily

small neighborhood of £2 be chosen, the point ( ti?, • • • , ti'_i ) can then be so

taken that a root of (9) will lie in this neighborhood.

Furthermore, the point ( u\, • • ■, ui-i ) can be so determined that, no

matter what root of (2) be associated with it, the functions ¡71, Gi, and like-

wise the functions g2, G2, will not both vanish in (u°) = (u\, •••,«„).

Lastly, the point (u\, -•■, ti„_i, £¡ ) can be so taken that, for all points

(tii, • • •, tin-i, £1) in its neighborhood, the roots X2 of (9), as well as the

roots Un of (2), can be grouped together so as to constitute functions each

analytic in ( u\, • • •, u„-i, £l ).

We are led, then, to the following result.

In the region of the space of the variables (ui, • • •, un~i, Xi) for which (tii,

• • • , ti„_i) lies in the neighborhood of (u\, • • ■ , wn_i ) dnd" Xi in the neighborhood

of £!, the p roots un of (2) are analytic functions.

Each of these, when substituted in the second of the equations (B) or (A) yields

a function x2 likewise analytic in the point (ut, • • •, ti"_i, £l ).

The systems of values (ui, • ■ • , un, Xi, x2 ) thus found satisfy the first two of
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the equations (A) and (B), and they exhaust all such systems for which (ui, • • • ,

w„_i ) lies in the neighborhood of (u\, • • •, m°_i ) and Xi in the neighborhood of £i.

Equation (5) is an algebroid equation in x2.    Its left-hand side cannot have

two distinct irreducible factors, each being of the form

E0x'2 + Eix'r1 + ■■■ + Et, (0<I),

where Ek = Ek(ui, • • -, w„_i, Xi) is analytic in each point (0, • • •, 0, £i)

for which £i lies in R\. For, the roots, x2, of this equation are precisely the

values that the function

= ff2(Mi,   ••-, Un)

2 Gi(Ui,   ■■■ ,Un)

takes on in the points of the configuration (2), and since the latter is irre-

ducible, there must be a path in the (ui, • • ■ , m„_i, Xi)-space along which a

given root of (5) is carried over into any second root of (5).

The locus (7) consists conceivably in part of right lines,—or hyperplanes, if

interpreted in the (x)-space,—

Xi = const.,

and these may conceivably cluster about the line Xi = A/B,—or the hyper-

plane ©i.

The remainder of the locus consists of a finite number of monogenic analytic

configurations

&: Xi = \f>(xi),

where \p ( xi ) is a finitely multiple-valued function of xi having at most ordinary

branch-points and poles in Tí}. If $>i ( xi, x2 ) be the product of the distinct

irreducible factors of $ ( Xi, x2 ) regarded as an algebroid polynomial in x2,

each factor being taken as primitive, then the totality of the configurations

Ci is also represented by the equation

$i(zi, Xi) = 0.

From the foregoing we infer that if (£i, £2) be any point of Ci, then the

element
xi = £i,       x2 = £2,        \x}\ S oo (ji-3, •••,»),

contains at least one point of 9JÎ.

For, this element is a closed manifold in the space of analysis, and in every

neighborhood of this element there are points of M, no matter how far X be

restricted. We have shown, namely, that a point ( u ) can be found indefinitely

near the origin, for which the first two functions <pi(ui, • • •, u„) of (A) are

defined and yield values of Xi, x2 indefinitely near £i, £2 respectively. This

point ( m ) can then be slightly modified, if necessary, so that all the functions

(pi will be analytic there.
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The Algebraic Character of the Configurations Ci. Let Xi and x2 interchange

their roles, i. e., let the second equation (B) be solved for un, thus giving an

equation

(2') tin' + A[ («!,   •••,  tin-l, X2)<-1+   •••    =0.

By the foregoing considerations we are led to a function

ß2(til, •••, ti„_i, X2, Xi)

= f'(Ul,   ••• , ti„_i){€>'(x2, Xi)ti„' +  (tii,   •• • , tin-l)},

and we infer at once that r' = 0. For otherwise it would be possible to choose

a point (xi, x2) not on ©i or the locus (7), and also not on

©',: A'-B'x2 = 0

or on the locus

(11) *'(*2,*i)-0,

and then determine a point (u) arbitrarily near the origin, for which the first

two of the equations (A) admit a simultaneous solution. But here is a contra-

diction.

From the foregoing theory, the locus (11) may consist in part of right lines

x2 = const.    It will surely consist in part of a finite number of monogenic

analytic configurations

C{: xi = ^i(x2),

where ^i is finitely multiple-valued and has at most ordinary branch-points

and poles in the region R[ .

Combining these two results we see that a given configuration Ci may reduce

to a straight line x2 = const. If this is true of every configuration Ci, then

each configuration C[ must reduce to a straight line Xi = const.

If, however, there is a configuration Ci not such a right line, then Ci and a

certain C[ must be the same monogenic analytic configuration; for, each

element (6), (£i, £2) being a point of Ci, contains a point of SD?, and if

Xi = £2 + x2 is not one of the lines which form part of the locus (11), then

the above element must lead to a point ( £1, £2 ) of some C[.

The configuration C\ is algebraic. The curve is known to have at most an

ordinary singularity* at any one of its points save, perhaps, the point (x[,x'2),

in which the lines
A-Bxi = 0,       A'-B'x2 = 0

* A curve, surface, etc., is said to have an ordinary singularity at a point A if in the neigh-

borhood of A it consists of one or more of the manifolds which are given by a set of equations

of the form
Gk ( xi, • ■ ■, xn ) = 0 (t-l,"-,»<n),

where (?* is analytic at A and vanishes there, but does not vanish identically.
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intersect. For values of xi in the neighborhood of x[, but distinct from this

point, the equation of Ci is

*o(zi, Xi) = 0,

where $o is an algebroid polynomial in x2 whose coefficients are analytic in

the neighborhood of x\ with the possible exception of this point. Moreover,

on making if necessary a linear transformation of x2, all the roots x2 of this

equation will remain finite. For, if £2 4= x'2 be a finite cluster-point of roots x2

when Xi approaches.x[, then the point (xi, x2) = (xi, £2) is a point of C[,

and C[ is given near this point by the equation

&o(Xi, Xi) = 0,

3>ú being analytic at ( x2, Xi ) = ( £2, x[ ). Hence the coefficient of the highest

power of x2 in <3?o ( Xi, x2 ) can be reduced to unity, and the other coefficients

remain finite at x\. They have, therefore, at most removable singularities

there, and thus the statement is proven.

The above investigation includes the case that the ( ) in (5) vanishes identi-

cally. Let ( u° ) be a point of the neighborhood of the origin, in which neither

6?i nor Gi vanishes. Then Xi and x2, computed for any point (u) in the

neighborhood of ( u° ), will necessarily make $ ( Xi, x2 ) vanish. Consequently,

if Xi and x2 are replaced in $(xi, x2) by gi/Gi and gi/Gi respectively, the

resulting function of (mi, •••, un) vanishes identically in those variables.

Hence gi/Gi and g2/G2 are connected by an algebraic relation.

More generally, if the left-hand side of (5) is divisible by an irreducible

algebroid polynomial in x2 with coefficients in Xi alone, analytic in R\, or by a

power of such an algebroid polynomial, the other factor is of the form

0(xi) + (Mi, •• • , M„_i),

where 6 ( xi ) is analytic in R\ and the ( ) vanishes at the origin. For, this

factor is an algebroid polynomial in x2 of degree 0.

The Manifold Si. The points ( xi, x2 ) which lie on the manifolds Ci and C[

shall constitute the manifold SÎ, and Si shall consist of the points

Si: xi = £i,       x2 = £2,        |x,| ^ oo 0'-3,>.*,»),

where ( £i, £2 ) traces out S*.

Those points of the cylinder Si, for which ( £i, £2 ) is a fixed point form an

element of Si.

Theorem. In Case 1, r = 0, 2ft lies on Si, and each element of Si contains

at least one point of SDÎ.

For, no point of SDÎ can lie in 7^ or R¡. The only remaining points are those

which lie on Si and those for which ( xi, x2 ) is at the intersection of one of the
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exceptional lines xi = const, (i. e., @i or <j>(xi) =0) with a similar line,

x2 = const.    But SO? is a connected manifold, and hence this case is excluded.

5. Case 2, r > 0

The Manifold ©2 and the Regions R2,R2, R\, R\. The manifold <S2 shall be
defined as consisting of those points of Tii in which $ vanishes,

@2: *(xi, x2) = 0.

The remaining points of Ri constitute the region Ri.

Let <3¿ be imbedded in a region S2 and let the points of S2 which lie in R\

be removed from this region. The remainder of Tii forms the region R2,

which shall be taken as closed.

The definitions of R2, Rk are now given precisely as in the earlier case for

Tii, Tii •
The Equation

(12) ^(Xi,X2)urn-l + (til,  •••, tin-l)  = 0.

Let (£i, £2) be a point of R\. Then equation (12) is equivalent to the

following :

(13) uU + 5itCl+ ••• +Br = 0,

Bk = Bk(ui, ••• ,ti„_2, xi, x2),       Bk(0, ■■■, 0,xi,x2) = 0,

where ( Xi, x2 ) lies, to begin with, in the neighborhood of ( £1, £2 ).

It is shown as in the case of equation (2) that Bk(ui, • • •, un-2, Xi, x2 ) is

analytic at every point of the manifold

Uk = 0,       k = 1, • • •, n — 2 ;        ( xi, x2 ) in Ti|.

Let ( £1, £2 ) be an arbitrary point of R\. It is then possible to find a point

( ti° ) within an arbitrarily preassigned neighborhood of the origin, for which

the first two of the equations (B), written for Xi = £1, x2 = £2, are satisfied.

Thus (ti1 ) can be chosen near (u°) so that no pair of functions o,-, Gi vanish

in ( tí1 ), the corresponding point ( £l, £2 ) lying near ( £1, £2 ). Hence for ( ti1 )

equations (A) all have a meaning, and thus it appears that there is at least one

point of ÜÖc on the manifold

Xl = £1,       x2 = £2.

Since SDc is perfect, the restriction that ( £1, £2 ) be a point of R\ can now be

removed, and the result just obtained is seen to hold when the point ( £1, £2 ) is

wholly arbitrary.

6. The Case p = 2

When p = 2, the last n — 2 equations (A) each give for x¡ a definite limiting

value d¿, no matter how (u) approaches the origin, and we are thus led to

the following result :
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Theorem. When u = 2 and r = 0, the manifold consists of the intersection

of the (reducible or irreducible) algebraic cylinder Si with the hyperplanes x¡ = a¡,

3 = 3, •■■ ,n.

In particular, if n = 2, r is necessarily 0, and 'SSI is the algebraic plane curve

Sî = Si.
When « = 2 and r > 0, 95? consists of the linear manifold

Xj = a¡ U -3, •",»).

7. The General Method

We have discussed all cases in which p = 1 and u = 2, and the treatment

of the general case, p = p, is already clearly indicated. When p > 2, how-

ever, there are still points requiring further development.

The argument here is as follows: Let (£i, £ü) be a point of RI, and let

r >0. Then (12) can be solved for w„_i by (13). Moreover, a point

( £1, £2 ) can be found near ( £1, £2 ) and a point ( u\, •• •, u'n_2 ) near the origin

such that one branch of (13),

M„_l  =/(Mi,   • •• , M„_2, Xi, Xi)

will be analytic at (u[, •••, u'n_2, £¡, £2) and

there.    Hence the last equation can be solved for X2 :

Xi  = X(Mi,   ••• , W„_i, Xi),

where X is analytic at (mí , • • •, m¿_i , £¡ ).

It is now possible to find a point (u", • • •, u'ñ-i, £1' ) near (u[, • • •, u'„_i, £¡ )

such that, no matter what root u'n' of (2) be associated with it, (.4) will be

defined in ( u" ).   On the other hand, ( £V , £'2' ) lies near ( £1, £2 ).

We begin as in the case p = 2 by forming the functions fl¡ and $> (xi, x2 ),

and we distinguish the two cases, r = 0 and r > 0. For r = 0, the discussion

of § 4 is complete.

It may happen that for every pair of the p equations in question, r = 0.

Then ffll lies at once on each of a set of (reducible or irreducible) algebraic

cylinders
$k(xk, Xi) = 0, (k =2, •••,aí),

and has at least one point in each element of such a cylinder.    Moreover,

Xj = a¡, (j = u + 1, ■•■ ,n).

Hence ÜTJÍ lies on a finite number of irreducible algebraic curves in the (x)-
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space. That 90? consists of all the points of a certain number of these can be

shown by a linear transformation. The details are indicated in the treatment

of the special case of § 8.

When, on the other hand, for some pair of the p equations r > 0, let these

be the first two equations.    Form the functions

r

Xy (til,  • • • , ti„_2, Xi, X2, Xj)  =T[Slj(Ui,   • • • , ti„_2, Uf_i, Xi, Xj)
k=l

(¿=3, ---.n),

where uikli denotes a root of (12) or (13). On making, if necessary, a linear

transformation of tii, • • •, w„_2 we can write

X3(til,  ••• ,ti„_2,Xi, x2,x3)

= /l(til,   • • • , Un-2){¥(Xl, X2, X3)ti„_2 +  (til,   • • • , ti„_2)},

where the { } admits no factor in tii, • • • , un-2 alone, and the ( ), when

developed into a power series, contains only terms of at least the sth dimension,

the term in ii„_2 not appearing.

This equation is the precise analogue of the earlier equation ß2 ( tii, • • •, tt„_i,

Xi, X2 ) = 0, and the treatment follows exactly the same lines.

First, X3 is seen to be a polynomial in x3 of degree pr, the coefficients being

analytic in the points (tii, •••, ti„_2, Xi, x2) = (0, • • •, 0, £i, £2), where

( £i, £2 ) is any point of El. ^ ( Xi, x2, x3 ) is also a polynomial in x3 with

coefficients which are analytic in R\.

A necessary condition that the first three equations (^4) admit a simul-

taneous solution (tii, • • •, tt„, Xi, x2, x3) is that

^ ( Xi , X2 , X3 ) ti„_2 +  ( tii ,   • • • ,. tin-2 )   =  0 .

Again, we distinguish two cases: Case 1, s = 0; Case 2, s > 0.

In Case 1 it is shown as before that ^ is of positive degree in x3. The

algebroid polynomial ^ may admit factors which depend on xi and x2 only.

If these are suppressed and the remaining factor is denoted by ^1, then the

equation

(14) ^l(X!,X2,X3)   = 0

defines a finite number of monogenic analytic configurations

C2: x3 = \p(xi,x2),

where \p denotes a finitely multiple-valued function having at most ordinary

singular points* when (xi, x2) lies in R22, as is shown by the equation (14).

Denote the coefficient of the highest power of x3 in \i? ( Xi, x2, x3 ) by cp ( Xi,

* A function is said to have an ordinary singular point if the corresponding analytic con-

figuration has an ordinary singular point.
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x2 ). Then d> is analytic at every point of RI. Denote the locus <j> = 0 in the

space of the variables ( xi, • • •, x„ ) by

S2: >p(xi, Xi) = 0,

and in the (xi, • • • , xk)-space by S2.    S2 is regular at every point of R2.

Let ( £i, £2, £3 ) be a point of C2.    Then the element

Xi = ti,       ¿ = 1,2,3;        |x,-| < » (j = 4, ••-,»),

contains at least one point of SO?. Furthermore, if (£1, £2) Jies in R\, but

not on S\, the only points of SR are those which belong to C2.

If $ ( x\, x2 ) = const., then all points of the corresponding hyperplane,

x3 = const., which is surely algebraic, belong to 9JÎ, when n = 3, and lead

to points of SDÎ when n > 3.

Suppose \[/ actually involves at least one of the letters Xi and x2, say x2.

We will now allow x2 and x3 to permute their rôles. We get, then, a function

X¡ with an s', and it is seen as in the earlier case that s' must vanish. Thus

we are led to a configuration

C2: x2 = ^'(xi, x3),

and this must be the same as C2.

It remains to show that C2 is algebraic. We know already that C2 has at

most an ordinary singularity at any one of its points which does not lie on ©1 or

©2 and ©i or ©2. Assume to begin with that n = 3. Let ( £i, £ü , £3 ) be a

(finite or infinite) point of intersection of C2 with ©2 and ©2 (hence not lying

in ©1 or ©Í ), and let £1 4= a, where

(15) Xi = a

is the equation of one of the planes, if such exist, which form part of the

surface ©2 or ©2.    The line

Trans. Am. Math. Soc. 18



268 WILLIAM F.  OSGOOD [July

(16) xi = £i,       x2 = £2

meets the surface @2 in p' points. Surround each of these points by a neigh-

borhood, oi, o2, • • • . The line may meet C2 outside of these neighborhoods.

If so, each such point of intersection will be at most an ordinary singular

point of C2. In general, the number of such points of intersection will be

finite; in particular, the whole line (16) may lie in C2.

We may assume in the first case that all the points of intersection of the line

in question with the surfaces ©2 and C2 lie in the finite region, for a suitable

transformation of the group of the space of analysis will ensure this result.

Consider, then, the x3 coordinate of C2, regarded as a function of Xi and x2

in the neighborhood of the point ( Xi, x2 ) = ( £i, £2 ). This function is

p-valued, and it has at most ordinary singularities, except possibly for the

points (xi, X2) which lie on ©2. Moreover, all its determinations remain

finite.    Hence it satisfies an equation of the form

(17) xS + C1(x1,x2)xr1 + ■•• +Cp(xi,x2) =0,

where Ck ( Xi, x2 ) is analytic at all points of the neighborhood of ( £1, £2 )

except possibly at such as lie on ©2 and where, furthermore, Ck ( xx, x2 )

remains finite in this region. It follows, then, from the extension of Riemann's

theorem relating to removable singularities that C* ( Xi, x2 ) will be analytic

throughout the entire neighborhood of ( £1, £2 ) if properly defined there.

Consequently C2 or C2 has only an ordinary singularity at ( £1, £2, £3 ).

If, on the other hand, the whole line (16) lies in C2, we infer at once that

it must be an isolated line of this nature. For, at any one of its points ( £1,

£2, £3 ) not on ©2, C'i is given by an equation of the form

G(xi, Xi, x3) = 0,

where G is analytic at this point and vanishes there and is irreducible there,

and moreover

0(íi, &,*•)-<>.

Hence if G be developed into a power series in x3 — £3, each coefficient will

vanish at the point (xi, x2 ) = ( £1, £2 ) • But the coefficients will not admit a

common factor, and hence for no other point ( £l, £2 ) of the neighborhood of

( £1, £2 ) will G ( £l, £2, x3 ) vanish identically.

In the neighborhood, then, of ( Xi, x2 ) = ( £1, £2 ) the function x3 is given

by an equation of the form (17), whose coefficients Ck (xi, x2 ) are meromorphic

in the neighborhood of ( £1, £2 ) with the possible exception of this one point.

According to a theorem proved by Hartogs* such a function C* (xi, x2) must

♦Mathematische Annalen, vol. 70 (1911), p. 217. Cf. also Madison Collo-

quium, p. 165.
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be meromorphic at ( £1, £2 ), also, and hence the foregoing result is extended

to all points of intersection of C2 with ©2 and ©2 with the sole exception of

such as lie in one of the planes (15).

If ^(xi, x2) does not depend on x\, C2 is a cylinder whose elements are

parallel to the Xi-axis, and hence C2 has at most ordinary singularities in the

points where it meets the planes (15) and ©i, @¡. Thus all points of the

space of analysis are accounted for, and C2 is seen to be algebraic.

If, however, \p ( Xi, x2 ) actually involves xt, then the roles of Xi and x2 (or

x3 ) can be interchanged, and reasoning similar to the foregoing will show that

\f/(xi, Xi) first has only ordinary singularities in R2 except for isolated points.

Secondly, these points are eliminated by Hartogs's theorem.

Finally, the points of intersection of the plane ©i with the corresponding

planes of the permuted variables are disposed of in a similar manner, and thus

we see that the configuration C2, in the extended space of analysis, has at most

ordinary singular points.    It is, therefore, algebraic.

The intersection of the part of ©2 distinct from the planes (15) with the

analogous part of ©2 may comprise curves not lying on C2, and we are not

able to say from the foregoing analysis whether these belong to 90? or not.

We shall return to this question in § 9.

8. The Final Theorem for the Case p = 3, n = 3

Beginning with the first two of the equations (B), we are led first to dis-

tinguish between the cases r = 0 and r > 0.

In Case 1, r = 0, the manifold 90? lies wholly on an algebraic cylinder,

which may be reducible.

On permuting the variables x\, x2, x3 and the corresponding equations (B),

and applying the results which have been obtained, it is seen that one must

again distinguish two cases, according as the new r' is = 0 or > 0.

In the first case it appears that 90? lies on a second algebraic cylinder, whose

elements are perpendicular to those of the first, and hence 93? lies on a finite

number of irreducible algebraic space curves.

That the points of 90? coincide with the totality of those of a certain number

of these curves is seen from the fact that, on making if necessary a linear

transformation

x'i = Ou Xi + ai2 x2 + ai3 x3 (¿ = 1,2,3),

and introducing new functions g\, G\ such that

ri> ~ aH n   "r a»2 /-»   T «¿3 n ,
\J, \ji Cr2 I73

a point of 90? will go over into a point of 90?', and furthermore an element of
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one of the cylinders containing SOT in the transformed space will meet 9)c' in

general in only one point. But at least one point of 9Jc must lie on each

element of such a cylinder.

There will remain at most a finite number of elements of the cylinder in

question which meet the curves on which üfjc lies in more than one point, but

only in a finite number of points. These points also belong to 9ft, since this

manifold from its nature is perfect.

If, on the other hand, at least one of the numbers r, r' is positive, let it be r.

Since we have assumed n = 3, s will always be = 0. The points of 9Jc then

coincide with the totality of those of a finite number of irreducible surfaces.

For, if ( £i, £2 ) is a point of R2 not lying on S2, the line

Xl =  £1, X2  =  £2, |X3|   =i   00

meets the surfaces C2 in a finite number of points, each of which is a point of

'SSI, and these are the only points of TI on such a line.

If, however, the above line lies in ©1 or ©2 or S2, let two of the x's, as x2

and x3, be interchanged. A point (£1, £2, £3) of the above line for which

( £1, £3 ) lies in R'2 , but not on S2, will belong to TI if, and only if, it lies on

the surfaces in question.

Thus doubt remains only for such points as lie at once on ©1 or ©2 or S2

and ©1 or @2 or S'2; i. e., on certain manifolds of a lower number of dimensions.

The proof that no such points belong to TI unless they lie on the surfaces in

question will be given in § 9.

Had we taken p = 3, n = 4, it might have happened that neither r nor s

is 0. In that case, the points of TI have their first three coordinates wholly

arbitrary, and the fourth is a constant :

_g4(0, 0,0,0)Xl     üi     GAO, 0,0,0) '

Thus Tt is the hyperplane x4 = d4.

9. Proof of the Non-Existence of Manifolds of Lower Order of

Dimensions*

Restricting ourselves still to the case of § 8, namely, p = 3, n = 3, we

begin by disposing of any manifolds S2 which may be present. For this

purpose it is enough to apply a suitable linear transformation to Xi, x2, x3,

replacing the functions fa, fa, fa by new functions through the same trans-

formation. Thus a cylinder S2 goes over either into one of the new surfaces

C2 or else its points are seen not to belong to Tt, with the exception of such as

lie on the curves which it is the object of this paragraph to investigate.

* This paragraph was written in June, 1918.
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We have, then, a finite number of algebraic surfaces, whose totality is

denoted by C2 and all of whose points are points of 90?. No other points of

the (x)-space can belong to 90? except possibly those in which an ©j or an ©¡

cuts an ©Í or an ©2, and we proceed to show that these points are never points

of 90?.
Suppose, then, that 90? contained a point (x°) lying on the intersection of

©2 with ©2, but not on C2, and suppose ( x° ) to be an ordinary point of such a

curve. Then we can arrange things so, by means of a linear transformation

of the sort just considered, that ( x° ) lies in the finite region and the plane

(18) x3 = x\

meets this arc in only one point near (x°), and the same will be true of the

intersection of every other plane

(19) x3 = X,

where

|X-*a°|<A,

h .being a suitably chosen positive number.

Let us cut the (x)-space by the plane (19), considering now those points

(x) given by (A) which lie in this plane. Analytically this means that we

restrict ( u ) to lying on the surface

(20) 03 (mi, Ui, uz) - XG3(mi, M2, m3) = 0,

but not at a point of any one of the three curves

(21) gi(ui, Ui, u3) = 0,       Gi(ui, Ui, u3) = 0      (¿ = 1,2,3).

For a non-specialized choice of the coordinate system in the (w)-space

equation (20) is equivalent to an algebroid equation,

(22) u\ + Yi ur1 + • • • 4- r, = 0,

r* = rft(M!,M2,x),     i\(o,o,x) = o.

We are thus led to a transformation

(A') Xi = (¡>i (Ui, Ui, U3) , Xi = <fe (Ml, M2, m3),

where xx, x¡¡ are single-valued functions on the algebroid configuration (20),

in general analytic; and we are interested in certain points of the manifold

90?' belonging to (A').

It is impossible for xj and x2 both to remain finite in the neighborhood of a

point X = X0:

|X-Xo|<S,
where Xo has a value near x\ :
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|Xo-*S|< A' <ä.

For then xi and x¡¡ would both approach limits

Xi = ^l(X), X2 = ^2(X),

and hence TI, for all values of x3 near x3, would be restricted to the one-dimen-

sional locus
Xl = $i(x3),       x2 - ^2(x3).

But TI contains at least the points of intersection of the plane (19) with C2,

and this intersection is a curve.

Let TI be encased in a neighborhood S so chosen that the cross-section oi

of S by (19) near (x°) is exterior to the remainder o of the total cross-section.

Let e be so chosen that, when (ti) lies in a region X, for whose points

(23) |t**|<« (¿ = 1,2,3).

( x ) lies in S.

If, now, ( x° ) be a point of TI, it is possible to find a point ( x' ) near ( x° )

such that a point (u') of the above ¡E yields (x') through (A); and more-

over u[ u2 can here be restricted to being arbitrarily small :

(24) |til|<ei,        |ti2|<ei.

Furthermore, if X be chosen arbitrarily within a suitable region

(25) |X-X'|<tj,       X'-ari;

and if tii, tiü be taken near ti'i, u2, then equation (20) will have a root u3 near

u3, and (A) will be defined in the new point (u), the corresponding point (x)

lying near ( x' ).

Let S be a region of the ( xj, X2 )-plane including in its interior the region

di which corresponds to a X in (25), but not including any point of the o

which corresponds to such a X. These conditions can be met by restricting

S and h suitably at the outset. Then we can find a Xi in (25) and a point

( ti ) for which (A) is defined, such that

ti) |«i| < «i,        |«î|<€i;

(ii) ( Xi, X2 ) lies outside of S.

And the same will be true if X be chosen arbitrarily in a certain neighborhood

ofXi:

(26) |X - Xi|< in,

which region lies wholly in (25).

Next, we can find a X2 in C26) and a point (ti) for which (A) is defined,

such that
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(i) I«11 < 62, |m2|<€ü;

(ii) (x\, Xi) lies outside of S.

And the same will be true if X be chosen arbitrarily in a certain neighborhood

of X2:

(27) |X->■!<*,

which region lies wholly in (26).

Repeating the step indefinitely, we obtain a set of nested regions in the

X-pIane, which have at least one point X" in common. Giving to X this value,

X = X", we see that the plane

(28) X3 = X"

contains a set of points (xi, X2) all lying outside of S and corresponding to

points ( u ) for which (A) is defined and lim ( u ) = ( 0 ). These points ( x )

have at least one point of condensation which lies outside of S, and this

point belongs both to 90? and to the 90?' corresponding to X = X".

We can, then, find a point ( u" ) on (20) arbitrarily near the origin such that

(A) is defined in it and the point (x") (x3 = X") lies in 2 but outside the S

corresponding to X = X", and hence in the a which corresponds to X = X".

Returning to (x'), we now modify its choice so that x3 = X"; the point

( x' ) still lying in <ri and ( u' ) being restricted as before.

We now are able to deduce a contradiction. For, (u') and (u") can be

joined by a path lying on (20), at each point of which (A) is defined, and

furthermore this path can be taken to lie wholly in (23). As (u) describes

this path, (x) goes from (x') to (x"), always remaining in the plane (28),

and hence (x) passes outside of <t\ and <r; i. e., outside of 2. But this is im-

possible, since each point ( u ) of (23) for which (A) is defined, yields a point

(x)ofS.

It follows, then, that 90? can have no point which is an ordinary point of

intersection of ©2 and @2 not lying on (15). Other points of intersection of

©2 and ©2 not lying on (15), being isolated, cannot belong to 90?, either.

To dispose of the points of (15), it is sufficient to allow Xi to interchange its

rôle with X2 or x3; and the points of ©1, ©¡ are disposed of in like manner.

The method admits extension to the higher cases. Thus, when ra = 4 and

u = 4, the manifold C = C3 consists of a reducible or irreducible algebraic

hypersurface (three-dimensional).    Here, we cut by the pair of hyperplanes,

x3 — X3, X4 = X4.

If, on the other hand, n = 4 and the manifold of the maximum number of

dimensions consists of a surface (two-dimensional), the case is analogous to

that of the curve treated in § 8, or else to the linear manifold treated at the

end of that paragraph.
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10. The General Theorem

We can now state the result in the general case, the foregoing treatment

applying without let or hindrance to the proof in that case.

Theorem.   Let
if,-(mi, ••• ,u„)

Gi(ui, ■■■ ,u„)

be such a transformation as is defined in the introductory paragraph. The

manifold TI is then made up of a finite number of algebraic manifolds of the

following kind.

In the space of the first p variables, (Xi, • • • , x^), where 1 =i p =1 n, there

exists a manifold $ formed by a finite number of irreducible algebraic curves

(k = 1 ), surfaces (k = 2), or hypersurfaces of order k < p, this number k

being the same for all; or finally, when p < n, M may include all the points of

the space in question, and we set here k = p.

Then TI consists of the points ( Xi, • • •, x„ ), where ( Xi, • • • , x^ ) is an arbi-

trary point of $, and

''-«-C-'.'.'.o)        «-. + >.-.•>■
We note that, if TI be imbedded in an arbitrarily restricted neighborhood U,

then X can be so chosen that the images ( x ) of all points ( u ) of X will lie in

U. For, if the points of U be removed from the (x)-space, the remaining

region will be closed. To each of its points ( x' ) corresponds a definite positive

V such that, if X lie in the region

\uk\   < V (k = 1, ■■■ ,n),

( x' ) will not be the image of any point ( u ) oiX.   And now, if each v is chosen

as large as possible, it is shown by familiar reasoning that the lower limit of

the t;'s for the closed region in question is positive.

Harvard University,

April, 1917


