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A single-valued function/(x) of the real variable x is said to be "convex,"

if the inequality
J{xi)+f{x2)

/(*_=)

holds for every pair of real numbers ( xi, x2 ) belonging to the region of defini-

tion!, of /(x). The notion is due to JensenJ and has been found useful in

various connections. The purpose of this note is to prove two new properties

of such functions. In both cases, the proof here given is independent of the

results of Jensen or of others. In particular, no use is made of the Cauchy

algebraic artifice, § upon which Jensen's demonstrations are based.

The first property involves the definition of a convex function of two

variables.   We formulate at once the

Definition of convex function for ra-space.|| A single-valued function

/(xi, x2, • • • xn) of the n real variables Xi, x2, • • • x„ is said to be "convex,"

if the inequality

/(xi, x2, ••• x„) + f{yi,y2, ••• 2/»),(xx + yx  x2 + y2 xn + yn \ ^

;\     2      '      2     '   "       2     )=

holds for every pair [ A = (Xi, x2, • ■ • xn), B = {yx, y2, • • • yn)] of points

of n-space lying in the region of definition of/. In other words, if M is the

midpoint of the segment AB, we have

(I) /(Jf) ___+__,

where / ( A ) stands for / ( xi, x2, • • • x„ ), and /(_),/( i_ ) have analogous

meanings.

Theorem I.    If a convex function of two variables, defined in the interior and

on the boundary of a square, is such that the functional values at the boundary

* Presented to the Society, December 2, 1916.

f It will be understood that / ( x ) must be finite to be regarded as defined at x .

î A c t a Mathematica, vol. 30 (1906), pp. 175-193.
§ Loc. cit., pp. 175-179.

|| Jensen, loc. cit., gives this definition also, but makes no use of it.
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points have a finite upper bound g, then the functional values at interior points

have the same upper bound g.    Moreover, f is continuous at every interior point.*

If P is a given interior point, there exist two boundary points JBi and B2

having P as midpoint.    Hence, in virtue of (I), we have

;<» «*»>+'<*>«,.

which proves the first part of the theorem.

To prove the second part, we shall show that no sequence {Qn} of points

exists, such that limBH>00 Q„ = P, and lim»-»« fiQn) + / ( P ). Suppose, on

the contrary, there is such a sequence. Letting/ ( P ) = a, we may then assume

without loss of generality that lim«^«, / ( Qn ) > a. For let P be the midpoint of

the segment QnRn. Then according to (I), we have 2/ ( P ) Si / ( Qn ) + / ( Rn),

whence/ ( R„ )£ 2a -fiQn). If limB^w/(Qn) <a, then lim inf„_»w/(Ä„) > a.

We may thus obtain in any case a sequence of the desired property. In

accordance with lim,,-»,«, / ( Qn ) > a, we write/ ( Qn ) = a + h„, lim,,-»,,,, h„=h>0.

Let P, Q„ = Qni, Qn2, • • • Qnt be a sequence of equally spaced points in the

direction from P to Qn, the distance between two successive points thus being

PQ„.   Then by virtue of (I), we have

fiQnk)-fiQnI=i)>fiQnk=l)-fiQ^)>   ■■■>fiQnx)-fiP)=hn;

whence/(Q„¡fe) > a + khn. If now Ä; is a given integer however large, and

e a given positive quantity however small, there exists, on account of

lim„_»M Qn = P and lim,,..^, h„ = h, an integer v such that Qvk is still in the

square and \h — hv\ < e. But by a suitable choice of k and e, we see from the

relations fiQvk) > a + khv > z A~kih — e) that/(Q„*) may be made large

enough to contradict the relation fiQvk) < g.   Our theorem is thus proved.

It is easy to construct examples to show that / need not be continuous at

boundary points.

Theorem II. A (Lebesgue) measurable convex function defined in a given

interval is necessarily continuous at every interior point of the interval. In other

words, a convex function that is discontinuous at an interior point of an interval

where it is defined is necessarily non-measurable.]

Suppose that / ( x ) is defined in the interval ( a, b ) and is discontinuous at

* See below for generalizations.

t Examples of non-measurable functions have been given by Vitali, Van Vleck, Lebesgue

and Hausdorff. See Schoenflies-Hahn, Erdwickelung der Mengenlehre und ihrer Anwendungen

(1913), p. 374. AU these examples have been constructed, we might say, for their own sake.

On the other hand, non-measurable functions occur in this paper in natural fashion, as a

result of the study of convex functions. Cf. Schimmack, Axiomatische Untersuchungen über

die Vektoraddition, Dissertation (Halle), 1908, p. 14, where the special case/(z+2/) =f(x)+f(y)

(cf. Corollary below) is treated.
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the interior point £ of ( a, b ), so that a sequence {£„} exists, such that

lim,,^«, £„ = £ and __„_»,„ / ( £„ ) +/(£). We have here a situation like that

in the proof of the second part of Theorem I. By identifying £ with P and £„

with Qn, we may conclude that/( Qvk ) may be made arbitrarily large, while at

the same time, and independently, Qvk may be brought arbitrarily near every

given point on the left (right) of £, if an infinite number of elements of {Qn}

lie on the left (right) of £. It follows that the upper bound of the functional

values of fina given subinterval, however small, of {a,b) is °o . For suppose / is

positively unbounded at every point on the left—a similar argument will

hold for the right—of £. Let e be a given positive number however small,

and n a given positive number however large. Then a positive number

5 < e/2 exists such that 2/(£ - 5) -/(£ - e) > n. In virtue of (I),

/(£ + e - 25) > 2/(£ - 5) -/(£ - e) > n. Since £ + e - 25 > £ and

vanishes with e, the inequality / ( £ + e — 25)>n shows that / is positively

unbounded also on the right of £. From this it follows, in particular, that a

sequence {_„} of points entirely on the right of £ exists such that

lim_n=£,       lim/(_„) >/(£);

hence / is positively unbounded at every point on the right of £ .*

Let @re, where n is a positive integer, represent the set of points x of ( a, b )

such that f{x)>n. Ifx belongs to _>„ and d is a positive number such that

x + d and x — d are both in ( a, b ), then either x + d or x — d belongs to _ „.

For otherwise, we would have / ( x — d) _in,/(x + tZ) _=n, whence, ac-

cording to (I),
t,   , ^.f{x-d)+f{x + d)^
f{x) _i-g-_¡ 71,

contrary to the assumption that x belongs to ©„. Let now (a, ß) be any

subinterval of (a, b). Since /(x) has an infinite upper bound at every

point of {a, b), we may select as near {a + ß)/2 as we please a point x

belonging to ©„. Since either x — d or x + d belongs to ©», we may, by

varying d from 0 to min (x — a, ß — x), obtain in (a, ß) a set of points

of ©„ whose exterior (Lebesgue) measure is as near {ß — a)/2 as we please.

As this holds for every interval ( a, ß ), it follows that the exterior measure

of @n is b — a. For it is not difficult to show that, if the exterior measure

of a set is less than b — a, and if e is a positive number, however small, a sub-

interval (a, ß) of (a, b) exists in which the exterior measure of the set is

< e{ß-a).

It now follows that/(x) is non-measurable.    For if/(x) were measurable,

* For the purposes of the proof of Theorem II, it is sufficient to know that / is positively

unbounded ;ust at £.
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the complement of ©„ would have a measure approaching b — a as n —» =c ,

and hence, in contradiction to the above, ©„ would have a measure approaching

0 as n -> » .

If fix) is a non-measurable function of the type described above, and hence

unlimited, then

is a non-measurable function with values lying between — 1 and + 1.

The functional equation*

fix + y)=fix)+f(y)

is a particular case of (I).   For it follows from this functional equation that

f(H*)-MH-)+f(^)]
= *[/(«!+ *»)-.]- hlf(xi)A-f(x2)],

whence

_fixx)+fix2)H-0-
which is a particular case of (I).    We thus obtain the

Corollary.   Every discontinuous solution of the functional equation

f(* + y)=f(x)+f(y)
is non-measurable.

Generalizations of Theorem I. (a) Our first extension of Theorem I con-

sists in employing an arbitrary finite planar "region" instead of a square.

By a planar "region," we shall here understand a point set 9î consisting

exclusively of interior points; i. e., such that every given point P of 9Î may

be enclosed in a neighborhood—dependent on P—of which every point belongs

to 3Î. The "boundary" of 9Î consists of those points of the plane that do not

belong to 9Î but in whose every neighborhood there are points of 9Î. Evidently

the boundary of a region is a closed set of points.   We have

Theorem la. If a convex function, defined in the interior and on the boundary

of any given finite planar region 9Î, is such that the functional values at the

boundary points have a finite upper bound g, then f has g as upper bound in ¡Jt,

and it is continuous at every point of 9Î.

Manifestly it is sufficient to prove that / has g as upper bound ; from this

fact, the second assertion of the theorem is seen to follow from Theorem I,

by enclosing every point of 9î in a square lying entirely in dt.    If P is a given

* Cf. Hamel, Mathematische Annalen, vol. 60 (1905), pp. 459-462; Schim-

mack, loc. cit.
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point of 9î, we shall show that there exist two boundary points Q and R

having P as midpoint. From this fact, the desired inequality, f{P) = g,

follows as in the proof of the first part of Theorem I.

To show the existence of Q and R we completely enclose 9Î in non-over-

lapping polygons*—which need not be more than finite in number—such

that every boundary point of an enclosing polygon is at a minimum distance

< e„ from the boundary points of 9Î; here {«„} is a sequence of numbers such

that limn^«, e„ = 0. For every n we have such a finite set of polygons. Let

$„ be the polygon belonging to the nth set and containing P. It is obvious

in the simplest cases, and susceptible of proof in general, that we may select

on the boundary of tyn two points Q„ and Rn having P as midpoint. From

the sequence {Qn} select a subsequence {QaJ having the point Q as a limit;

then R„n will also have a limit, say R, such that P is the midpoint of QR.

Furthermore, Q—and likewise R—belongs to the boundary of 9Î. For let

Cc be the circle of radius e having Q as center. For sufficiently large n, the

point Q-n, which belongs to the boundary of <$„„, is at a distance < e/2 from

Q. Again, for sufficiently large n, we have e„n < e/2, and in particular,

there is a boundary point of 9Î at a distance < e/2 from Qffn. Hence there is

a boundary point of 3Î at a distance < e from Q. Since this holds for every e,

it must be that Q is a limit of boundary points of 9Î ; and since the boundary

of 9Î is closed, Q itself is a boundary point of 9Î.

(6) Secondly, it is apparent that Theorem la is directly extensible to n-space.

A "region of 7i-space" is analogously defined as a set of interior points.

(c) Theorem 16. If a convex function f of n variables, defined in the interior

and on the boundary of an n-dimensional cube K, is such that the functional

values at the points on the one-dimensional edges of K have a finite upper bound g,

then f has g as upper bound in K, and is continuous at every interior point of K.

For from Theorem I—or la—we conclude that / has the upper bound g

in the two-dimensional faces of K ; then, from the extension of la to three dimen-

sions, that/ has the upper bound g in the three-dimensional cells of K; etc.

Theorem 16 indicates how a generalization of Theorem la, as extended for

n-space, may be effected by demanding the boundedness of g merely in a

suitably chosen subset of the boundary of 9Î, instead of the entire boundary.

But we shall not enter here into a more detailed consideration of such a

generalization.

* Cf., for example, Hausdorff, Grundzüge der Mengenlehre (1914), p. 342.


