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BY
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1. Introduction. The writer has recently published a proof of the following

theorem :f

Theorem I. // the points Zi, z2, z¡ vary independently and have circular regions

as their respective loci, then the locus of the point z4 defined by the real constant

cross ratio

X = (zi, z2, zs, z4)

is also a circular region.

It is the purpose of the present paper to consider generalizations of and other

results related to Theorem I, primarily the determination of the locus of the

point z4 defined as in Theorem I, when zh z2, z3 vary independently so as to have

certain prescribed loci. Thus one may raise the following question: If two

variable points lie respectively on two fixed circles, where does the mid-point of

their segment lie? The answer is contained in Theorem VI. Or again, if the

loci of the points Z\, z2, z3 are regions each bounded by a number of circles, what

can be said of the locus of z4?   The answer is given by Theorem VII.

All the results proved concerning such loci as these can be interpreted in terms

of the roots of the jacobian of two binary forms. Such an interpretation is given

in §12.

The chief method used in the present paper to determine the locus of z4 in

any given case is that suggested in I (pp. 102, 103, footnote), namely the

determination of the locus of z4 when zi and z2 are held fast and z3 varies over its

locus; the determination of the locus of this locus of z4 when zx is kept fixed

but z2 varies over its locus ; and finally the determination of the locus of this new

locus of z4 when Zi varies over its prescribed locus. In the present paper this

method is carried through geometrically. The same method has been used by

Professor A. B. Coblet to determine analytically the locus of z4 in Theorem I,

* Presented to the Society, September 7, 1920, and September 9, 1921.

t These Transactions, vol. 22 (1921), pp. 101-116; this paper will be referred to as I.

We shall also have occasion to refer to another of our papers, using the letter S: Comptes

Rendus du Congres International des Mathématiciens, Strasbourg, 1920, pp. 349-352.

The term locus used in Theorem I of the present paper replaces the term envelope used in I.

{Bulletin of the American M athematical Society, vol. 27 (1920-1921),

pp. 434-437.
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but analytic determination in the more general case is less illuminating and

probably more difficult than the geometric determination.

Throughout the present paper, as throughout I, circles play a central rôle.

2. Theorem II, a property of the boundaries of the loci. We suppose once

for all that the loci of the points Z\, z2, z3 are closed regions bounded by a finite

number of regular curves.* We admit, however, the possibility of having these

loci either points or regular curves instead of two-dimensional continua bounded

by such curves.

For loci of this sort we prove a result which corresponds to, but is more general

than Lemma III (I, p. 104) ; the prescribed loci of Z], z2, z3 are denoted by Pi, P2,

T3, respectively, and the locus of 'z4 defined as in Theorem I is denoted by P4.

Theorem II. If the point z4 is on the boundary of P4, then any set of points

zi, z2, z3 corresponding lie on the boundaries of their respective regions T\, P2, T3;

if none of these four points is at a vertex of its proper region, the circle C through the

Points Z\, z2, z3, z4 cuts the boundaries of Pi, P2, P3, P4 all at angles of the same mag-

nitude, and if C is transformed into a straight line, the lines tangent to these bound-

aries at the points Z\, z2, Z3, z4. respectively, are parallel. If one or more of the points

Z\, z2, z3, z4 is at a vertex of its proper region, C cuts the boundaries of the other regions

at angles of the same magnitude, and if C is transformed into a straight line the lines

tangent to these boundaries at the corresponding points are parallel.

If we consider the defining relation to be

(zi, Zt, z3, Zi) = X,

if X = 0,1, or 00 , and if P4 coincides with one of the original regions (see I, p. 103),

only one of the points zu z2, z3 is effectively concerned with the location of z4,

and Theorem II is not true. Whenever P4 is the entire plane, the locus of z4

has no boundary and the theorem has no meaning. These possibilities are

henceforth excluded.

We phrase the proof to deal with the case that each of the regions Pi, P2, T3

is a two-dimensional continuum, but.a change in wording rather than of reasoning

is all that is required if one or more of these regions is a point. We discuss later

the possibility of curves instead of two-dimensional continua.

When any two of the points Zi, z2, z3, z4 are kept fixed, the relation defining z4

becomes a linear relation between the other two points. Thus, when z2 and Zj

are kept fixed, motion of Zi over a two-dimensional continuum moves z4 over a

two-dimensional continuum, so if z4 is on the boundary of its locus, zi is also on

the boundary of its locus, and similarly for z2 and z3. Under such a linear corre-

spondence, moreover, a circle corresponds to a circle.    For example, when z3

• For the definition of a regular curve, see Osgood, Funktionentheorie (second edition), pp.

51, 324. 150.
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and z4 are considered fixed and when Zi moves along C, z2 also moves along

C. When z\ moves from C along the boundary of Tit z2 moves from C and

makes the same angle with C as the angle between C and the boundary of Tu

If the boundary of T2 does not make this same angle with C, and if neither Zi

nor z2 is at a vertex of the corresponding boundary, this motion of Zi in one

sense or the other from C will cause z2 to move into the interior of 7"2. Then

we keep Zi and z3 fixed. Motion of z3 over a two-dimensional continuum all oi

which is interior to T2 will cause z4 to move over a two-dimensional continuum all

of which is interior to T4, so z4 cannot be on the boundary of T4.

Thus the boundaries of T\, T2, T3 all make the same angle with C, and if we

keep Zi and z2 fixed, moving z3 and z4, we see by consideration of the angles at

these latter two points that the boundaries of T3 and TA make the same angle

with C. The direct conformality of the angles in every case here shows that when

C is transformed into a straight line the tangents to the boundaries of 7\, T2,

T3, Tt at Zi, z2, z3, z4 are parallel if these points are not at vertices of those bound-

aries. If one or more of the points zu z2, z3, z4 is at a vertex of the corresponding

boundary, the result always holds for such of those points as are not at vertices

of those  boundaries.

If one of the original regions Tu T2, T% is a curve instead of a point or a two-

dimensional continuum, further proof is necessary. If for example 7\ and T2

are curves and if C does not cut them at Zi and z2 at equal angles, let us transform

z3 to infinity. Denote by C\ the curve of all points z4 which correspond to a

particular point Zi of T\ and to z3, as z2 traces T2. The angle between C and C\

at Zt is the same as the angle between C and C2 at z2. When Zi now moves on 7\,

points of C'2 which correspond to particular points z2 of T2 move in the direction

of motion of *i. If C does not cut 7~i and T2 at the same angle, this motion of zi

on 7\ will therefore cause C'2 to sweep out an entire two-dimensional continuum

in the neighborhood of z4 and hence z4 cannot be on the boundary of T4.

To compare the angles in which C cuts T\ and the boundary of 7"4, we hold z2

and z3 fast. Motion of Zi from C along T\ causes z4 to move from C along a curve

through z4 either tangent to C or extending on both sides of C. But all points of

this curve are points of T4, and the curve cuts C at the same angle as T\. Hence

either T4 has a vertex at z4 or its boundary cuts C at the same angle as does Tu

We have now given all the essential reasoning in the proof of Theorem II.

We remark incidentally that curves related as are the curves bounding these

regions Tu T2, T3, 7\ have interesting geometric properties.*   Thus when the

* In three-dimensional space we may consider the analogous problem of finding the locus

of points Zt determined by their real constant cross ratio with the points ti, Zj, Za whose loci

are respectively either three surfaces Si, Si, St or three regions bounded by these three surfaces;

the term cross ratio is to be interpreted precisely as in the plane—the four points Zi, Zj, zs, zt

are to be concyclic and the cross ratio can be defined by any complex coordinate system in
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region T3 is simply the point at infinity, the bounding curves G, C2, G are so

related that C (in this case a line) sets up a correspondence between those curves,

so that tangents to G and C2 at corresponding points are parallel and the

corresponding points z\, z2, z4 on the line C divide C in a constant ratio.

Whenever three curves G, C2, G have this property, it is true that lines tangent

to these curves at corresponding points Z\, z2, z4 are parallel, the centers of curva-

ture of C\, C2, G at Zi, z2, Zi are collinear and the ratios of the segments cut on the

line joining them equal the ratios of the corresponding segments of the line C.

If the curves C\ and G are parallel, C4 is parallel to them.

3. Theorems III and IV; cases where the loci are curves. There are two

particularly interesting types of curves Th T2, T3 which may be chosen so that

P4 shall also be a curve.

Theorem III. Let C\ and C2 be two curves which are the loci of the points Z\

and z2 respectively; denote by C the locus of the point

nil -\- nt2

which divides the segment (zi, z2) in the real constant ratio mi. m2. A necessary and

sutf>cient condition that C be a curve is that G and C2 be segments of two parallel lines.

The sumciency of the condition is immediate ; all points z lie on a certain line

parallel to G and C2. The locus C is connected since the loci G and C2 are con-

nected (see I, p. 103).    Hence C is a curve, a line segment.

To prove the necessity of the condition we resort to the type of reasoning just

used in the proof of Theorem II. Let P be an arbitrary point of G, and C'2 the

curve obtained from C2 by similarity transformation with center P. When P

varies on G and takes a position P', every point Q of C2 varies and takes a posi-

tion Q' such that QQ' is parallel to PP'. According to our hypothesis on C,

of which C2 is a part, and when we allow PP' to become smaller and smaller, we

find that the tangent to C2 at Q is parallel to the tangent to G at P. But Q is

an arbitrary point of C2 ; then C2 (and consequently C2) is a curve whose tangent

has but a single direction and hence is a straight line segment.    On the other

the plane of their circle. If under these conditions the locus of z4 is not the whole of space,

which is always the case if the arbitrary surfaces Si, S2, S¡ are sufficiently small and sufficiently

remote from each other, simple consideration of the boundary of the locus of zt as in Theorem

II gives us the following theorem of pure geometry which seems to be new:

The three surfaces S¡, S2, S¡ define a congruence of circles C every circle of which cuts all those

surfaces at points z¡, z¡, z3 at the same angle, and such that if C is inverted into a straight line the

planes tangent to S¡, S2, S3 at z¡, z¡, z¡ are all parallel. That is, any sphere through C cuts Si, Si,

S3 at zi, Zi, Zt at equal angles. If any surface S4 is defined as the locus of points z4 defined

by a real constant cross ratio with zu z^, z3, the isogonal property holds for all the surfaces

Si, 02, 03, Si.

The congruence C is a generalization of the well known normal congruence, for which the

cross ratio property is also well known.
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hand, G is a curve whose tangent at an arbitrary point P is parallel to the line

G-    Hence G and G are segments of parallel lines.

Theorem III is not true for the degenerate values m1 = 0orm2 = 0. The follow-

ing theorem is likewise false for the degenerate values of the cross ratio:

Theorem IV. Let three curves G, C2, C3 be the loci of points zu z2, z3, respectively.

Denote by C4 the locus of the point z4 defined by the real constant cross ratio

X = (zi, Zt, z3, Zi) X ¿¿ 0, 1, or oo .

A necessary and sufficient condition that C4 be a curve is that G, G, G be arcs of a

single circle having no point common to all.

The sufficiency of the condition is immediate. If two of the points Z\, z2, z3

coincide, z4 coincides with them and hence is on the circle of which G, G, G

are arcs. If no two of the original points coincide, z4 is concyclic with those three

points and hence also on that circle. The locus G is connected (proved as in I,

p. 103) and hence is an arc of that circle.

To demonstrate the necessity of the condition, we notice that G, G, G must be

circular arcs ; otherwise we could choose suitably the point at infinity on G, for

example, and G and G would become two curves not parallel lines, which

would be in contradiction to Theorem III. If G, G, G are not arcs of a single

circle there is a point P which belongs to G, for example, but which does not

belong to both of the circles of which C» and G are arcs. When P is transformed

to infinity, G and G are not both straight lines, so we have again a contradiction

of Theorem III. If the arcs G, G, G of a single circle have a point common to,

all the locus of z4 is the entire plane instead of a curve. The proof of Theorem IV

is thus complete.

4. Theorem V, the interest of regions bounded by circular arcs. Theorems

I-IV all indicate the central position in this study occupied by circles and circular

arcs ; this is heightened by the invariance of circles and circular arcs under linear

transformation.    The following theorem results from Theorem II:

Theorem V. Let the regions Tu T2, T3, each bounded by a finite number of

circular arcs, be the loci of points zx, z2, z3, respectively. Then the region 7\ which is

the locus of the point zt defined by the real constant cross ratio:

X=(Zi, Zt, Zt, Zi)

is also bounded by a finite number of circular arcs.

Every point of the boundary of 74 corresponds to points Z\, z2, z3 on the bound-

aries of Ti, T2, T3 and such that the circle C through the four points cuts the

boundaries of T\, T2, T3 at vertices or such that the angles between C and the

boundaries of Ti, T2, T3 are equal in magnitude. Corresponding to each set of

circles, one a boundary (or in part forming part of the boundary) of each of the
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original regions, there are four circles of the type of G (Lemma IV, I, p. 105)

according as C cuts all three circles at the same angle or a definite one at an angle

supplementary to the angle cut on the other two.* Corresponding to each

vertex of one of the original regions and two circles, one a boundary of each of

the other of the original regions, there are two circles of the type of G (Lemma

IV, I, p. 105), and corresponding to two vertices of two separate original regions

and a circle bounding the other region there is but one circle of this type. Since

there are but a finite number of circular arcs and of vertices in the boundaries

of each of the regions Pi, P2, Ps, we have in all but a finite number of circles whose

points can be boundary points of 7"4; every boundary point of P4 lies on at least

one of these circles. The theorem follows at once. It is also true that if Pi, P2,

P3 are bounded by at most a countable infinity of circular arcs, then P4 is

bounded by at most a countable infinity of circular arcs.

Regions of the sort considered in Theorem V are particularly interesting if

they are bounded by entire circles instead of arcs of circles. We shall study in

some detail the loci connected with such regions. The simplest case is that of

circular regions, and has already been treated. The next simplest case is that

of annular regions. We define an annular region to consist of the points common

to two circular regions whose boundaries either have no point in common, or are

tangent, or coincide.f An annular region is thus a closed region; every circular

region is an annular region.

5. Theorem VI, the locus resulting from three circles; case of a single null

circle. A general result concerning loci generated by regions whose boundaries

are entire circles is to be proved later (Theorem VII). We now prove a prelim'

inary result:

Theorem VI. If the loci of the points Zi, z2, z3 are the circles Si, 52, S3, respectively,

then the locus S4 of the point z4 defined by the real constant cross ratio

X = (zi, z2, Zs, z4)

is an annular region.

For the values X = 0, 1 or oo.we must have at least two of the points zi, z», Z3, z4.

coincident. Thus if X = O* the locus of z4 is the entire plane or S3 according as Si

and S2 have or have not a point in common. Similar facts hold for the other

degenerate values of X; compare I, p. 103. In the future we assume X to have

none of these values; then no two of the points »i, z2, z3, z4 coincide unless three of

them coincide.   Furthermore we place ourselves in what we may call the general

* This is true even if the three circles are coaxial; see the detailed proof of Lemma IV, I, p.

105 ff.
t It is possible to define annular regions so as to exclude the possibility of tangency of the

bounding circles. But under this possible definition Theorem VI is no longer true; compare

the results of §5.
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situation, where none of the circles Si, S2, S3 is a null circle, where no two of these

circles are tangent, and where the three circles are not coaxial. We may im-

mediately treat the case that the three original circles have a common point;

the points Zi, z2, z3 may all be considered to lie at that point, z4 may lie anywhere

in the plane, so its locus is the entire plane.

The fact that S4 is a two-dimensional continuum appears from the results of

§3; the fact that the locus S4 is connected appears by the reasoning used in I,

p.   103.
Choose two arbitrary but distinct points Pi and P2 on Si and S2, respectively,

and let us consider the locus of z4 defined by

(Pi, Pt, z3, Zi) = X

when the locus of z3 is S3. If we transform Pi to infinity, z4 is a point which

divides the segment P2 z3 internally or externally in a constant ratio. Hence the

locus of z4 is a non-null circle S4. If Pi and P2 are chosen coincident, z4 must

coincide with them and its locus is a null circle. Let now P2 trace, the circle S2,

while Pi remains fixed. If we determine the locus of all points of the variable

circle S'i we shall have precisely the locus of z4 defined by

(Pi, zt, z3, Zi) = X

when z2 and z3 have as their loci the circles S2 and S3.

We shall first assume that Ss and S3 are not coaxial with the null circle Pi

and that neither passes through Pi. The family of circles a through Pi and

cutting S2 and S3 at equal angles forms a coaxial family ; compare the theorem

quoted in I, p. 106. If Pi is the point at infinity, this family passes through

the external center of similitude of S2 and S3 if S2 and S3; are equal in size and

Pi is the point at infinity, this family is a family of parallel lines. Consider the

circle a through the point P2 and on a the point A determined by the cross ratio

(Pi, P2, zs,A) = \,

where z3 is the intersection of a with S3 such that the tangent to S3 at z3 becomes

parallel to the tangent to S2 at P2 when the circle a is transformed into a straight

line. The point z3 is uniquely determined by these conditions except in the

particular case that a is orthogonal to S2 and S3; in this case we determine z3 by

continuity.

When the circle a varies, the point A traces a circle a\, by Lemma IV (I, p.

105). Moreover, the point A is continually on the circle S'4 corresponding to

Pi and Pt, and when a is transformed into a straight line, the line tangent to

S'i at A is parallel to the line tangent to S3 at z3. Hence as a varies, S'4 remains

constantly tangent to <ri; there is a circle S4 tangent to ax at every point of au
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The family of circles ß through Pi and cutting S2 and S3 at supplementary

angles also forms a coaxial family. When Pi is the point at infinity the circles ß

all pass through the internal center of similitude of S2 and S3. When ß varies,

the procedure just employed for a can be used to show that the circle S4 remains

constantly tangent to a second circle a2 at a point of the circle ß through P2;

there is a circle S4 tangent to <r2 at every point of a2.

The circles <n and a2 are distinct. In fact, let us consider Pi still as the point

at infinity, and denote by A2 and A3 the centers of S2 and S3. Then the reasoning

used in the proof of Lemma IV (I, p. 105) shows that ox and <j2 have as common

center the point z4 defined by

(Pi, At, A3, Zi) = X.

The external center of similitude of 52 and S3 (and which may be the point at

infinity) is the external center of similitude or the internal center of similitude

for both the pairs of circles <ri, S2 and ah S3; the internal center of similitude of

S2 and S3 is the external center of similitude for one of the pairs of circles a2,

S2 and <j2, S3 and the internal center of similitude for the other pair. Neither

of the circles ax and <x2 can coincide with either of the circles S2 and S3, for the

common center of <ri and a2 is distinct from A2 and A3. It follows from this

fact and the fact that the internal center of similitude of S2 and S3 differs from

their external center of similitude that oi and a2 are distinct.

The locus of the points of the variable circle 54 is now apparent. Suppose for

convenience in phraseology that <j2 is interior to <¡\. The circle 54 moves continu-

ously so as to touch both <n and <r2 and touches every point of both circles.

Either 54 includes a2 or S4 does not include <r2, but in either case the locus of the

points of S4 is the annular region between and bounded by <ri and a2. In particu-

lar <r2 (or a) may be a null circle, but the locus of the points of 54 is never the

entire plane.

We have left aside the case that 52 and 53 have a common center M when Pi

is transformed to infinity. This situation will not be discussed in detail, but

is entirely analogous to the case already treated. The two circles ax and a2

have the common center M; if 54 is chosen in any position and rotated about M,

the two circles whose common center is M and which are tangent to S4 are seen

to play the rôle of <ri and a2. These two circles are the boundaries of the annular

region which is the locus of the points of 54.

The case where 52 or S3, say for definiteness S3, is a straight line remains to be

considered. The circle S4 is in every position a straight line parallel to 53.

When P2 varies over S^ the locus of the points of 54 is seen to be a strip of the

plane bounded by two lines parallel to S3, which is an annular region. The

theorem is then proved for the case that Si is a null circle.    We notice that in
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no case can a\ and <r2 simultaneously be null circles, that they never coincide, and

that they are tangent when and only when Pi lies on S2 or S3.

6. Theorem VI, the locus resulting from three circles; general case.   Our

theorem, thus completely proved when Si is a null circle Pi, will be proved in

the general case by determining the locus of the points of the annular region S4

bounded by o\ and <r2 as the point Pi traces the circle Si. We shall suppose for

the present that the three circles Si, S2, S3 are not coaxial and that no two of

them are tangent. It will follow that in Lemma IV (I, p. 105) we can say that

as Z\ is made to vary continuously and in one sense on its locus, the points

Z\, z2, 03, Zi all vary continuously and in one sense on their loci. It should be

remarked in connection with Lemma IV (I, p. 105) that it is essential to suppose

the variable circle C and the points zit z2, z3 to vary continuously or that at least

a suitable convention be made as to the choice of the points Z\, z2, z3 on C when

C is orthogonal to G, G, G- For in that position of C, the condition that when

C is transformed into a straight line the lines tangent to the three circles at

Zi, z2, z3 are all parallel does not determine sufficiently these three points so that

z4 shall lie on G ; and there are in general some extraneous points which enter into

our locus if some convention concerning them is not made.

When Pi varies and traces Si, <n varies also so as to remain constantly tangent

to two fixed circles tx and t2. For consider the circle C through Pi and which

cuts Si, S2, S3 all at the same angle. Choose on C the points z2 on S2 and z3

on S3 such that when C is transformed into a straight line the lines tangent

to Si, S2, S3 at Pi, z2, z3 are parallel. Then the point z4 lies on <ri and also

lies on the circle n of Lemma IV (I, p. 105) corresponding to the variable

circle which cuts the three original circles at equal angles. Moreover when

C is transformed into a straight line the lines tangent to-Si at Pi, S2 at

z2, S3 at z3, oi at z4, t\ at z4 are all parallel.    Hence <n is tangent to n at z4.

In a precisely similar way it also appears that <n is tangent to the circle t2

generated as described in Lemma IV (I, p. 105) corresponding to a variable

circle C" which cuts Si at an angle supplementary to the angles cut on S2 andS3.

The variable circle <r2 remains always tangent to two fixed circles on and on

corresponding to a variable circle C" which cuts S2 at an angle supplementary

to that cut on Si and S3, and a variable circle C"" which cuts S3 at an angle sup-

plementary to that cut on Si and S2.

If the variable circle <n, is never a null circle, n and r2 do not intersect and are

not tangent; for définiteness suppose t2 interior to n. Whether ax moves so as

to include t2 or so as to exclude r2, <ri passes through every point of the plane

between ti and n, so every such point is a point of S4. A precisely similar

remark obtains with reference to<72.

If a2 is ever a null circle, we shall prove that no arc of either of the circles
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oil and oh can be a part of the boundary of S4. The circles u>i and on must either

intersect or be tangent. Suppose cr2 never to pass through the point at infinity.

When <r2 is a null circle, <ri entirely surrounds a2. As a2 varies, immediately

exterior to it there are always points of the final locus 54, for <7i and <r2 can never

coincide and they vary continuously. It may occur that <ri and a2 become tan-

gent, but this can happen only when Pi is on 52 or S3 and thus only at the most at

four isolated points. Except possibly at these four points, wi and o>¡¡ are entirely

embedded in points of 54. A similar remark is evidently true for <xi and the

circles tí and r2, if <ri is ever a null circle.

The boundary of 54 consists entirely of points of the circles ti, t2> coi, c^, by

Theorem IV. The region S4 is closed and its boundary cannot consist in whole

or in part of isolated points. We may therefore suppose that at least one of the

circles <ri or <r2, say for definiteness oi, is never a null circle. If d passes through

every point of the plane, S4 is surely the whole plane. If <n does not pass through

every point of the plane, we suppose that it does not pass through the point at

infinity. If <r2 is ever exterior to <n, it always remains exterior; if ever interior,

it always remains interior; for definiteness suppose that a2 always remains in-

terior to cri. If ffi surrounds neither r\ nor r2, <ri passes through every point

between ti and t2, and every point of 54 is a point between those two circles, so

Si is the annular region bounded by the non-intersecting circles n and t2.

If t2 is interior to ti as well as to <ri (<r2 constantly interior to a), n is one bound-

ary of S4. But no arc of t2 can be a part of the boundary of S4, since except at

most for four isolated positions there are points of S4 interior and adjacent to oi

and hence there are points of S4 interior and adjacent to r2. That is, not more

than one of the circles -n and t2 can be a part of the boundary of S4; no

arc of either circle is a part of that boundary unless that entire circle is a

part of the boundary.    The corresponding statement is true for «i and oh-

In any case, then, the boundary of 54 is composed of at most two of the circles

n, r2, «i, on; it follows quite easily from our previous reasoning that these two

circles do not intersect, so 54 is an annular region.

The foregoing reasoning in proof of Theorem VI is not essentially altered and

need not be further considered in detail if any of the circles n, t2, «i, ut is a null

circle or if either of the circles <ri or <r2 remains fixed during the motion of Pi.

But on the other hand, it is necessary to note that we have essentially two dis-

tinct pairs of circles n and t2, and o>i and oh, or at least that when we speak of the

circle <si as tangent to n at z4 and tangent to t2 at z4 we are not dealing with two

points z\ and z4 which always coincide and at the same time with two

circles ti and t2 which always coincide or are tangent at z4 ( =z4). We prove this

by choosing Pi of such a nature that C does not cut S\ orthogonally and is not

tangent to Si, and such that <n is not a null circle; such choice is possible under
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our restrictions on Si, St, S3. Then C and C" cannot cut Si at the same angle

and hence are distinct. The lines tangent to n (also to <ri) at z4 and to t2 (also

to o-i) at z\ cannot coincide, by the property of those tangent lines when C and

C are transformed into straight lines. Moreover a\ was chosen a non-null

circle, so we are led to the conclusion that z4 and z4 are distinct. This remark is

similarly applicable to the points on the circles wi and on, so Theorem VI is

completely proved under our assumption that Si, S2, S3 are not coaxial and that

no two of them are tangent.

For the more general case which makes no such assumption concerning Si, S2,

S3)* we consider variable auxiliary circles which approach the three given circles,

and are such that at no stage are these three variable circles coaxial nor are any

two of them tangent. The locus corresponding to the variable circles is always

an annular region ; it approaches uniformly the locus corresponding to the three

given circles; this latter locus is therefore an annular region.

7. Theorem VII, circular boundaries lead to circular boundaries; case of a

single null circle. We shall now make use of Theorem VI and its method of

proof in the demonstration of our general theorem concerning loci whose bound-

aries are entire circles.

Theorem VII. If the loci of the points Zi, z2, z3 are, respectively, Th T2, T3,

regions each bounded by a finite number of non-intersecting circles, the locus of z4

defined by the real constant cross ratio

X = (zi, zt, z3, Zi)

is a region Ti also bounded by a finite number of non-intersecting circles. The

number of circles bounding Ti is not greater than the greatest number of circles

bounding any of the regions T\, Tt, T3. In particular if Tu T2, T3 are annular

regions, Ti is also an annular region; if T\, Tt, T3 are circular regions, Ti is also a

circular   region.

In counting the number of boundaries of a region, any-region T{ which con-

sists merely of the points of a single circle is to be considered as having two

boundaries. This is a natural convention, for we may think of 7", as the limit

of a proper annular region as the two bounding circles approach each other.

Some such convention is desirable so that the present theorem shall accord with

Theorem   VI.

It is of course true that T4 may have as many bounding circles as the greatest

number of circles bounding any of the regions Tu Tt, T3.   This always occurs

* Theorem VI is extremely easy to prove for three coaxial circles. For three circles through

two fixed points or all tangent at a single point the locus is the entire plane. For the other case

the circles can be transformed so as to be made concentric. From symmetry about the common

center and from the connectedness of the locus (as in I, p. 103) it follows that St is an annular

region.
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(X?í 0, l,or oc ) if for example Pi and T2 are points; T3 is the region or at least one

of the regions with the greatest number of bounding circles. If Px and P2 are

sufficiently small, the number of their bounding circles has no effect; T3 and T4

have the same number of bounding circles.

The cases X = 0,1, or oo or that one of the given regions is the entire plane are to

be treated as in I, p. 103, and will not be further considered. We shall further

suppose for the present, that no two bounding circles of any one of the given

regions are tangent, that no three circles, boundaries respectively of the three

given regions, are coaxial, and that none of the three given regions is a point or a

circle.

The boundary of the locus P4 is composed of circles S4 or arcs of these circles

which are generated by the point z4 determined by its cross ratio with the points

Zi on a circle Si which is a boundary of Pi, z2 on a circle S2 which is a boundary of

T2, and z3 on a circle S3 which is a boundary of T3, while the circle S through these

four points cuts Si, S2, S3 all at the same angle or cuts one at an angle supple-

mentary to the angle cut on the other two. We shall prove that if an arc of any

one of these circles S4 is part of the boundary of P4, the entire circle S4 i" part of the

boundary of Tt. For definiteness suppose S to cut Si, S2, S3 all at the same angle

so that the circle S4 with which we are concerned is n.

»Since no two of the circles bounding Pi intersect, there are points of Pi ad-

jacent to and all along one side of Si, and similarly for the circles S2 and S3.

We shall prove that even if we consider the entire circular region Tl lying on that

particular side of and bounded by Si as the locus of Zi and the regions P2 and P3

similarly formed from S2 and S3 as the loci of z2 and z3, the locus of z4 is that cir-

cular region P4 bounded by ti which contains t2, «1, co2. Since T1 entirely con-

tains Pi, P2 entirely contains P2, and P3 entirely contains P3, and since every

point of ti is a point of the locus of z4 corresponding to the regions Pi, P2, P3, it

follows that the entire circle n is a boundary of P4; there are points z4 correspond-

ing to Pi, T2, T3 lying on one side of and all along n, but there are no such points

z4 lying on the opposite side of n.

The circle n is a part of the boundary of the annular region corresponding to

the three circles Si, S2, S3 as in Theorem VI; otherwise it is surely not part of

the boundary for the regions Pi, P2, T3. Similarly, if we fix a point Pi on Si

we know that <ri must be a part of the boundary of the locus for Pi, S2, S3.

If we fix Pi on Si and P2 on S2, we have points z3 of P3 on one side of and all

along S3, and hence we have points z4 of P4 on one side of and all along the circle

S4 of the proof of Theorem VI. Transform Pi to infinity. When P2 traces S2,

if S4 always lies between <ri and <r2 but surrounds neither, it passes through every

point of the annular region between the circles. Moreover, if the points z4 of

Ti just mentioned lie outside of S4, no point of either <n or <n can be a point of the
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boundary of Tt, and hence no arc of n can be a part of the boundary of 7\.

Then the points z4 which correspond to 7"4 must all lie interior to S4 and as P2

varies on S2 we have no new points added to the locus of z4 because 7"4 was re-

placed by  T4.

When P2 moves from S2 into T2, for example along the line L through P2

cutting S2 and S3 at the same angle, S4 moves so as to continue to cut L at the

same angle, but is no longer tangent to <n or <r2. In fact, the intersections of S4

with L are the points z4 determined by the cross ratio of points Pi (fixed), P2

(variable on L), and the fixed intersections of L with S3. Motion of P2 causes

these two intersections to vary. When P2 is at either intersection of L with

St, S4 is tangent to <ri and <r2; when P2 moves on L from one of these intersections

to the other in T2, S4 varies, but always varies so as to cut L at the same angle,

which is the angle cut on L by au If we assume for definiteness that S4 is interior

to <ti, we see that this motion of S4 must always keep S4 interior to au and <r2 is

not a part of the boundary of T"4 nor of T4, and that the entire interior of <n be-

longs to lt.

Precisely similar reasoning obtains if S4 lies between oi and <r2 but encloses

one circle and not the other, but we shall not give the details. We further omit

the detailed treatment if S2 or Ss is a straight line (Pi being at infinity). In

every case we add no new boundary nor take away a part of the boundary of the

locus of Zi by replacing Tt and Ts by T2 and T3, so far as concerns the circle n.

Moreover the locus of z4 in the latter case is not the whole plane unless the locus

in the former case is the whole plane.

8. Theorem VII, circular boundaries lead to circular boundaries; general case.

We shall now extend this reasoning by considering the locus of the points of the

circle <ti as Pi traces Si. Suppose for definiteness that n is exterior to t2 and that

a\ lies between the two circles but t2 is exterior to a\. We have assumed a part of

ri a part of the boundary of 74, so the points of 7"4 and hence of Tk previously de-

termined lie interior to <n. Similarly, a small motion of Pi on S and into the

interior of Ti either moves a\ always interior to n, or always exterior to n;

this follows from the continuity of the motion of a¡ due to the continuous motion

of Pi, and from the properties of the cross ratio determining the intersection of <ri

with S which are shortly to be considered in detail. Since we are assuming at

least an arc of n to be part of the boundary of T4, it follows that such small motion

of Pi always moves o\ interior to n.

Continuous motion of Pi in one sense along S and in T1 from one intersection

of S with Si to the other intersection causes <n to move. Each intersection of S

with <xi is a point z4 determined by its cross ratio with Pi, an intersection of S

with St, and an intersection of S with S3. The angle of intersection of S and ax

does not change, and this is the same as the angle of intersection of S and n.
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In its initial and final positions <n is interior to n; it therefore follows (in fact

becomes evident if S is transformed into a straight line) that every point of o-j

remains always interior to n.

Determination of the locus of z4 in this manner gives us the entire region P4 ;

we have shown every point of P4 to lie interior to or on ti. Every point interior

to or on ti is on a circle S and is interior to or on the circle <ri for some choice of

Pi in Tx and hence P4 is the interior (boundary included) of n.

There is a possibility which could conceivably arise in this proof, namely that

for some positions of S that circle does not cut Si and that for some point Pi

interior to Pi but not on a circle S cutting Si*, the circle <n should be completely

or partially exterior to r\ ; our reasoning as given does not permit this possibility.

If there is one of the regions Pi, P2, T3 for which the circle S passes through every

point, we change our notation if necessary so that that region shall be Tv and our

proof is valid as given. If there is no region Px, P2, P3 through every point

of which passes a circle S cutting Si, S2, S3, it follows from the proof of Lemma IV

(I, p. 105) that a point Pi onSi but on neither S2 nor S3 can be chosen which lies

in both P2 and P3. It follows from the development of §7 that no point of either

ai or a2 can be a boundary point of P4, so the possibility suggested need not be

considered further.

The case where oi lies between n and t2 but separates, those two circles needs

to be considered in detail, but only slight modifications in the reasoning are

necessary and these are left to the reader. This completes the proof that n is the

boundary of P4 and hence part of the boundary of P4. There are points z4 of

P4 all along one side of and adjacent to n, so no other bounding circle of P4 (the

entire circle necessarily part of the boundary of P4) can intersect t\.

We have made the assumption that no two bounding circles of any one of the

regions Pf are tangent, that no three circles, boundaries respectively of the three

* A similar possibility should have been pointed out in I, pp. 111-112 in proving that (nota-

tion of I) either the entire exterior or the entire interior of each of the circles Cv C4, Ct , C4

belongs to the region C4. For definiteness suppose this possibility to arise in connection with

Lemma IV (I, p. 105), Case I; we consider the configuration simplified by transformation

as in I, p. 106. The statement desired is evident if the regions G, Ct, & are all interior to their

bounding circles, so we may suppose one of these regions, say Ct, exterior to its bounding circle

Cj. We wish to prove a point z4 exterior to Ct a point of the final envelope C4 and need con-

sider only points z4 on circles C which do not cut C¡, Ci, C¡. Then there is a circle through z\

which cuts G and Cj and which lies entirely in the region Ct. We may choose zi and z% on this

circle and lastly zj, so that these three points are in their proper envelopes and have the proper

cross  ratio with  z4.

The entire reasoning given in I, pp. 110-112, to prove that arcs of but one of the circles

Q can be a part of the boundary of C4 is no longer strictly necessary, for the proof of Theorem

VII of the present paper contains a proof of Theorem I. Moreover, the reasoning of I, pp.

110-112, can be replaced by the more simple and elegant argument used in §6 (or even §15)

of a paper by the writer shortly to appear in these Transactions.
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given regions, are coaxial, and that none of the given regions is a point or a circle.

To extend our result to include these special cases, we consider a sequence of sets

of three regions which satisfy our restrictions but which approach the more

special given regions; such an auxiliary sequence can always be constructed.

Then the limit of the locus of z4 for the variable regions is the locus of z4 for the

limit regions, from which it follows that for the limit case the locus T4 is bounded

by a finite number of entire circles.

9. Theorem VTI, number of circular boundaries. It remains for us to prove

that the number of circles bounding T4 is not greater than the greatest number

of circles bounding any of the regions Tu Ti, T3. In the detailed proof we re-

strict the boundaries of the original regions as before; this restriction is raised

by the limiting process previously used and need not be mentioned further.

We keep Pi (zi in any position) fixed for the moment, and suppose that the

point at infinity is not a point of the locus T4 corresponding to the points z2 of

Tt and z3 of T3. Consider the mechanism used in the proof of Theorem VI;

first suppose S4 to lie between <ri and <r2 and at to be interior to ax but not interior

to S4.   Under the assumption that <ri is part of the boundary of T4, when Pt
f t

traces S2, S4 moves tangent to oi and <r2. If 24 is a circle which is obtained from

the proper cross ratio from Pi, P2, and the points of a bounding circle 23 of

T3 other than S3, then 24 is interior to S4. During the motion of P2 on S2,

24 cannot trace a boundary of 7"4. Moreover, if P2 is moved continuously,

24 moves continuously; 24 can never be made to surround a lacuna in 74, from

which it follows that 23 in combination with any bounding circle of T2 cannot

lead to a boundary of T4. Bounding circles of r4 can proceed only from com-

bination of S3 with bounding circles of Tt, so the number of bounding circles of

T4 is not greater than the number of bounding circles of T2.

Second, suppose S4 to lie between <n and <r2 and a2 to be interior to both <n and

S4. When ax is supposed as before part of the boundary of T4, the circle 24

must as before be interior to S4. There is a circle 24 interior to S4 corresponding

to each of the »t bounding circles 23 of T3 (other than S3), and in the region traced

out by these circles as P2 moves around S2 there are at most m lacunae, each

constantly surrounded by a circle 24. When P2 is made to trace the whole of Tt,

one or more of these lacunae may disappear, but none of them can divide to

make two or more lacunae in Tt. It follows that the number of bounding circles

of T4 is not greater than the number of bounding circles of T3.

The case that <r2 is a point leads simply to one bounding circle of 7"4, so in

every case T4 is bounded by a number of circles not greater than the greater

number of bounding circles of Tt and Ts.

If the reasoning just used is again applied regarding the locus of TA as Pi

varies over Tu it is seen that T4 is bounded by a number of circles not greater
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0

than the greater number of bounding circles of Pi and P4, which is not greater

than the greatest number of bounding circles of Pi, P2, Ps, so the proof of Theo-

rem VII is complete. It is also true that if Pi, P2, P8 are each bounded by at

most a countable infinity of non-intersecting circles then P4 is also bounded by

at most a countable infinity of non-intersecting circles.

10. Theorem VII, ruler-and-compass construction for boundaries. As

in Theorem I, the circles which bound the region P4 of Theorem VII can be

constructed by ruler and compass whenever X is rational or is given geometri-

cally; indeed this follows from the fact that any circle G of Lemma IV (I, p. 105)

can be so constructed; see I, p. 105, footnote. We also have a test for determin-

ing whether or not a given circle S4 (in the notation of §7) is actually a part

of the boundary of P4. If none of the regions Pi, P2, T3 reduces to the points of

a circle, we need merely suppose the circles Si, St, S3 to bound entire circular

regions which lie on the same side of those circles as the given regions; then S4

is a boundary of P4 when and only when the locus of z4 in the simplified situation

is a circular region bounded by S4. A test for this latter fact has already been

determined in I, p. 112. If any of the regions Pi, P2, P» reduces to the points of

a circle, we may determine in what sense to consider the corresponding circular

regions to lie by an investigation such as that of §7.*

To be sure, the test for determining whether S4 can be a boundary of P4 was

proved only under certain restrictions on the bounding circles of Pi, P2, P,,

but the test can be applied whether those restrictions are satisfied or not. Thus,

if the circular regions which lie on the same side of Si, S2, S8 as do the given

regions Pi, P2, P» lead to a region P4 bounded by a circle ti and which is not the

whole plane, the original regions lead to a region P4 bounded by the entire circle

ti and which is not the whole plane. On the other hand, if a circle S4 is actually a

boundary of P4, there must be a circle which bounds the locus of z4 of the approxi-

mating sequence and which approaches S4. There are therefore entire variable

circular regions Tv P2, P, corresponding which lead to a locus of z4 not the whole

plane; these approach entire circular regions formed in the manner described

from certain boundaries of Pi, P2, T3, and which lead to a locus of z4 not the whole

plane. It follows that the test to determine whether S4 is a boundary of P4

is valid in every case. If any of the given regions is a circle, the results in the

given case may also be indicated by approximating non-special cases.

* One particular case of three circles Si, Si, St can be treated directly, namely, where one of

those circles separates the intersections of the other two; compare I, p. 111. The locus of

Zi is always the entire plane. For any given point P of the plane there can be determined

points Si, zj, zionSi, St, 5, such that their cross ratio with P has a value very small and positive ;

these points fan be moved continuously on their respective circles so that this cross ratio in-

creases in value and becomes less than but nearly equal to unity. Then these points can be

chosen so that X takes any value between zero and unity; similarly, so that it takes any real

value.
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Great care should be used in determining loci and limits of loci of this nature if

boundaries of the three given regions are tangent at a single point, for it may be

merely by virtue of the fact that when Z\, z2, z3 coincide z4 is undetermined that

the locus of z4 is the entire plane. Thus, if two finite points Zi and z2 have as their

common locus a half-plane, the locus of the mid point z4 of their segment is also

that half-plane. When we consider not the problem of the ordinary ratio but

that of the cross ratio of the two gi^en points and the mid point of their segment

with the point at infinity we are compelled to admit the point at infinity as a

possibility for zi and z2 and that the entire plane is the locus of z4 (compare I; p.

111). For there can be found two variable points Zi and z2 such that z4 is the

mid point of their segment and which approach the point at infinity. When

these two points coincide at infinity we ought therefore to consider that the four

limit points have the proper cross ratio. But for an arbitrary point z4 of the

plane there cannot be found two variable finite points Zi and z2 in their proper loci,

such that z4 is the mid point of their segment and which approach the point at

infinity. This phenomenon can occur only if the three regions have but a single

common point and if the respective boundaries are tangent at that point.

This difference of behavior of ratios and cross ratios corresponds indeed to a

difference of behavior in our original problem of the roots of the jacobian, as

compared with the problem of the roots of the derivative of a polynomial. For

most purposes these problems are equivalent if one of the ground forms has all

its roots at infinity and the other has as its roots the roots of the polynomial con-

sidered. If all the roots of both ground forms coincide, the jacobian vanishes

identically. Hence if in Theorem III (I, p. 112) the loci of m roots of/i and the

remaining p¡—m roots of/i are two coincident half-planes, and if /2 has all its

roots coincident at infinity, the locus of the roots of the jacobian is the entire

plane. But if these two coincident half-planes are the loci of m roots of a poly-

nomial and the remaining pi —m roots of that polynomial, and if the polynomial

is not allowed to have infinite roots, the locus of the roots of the derivative of this

polynomial is this same half-plane instead of the entire plane.

We have assumed in Theorem VII not only that the boundaries of T"i, Tt, T3

are entire circles but also that no two of the bounding circles of one of these

regions cut each other. If this latter part of the hypothesis is omitted, it is not

true that T4 is bounded by entire circles. Consider for example 7\ the point at

infinity, 72 the two finite crescents bounded by two intersecting circles S2 and S2,

and T3 the interior and boundary of a circle S3 whose center is A and whose

radius is small in comparison with the radii of S2 and S2. Choose X so that when

zi is at infinity z4 lies midway between the finite points z2 and z3.

The locus of z4 may be determined by fixing z2, determining the locus of z4

while z3 varies over T3, and then allowing z2 to vary over Tt. That is, we shrink

T2 toward A as center of similitude in the ratio 1:2, and determine the locus of the
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points of a small circle whose radius is half the radius of S3 and whose center

varies all over this new configuration. The locus P4 is therefore bounded by

arcs of four different circles ; no entire circle is a part of its boundary.

11.   Successive application of Theorem I in determination of loci.    An

evident way of generalizing Theorem I is by successive application of that

theorem. Thus, suppose we have n sets of the circular regions of Theorem I,

Gï (k = l, 2, 3, 4; i=l, 2, . . ., n). Any point z4 which corresponds to points

zk(k= 1, 2, 3) in all the regions C¿ (î = 1,2,..., n) is located in all the regions

C4° (i = l, 2, . . ., n), so the region P4 which is the locus of points z4 determined by

points zk in the regions Tk common to all the C¿ (i = 1, 2, ...,«; k = 1, 2, 3) is

contained in all the regions C4 . But ordinarily P4 will not be the entire region

common to this last set of regions.    A simple example is the case, X = \:

G}' : oo Gf :  oo Pi : oo

C(2   : |z24-2| â 1 C(i) : -2 P2 :-2

CT : 2 C(f : |z3-2| Z 1 T3 :  2
C<{> : |z4| á I C(4>:|z4|^ P4 :  0.

A particularly interesting case such that P4 is the entire region common

to the C 4 occurs when all the sets of circles C \, C 2, C 3 , C 4 come under a single

case (e. g., Case I) of Lemma IV (I, p. 105), where these circles have a single

coaxial system of circles C cutting them all at the same angle or a definite set

or sets at angles supplementary to the angles cut on the other sets, and where all

the circular regions Ck for one value of i have the same disposition with respect

to their bounding circles as the corresponding regions for every other value of i.

It follows from the reasoning of I, pp. 111-112, as supplemented in a footnote to

§8 of the present paper, that every point of the region common to all the C 4

is a point of the locus of z4, so that common region is precisely P4. The circle

C then cuts the boundaries of Pi, P2, P3) P4 all at the same angle or one or two

of those regions at an angle supplementary to the angle cut on the others.

Our notation here has supposed the sets of circles C 'k finite in number, but of

course that is unnecessary.

A special case of this last result will be considered in some detail, where a set

of regions C ¿ is one and the same point for all values of *'. We first state ex-

plicitly a special case of Theorem I, which corresponds to a theorem given in I,

p. 115, and which is proved explicitly in S.

Theorem VIII.   If the loci of the points Zi and z2 are the interiors and boundaries

of the circles G and Ci whose centers are ai and a2 and radii ti and t2, respectively,

then the locus of the point

m2Zi 4- raiz2
z= -

rai 4- ra2
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which d/ivides the segment (zi, z2) in the real constant ratio mi : m2 (mx mt > 0) is the

interior and boundary of the circle C whose center is

»^01 + «iia2

»ii + rn2

m2Ti + miT2

Wi + m2

T2tti—Tia2

Tt—n

(which may be the point at infinity) is an external center of similitude for any pair

of the circles, G G, C.

We next prove a generalization of Theorem VIII :

Theorem IX. 7/ two finite or infinite convex regions G and G having an external

center of similitude P (which may be the point at infinity) are the loci of two points

Zi and Zi, respectively, then the locus of the point z which divides the segment (zu z2)

in the real constant ratio mi : m2 (mi m2 > 0) is a region C such that P is an external

center of similitude for any pair of the regions G, G", C.

In Theorem IX, we tacitly assume G and G to be closed regions bounded by

regular curves. We formulate the proof of the theorem for the case that P

is finite, but a very slight change in phraseology will give the proof when P is

infinite.

Consider a line L through P cutting the boundary of G in points Ai and Ai

and the boundary of G in corresponding points A2 and A2. If G and G are

infinite, Ai and A2 are to be considered the point at infinity. When L rotates

about P, the points A and A' which divide the segments (A\,A2) and (Alt

A2), respectively, in the ratio »ti :m2 trace the boundary of a convex region C

-such that P is an external center of similitude for any pair of the regions G, G, G

We shall prove C to be the locus of z. Any point z of C is a point of the locus,

for we need merely choose Zi and z2 on the line Pz and having the same relative

situation in G and G as z in C. In order to prove that every point z is in C we

shall use a preliminary theorem which is a special case of Theorem IX and a

limiting case of Theorem VIII:

Theorem X. If two half-planes wi and ir2 bounded by two parallel lines Xi

and X2 and lying on the same side of those lines are the loci of two points Zi and zt,

respectively, then the locus of the point z which divides the segment (zu z2) in the real

constant ratio mi : mt (mim2 > 0) is a half-plane r bounded by a line X. parallel

to Xi and X2; w lies on the same side of X as ti and ;r2 of Xi and X2.   Any line which

and radius

The point
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cuts Xi,X2,X cuts them in points Z\, z2, z such that z divides the segment (zi, z2) in the

ratio mi :m2.

We prove Theorem X in the same spirit as Theorem VIII was proved in S.

We use rectangular coordinates Zi = Xi + iyh zt = x2-\- iyit z = x + iy, and suppose

the regions m and x2 to be xi ^ ai and x2 ^ a2, respectively.   The region x is

.  »j2ai + wia2
x ^-.

Wi + m2

For given Zi and z2 in their proper loci, the formula

mtXi + mix2
x=-

Wl + »*2

shows at once that z is in x.    If z is given in x we have only to choose

mtfli + Miidü , rn^fli + »iiû^   ,
yi = y2=y,  Xi = a,—-■-Yx,Xt = Ot-■-(-x,

mi-f-mt mi-f-mt

and we shall have Zi and z2 in xi and x2 and such that z divides their segment in the

ratio »ii :w2. The axis of reals cuts Xi, X2, X in points z\, zt, z such that z divides

the segment (zi, z2) in the ratio »ti : mt, and hence that is true of any other line

which cuts Xi, X2, X.

Theorem X is to be used in proving that every point z of Theorem IX lies in

C. Through the point Ai draw a line Xi which does not cut G and through Ai

a parallel line X2, where Ai and A2 have the same significance as before. There

is a half-plane xi bounded by Xi which contains all of G and a corresponding

half-plane x2 bounded by X2 which contains all of G- The corresponding half-

plane x bounded by the line X through A contains all of C, from which it follows

that any point z of Theorem IX lies in x. This is always true as L rotates about

P and as Xi, X2, X envelop G, G, G, so z lies in C and Theorem IX is completely

proved.

Our proof depends essentially on the fact that G and hence also G and C are

convex, since we have passed a line Xi through an arbitrary point Ai of the

boundary of G and supposed G to lie entirely on one side of that line. If G

is not convex not only does the proof break down, but the theorem is false and

we can even show that the locus of z cannot be the region C found as previously

described. There are two points Ui and Vi on the boundary of G such that no

point of the segment Ui Vi belongs to C\. The analogous segment U2 V2 has no

point in G- Denote by U and V the points on the boundary of C which divide

the segments Ui Ut and Vi V2 in the ratio mi : »i2; the segment U V has no point

in C. The lines Ui Vu UiV2, UV are all parallel and the point z which divides the

segment U2Vi in the ratio »ii :w2 lies on the segment UV and hence is exterior to

the region G
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We terminate our study of the loci connected with cross ratios by stating

without further proof the theorem analogous to Theorem IX if mim2 < 0:

Theorem XI. If two finite or infinite convex regions G and C2 having a finite

internal center of similitude P are the loci of two points Zi and z2, respectively, then

the locus of the point z which divides the segment (zi, z2) in the real constant ratio

mi : m2 (raira2 < 0) is a region C such that P is an external center of similitude for G

and C (or C2 and C) and an internal center of similitude for C2 and C (or G and C).

If G and C2 are not convex but satisfy the other conditions of the theorem, the

corresponding region C cannot be the locus of z.

12. Application to the location of the roots of the jacobian of two binary forms.

Theorem I was originally proved in I not for its own sake but for application to

the study of the location of the roots of the jacobian of two binary forms. Thus

there can be proved (I, p. 114):

Theorem XII. Let /i and /2 be binary forms of degrees pi and p2, respectively,

and let the circular regions G, G, G be the respective loci of ra roots of fi, the re-

maining1 pi—m roots of fi, and all the roots of f2. Denote by G the circular region

which is the locus of points z4 such that

(Zi, Z2, Z3, Zi) = —
m

when Zi, z2, z3 have the respective loci G, G, G- Then the locus of the roots of the

jacobian of fi andf2 is composed of the region G together with the regions G, G, G,

except that among the latter the corresponding region is to be omitted if any of the

numbers w, pi — m, pi is unity. If a region G (¿=1. 2, 3, 4) has no point in

common with any other of those regions which is a part of the locus of the roots of the

jacobian, it contains precisely w —1, pi — m—l, pi—I, or 1 of those roots according

as i = l, 2, 3, or 4.

Theorem XII can be generalized so as to give applications for some of the re-

sults of the present paper.    Thus we have directly:

Theorem XIII. Let /i and f2 be binary forms of degrees pi and p2, respectively,

and let regions Pi, P2, T3 be the loci of m roots offi, the remaining pi —m roots offi,

and all the roots of f2, these three sets of roots always to be contained in three variable

circular regions all points of which are points of Pi, P2, P3, respectively. Denote

by Ti the locus of points z4 such that

(Zl, Z2, Z3, Zi) =   —
m

when Zi, z2, z3 have the respective loci Pi, P2l P3. Then the locus of the roots of the

jacobian offi and ft is composed of the region T4 together with the regions Pi, T2, T3,

except that among the latter the corresponding region is to be omitted if any of the
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numbers m, pi —m, pi is unity. If a region T¡ (*'= 1, 2, 3, 4) Aas no point in com-

mon with any other of those regions which is a part of the locus of the roots of the

jacobian, it contains precisely m—1, pi — m—1, pt—1, or 1 of those roots according

as * = 1, 2, 3, or 4.

It is in connection with Theorem XIII that most of the results of the present

paper are to be considered so far as concerns their application to the location

to the roots of the jacobian. It should be noticed, however, that Theorem XIII

gives no better indication of the location of the roots of the jacobian of particular

fixed forms than does Theorem XII, but may give a better indication than

Theorem XII of the location of the roots of the jacobian of two forms whose roots

vary in particular ways. The results of §11 can also be used independently of

Theorem XIII in establishing slight extensions of Theorem XII which do apply

to the jacobian of two fixed forms ; this application will be made in a later paper.
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