
A PROOF AND EXTENSION OF THE JORDAN-BROUWER SEPARA-
TION THEOREM*

BY

J. W. ALEXANDER

1. The theorem on the separation of n-space by an (n — 1)-dimensional

manifoldf suggests the following more general problem of analysis situs.

Given a figure C of known connectivity immersed in an n-space H, what can be

said about the connectivity of the domain H-C residual to C?

It will be shown that a certain duality exists between the topological invariants

of C and H-C, and that when C is an (n — 1)-dimensional manifold the separation

theorem is merely one aspect of this duality. The paper also touches upon a

number of well known related questions,—among them, the invariance of dimen-

sionality and regionality, the approachability of points of C from 77-C, the in-

variance of the topological constants of C and H-C, and so on.

Of course, the main difficulties in such problems as the above are of a point-

theoretic order. They all yield, however, to simple pinching processes, except

for the use of which the following treatment will be purely combinatorial.

The earlier sections, §§ 2-8, are expository and give a rapid though essentially

complete survey of the terminology and combinatorial machinery needed in the

sequel. The fundamental part of the discussion, with illustrations and appli-

cations, is really all contained in  §§ 9-12.

The theory of connectivity may be approached from two different angles

depending on whether or not the notion of sense is developed and taken into

consideration. We have adopted the second and somewhat simpler point of

view in this discussion in order to condense the necessary preliminaries as much

as possible. A treatment involving the idea of sense would be somewhat more

complicated but would follow along much the same lines.

* Based on a paper presented to the Society, April 29, 1916.

t First completely proved for the case n = 1 (Jordan's theorem) by O. Veblen, these

Transactions, vol. 6 (1905), p. 83, cf. addendum, vol. 14 (1913),p.65 (second footnote).

Proved for a general n by L. E. J. Brouwer, Mathematische An nal en, vol. 71 (1912),

p. 314. A proof of Jordan's theorem along lines similar to those used in this paper was given

by the author in the Annals  of  Mathematics, vol. 21 (1920), p. 180.
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Chains and their combinatorial properties

2. Certain advantages of symmetry are gained by setting the problem in the

space of »-dimensional spherical geometry rather than in euclidean «-space.

We shall therefore take as our fundamental domain the »-sphere

Hn: x% + x\+ ... +4= 1

in the space of » + 1 real variables. The geodesies (great circles) determined

on the »-sphere H" by its intersection with » — 1 linearly independent »-planes

through the origin play the rôle in this geometry of the straight lines in ordi-

nary euclidean space. A region will be said to be convex if any two of its

points may be joined by one and only one geodesic arc made up of points of the

region.

An »-plane through the origin subdivides the »-sphere Hn into a pair of »-

regions bounded and separated by an (n — l)-sphere. The latter may in turn

be subdivided in the same way into a pair of (» — 1)-regions separated by an

(» — 2)-sphere, and so on down to a pair of 0-regions, or points. The resulting

partition of the »-sphere, consisting of two regions of every dimensionality from

0 to », will be called an elementary subdivision of H". It is evident that any k —

region of an elementary subdivision may be cut up by an »-plane through the

origin into a pair of convex ^-regions separated by a convex (k — l)-region

and that by repeating this process of repartitioning, the »-sphere may be cut up

into arbitrarily small convex regions of dimensionalities 0 to ». These regions

will be called fe-cells, where k denotes dimensionality.

If the repartitioning is done in a perfectly random fashion, there is nothing

to prevent the boundary of a &-cell from containing a part but not all of a cell

of lower dimensionality. It is then possible to carry the repartitioning still

further, beginning with the boundaries of the n-cells and working down to the

boundaries of the 1-cells, until, finally, the boundary of each cell consists of

complete cells only. The resulting collection of cells will be called a subdivision

of the »-sphere H".

A subdivision S' will be said to be derived from a subdivision S if it can be ob-

tained from 5 without the use of any other operations than the repartitioning of

cells in the manner just described. Thus, by definition, every subdivision is

derived from an elementary one. It should be observed that the operations

of repartitioning may always be performed in such an order that all intermediate

figures will themselves be subdivisions. This would be the case, for example,

if the cells were repartitioned in such an order that no one of them was ever

touched Until the cutting up of its boundary had been completed.

3. There is, of course, no difficulty in writing out explicitly the analytical

expressions that determine a cell. They consist merely of the equation of Hn

taken in conjunction with certain linear equalities and inequalities depending on
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the w-planes that cut out the cell. From the form of these expressions, it follows

at once that every cell is convex. Consequently, any two ¿-cells are homeo-

morphic with one another (i.e., in point-for-point continuous correspondence),

and the boundary of any ¿-cell is homeomorphic with an (i — l)-sphere, since

the latter bounds each of two ¿-cells on an ¿-sphere.

4. Any set of cells from the same subdivision of 77" will be called a chain

provided the set never contains a cell E without also containing all cells on the

boundary of P. A chain may therefore be a very mixed agglomeration of cells.

If, however, it consists only of ¿-cells and the cells of their boundaries, it will be

called an i-chain.

The simplest ¿-chain is one containing a single ¿-cell. It will be called a

cellular i-chain. Any ¿-chain will be said to be the sum modulo 2 of the cellular

¿-chains determined by its individual ¿-cells; in symbols,

(1) K* = K\ + Ki + • • • + Ki (mod. 2)

We shall also speak of the sum of two or more arbitrary ¿-chains of the sub-

division, and it is here that the modulo 2 feature of the operation first comes into

evidence. To form the sum, we express each ¿-chain in terms of its cellular

components, as in (1), add components, and reduce coefficients modulo 2. In

other words, the sum-chain contains the ¿-cells that belong to an odd number of

chains of the sum, but no others.

5. An ¿-chain K' (i > 0) will be said to be closed if each of its (i - l)-cells

belongs to the boundary of an even number of its ¿-cells; otherwise, it will be

called open, or bounded, and its boundary Kl~ will be the (i — 1)-chain deter-

mined by such (i — 1)-cells as belong to the boundary of an odd number of ¿-

cells of K. It will be convenient to express the relation of Kx~ to K* sym-

bolically by the notation (adapted from the congruences of Poincaré)

(2) IC ==!?-* (mod 2)

which    may    be    read    "K'    is   bounded   by   K'~ ".      The    expression

Kl = 0 (mod 2)

signifies that K' has no boundary and is therefore closed. We shall frequently

condense the notations (1) and (2) by omitting to write mod 2.

A 0-chain will be open or closed according as it consists of an odd or an even

number of points.

The boundary K*~   of an ¿-cell is a simple illustration of a closed (i — 1)-

chain, since every (i — 2)-cell of Kl~ belongs to precisely two (i — 1)-cells of

Ki-i
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Now,   the   relations

KÍ = AT1        (s  =  1, 2,  ..., t) (mod 2)

evidently imply

£/C^ ;£><-' (mod 2)
s J

or, in words, the boundary of a sum of ¿-chains is the sum of the boundaries of

the ¿-chains themselves. Thus, in particular, the sum of two or more closed

¿-chains is itself closed, when it does not vanish. It also follows that the bound-

ary of an open (i + 1)-chain is a closed ¿-chain, since it is the sum of the bound-

aries of the individual (i + l)-cells of the (i + l)-chain.

6. We proceed to define the connectivity numbers of a chain C. Let K'

be an ¿-chain of C, that is to say, a chain composed of cells of C. Then, by a

second adaptation from Poincaré, we shall write

(3) K* ~ 0 (mod 2, C)

(K' is homologous to zero, or bounds on C) provided K' is the boundary of some

open (i + 1)-chain of C. The relations K\ ~ 0 and K'2 ~ 0 evidently imply

K\ + K'2 ~ 0; therefore, it will be legitimate to operate with homologies as

though they were linear equations modulo 2. The expression K\ ~ K2 will,

of course, be just another way of writing K\ + K\ ~ 0. We denote by R* — 1

the maximum number of closed non-bounding ¿-chains K\, K*2, ..., of C

that are independent with respect to homologies ; that is, such that there exists

no relation between the chains K's of the form

R*-l

X^Al-0 (mod 2, C)
s=l

unless the coefficients ts are all zero, and such that every other closed ¿-chain

K' of C is related to the chains K\ by an homology

Kf ~ Yj^ (mod 2- C)-

The number R' is called the ith connectivity number of C* It will be seen

later on that R' is not only an invariant of C but also of the set of points deter-

mined by C. For the moment, it will be sufficient to observe that R° denotes

the number of separate connected parts of C.    It is sometimes advantageous to

* The numbers R' are the modulo 2 analogues of the Betti numbers of Poincaré. They

were first introduced in a paper by Professor Veblen and the author, Annalsof Mathe-

matics, vol.  14  (1913), p.  163.
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consider connectivity numbers of higher dimensionalities those that of any

cell of C.    Such numbers are automatically unity, from their definition.

The connectivity number R' of C which is of the same dimensionality i as the

cells of highest dimensionality appearing in C satisfies a relation that we shall

now recall for future reference.    Let there be a ¿cells

Alt A2, ■ ■ ■, Aa

in C, and let the symbols associated with these ¿cells be regarded as variables

free to take on either of the values 0 or 1. Then, to every choice of a set of val-

ues for these variables such that at least one variable is not zero, there may be

associated an ¿-chain of C determined by the ¿-cells with symbols unity. Con-

versely, by reversing the process, to every ¿-chain of C there may be associated

a set of values of the variables.    Now, if ¿ > 0, let us write a modular equation

E9: T,<*pAp = 0 (mod   2)
p

corresponding to each (i — l)-cell A'q~x of C, where the coefficient e3fhas the value

unity or zero according as the cell A,- ' is or is not on the boundary of the cell Ap.

Then, to any set of values of the variables A'p satisfying the simultaneous equa-

tions Eq, there will be associated a closed ¿-chain of C, and conversely. For,

among the variables with non-vanishing coefficients appearing in each equation,

there must be an even number or zero that have the value unity, which means

that each (¿— l)-cell of C is on the boundary of an even number or none of the

¿-cells of the ¿-chain determined by the solution of the equation Eq. Thus, if

p be the number of linearly independent equations Eq, the maximum number of

independent solutions must be

Rl - 1 = a - p,

which is the relation we set out to find.

If ¿ = 0, there are no equations Eq.    For this special case, we evidently have

R° -    1 = a -  1.

We say that a closed «-chain is irreducible if its invariant P" has the value

2, that is, if the chain is not the sum of two or more closed sub-chains. The

points of an irreducible closed M-chain form an n-dimensional manifold.

7. Just as in the case of subdivisions, §2, a chain C will be said to be derived

from a chain C if it is one of a sequence of chains beginning with C and such that

each member of the sequence is transformable into the next one by partitioning

a single fe-cell P into a pair of fc-cells P, and P2 separated by a (k — 1)-

cell P ~~ .    The invariants of the chain C are the same as those of C, for, when



338 J. W. ALEXANDER [June

the cell E is cut, the only ¿-chains to appear in the figure that are not mere

subdivisions of old ones are the (k — l)-chains containing F and the k-

chains containing one but not both of Fx and F¿. The latter Chains are open

and therefore do not increase the connectivity numbers; nor do they decrease

them by setting up new relations of bounding among old (k — l)-chains, for

■their boundaries all contain the new cell F ~ . The (k — 1)-chains containing

F ~ , whether open or closed, are transformed into old chains which no longer

contain F ~ by the addition of the boundary of F ; therefore, they can have

no effect on the connectivity numbers, one way or the other. Thus, we pass

from C to C by a series of operations which do not alter the connectivity num-

bers.

Theorem S". The connectivity numbers of any subdivision S" of an n-sphere

are all unity except the nth one which has the value 2.

For, by §2, the subdivision 5" is derivable from an elementary subdivision

and therefore has the same connectivity numbers as the latter. But in an ele-

mentary subdivision, every closed chain bounds a cell, with the exception of the

«-chain determined by the two »-cells.

Corollary. Any closed (n — l)-chain Kn~ of the subdivision S" of the n-

sphere bounds exactly two open n-chains. Moreover, these two n-chains have only

the points of K"~   in common*

For, since the number Rn~ is unity, there must exist an open «-chain K" such

that
Kn = Kn~l (mod 2, C),

and consequently a second «-chain K" + 5", determined by the »-cells of S"

which do not belong to Kn, such that

K" + S" = Kn~l (mod 2, C)

and such that it has in common with Kn only the points of Kn~-.

Now, if there were a third »-chain L" bounded by K"~ , there would be two

independent closed »-chains

V + Kn = 0 and L" + K" + 5" = 0,

and the number R" would be at least 3, contrary to the theorem.

8. Let Hm and H" be an m- and an «-sphere respectively, and let C be any

chain of a subdivision of Hm.   Then, by an extension of terminology, we shall

* This is a somewhat weakened form of the theorem on the separation of n-space by a gen-

eralized polyhedron. For a proof of the latter theorem making use of modulo 2 equations,

see O. Veblen, these T r a n s a c t i o n s, vol. 14 (1913), p. 65, and vol. 15 (1914), p. 506.
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speak of any set of points C of H" in reciprocal one-one continuous correspon-

dence with C as a chain immersed in 77*. For example, if C is the boundary of

a 2-cell, C may be any simple closed curve of 77". The cells of the chain C will

be the images in 77* of the cells of C, so that C and C will both have the same

cellular structure and, consequently, the same connectivity numbers. We shall

frequently make use of the fact that there exists a derived chain of C made up

of arbitrarily small cells. That such a chain does exist follows at once from the

uniform continuity of the correspondence between the closed sets of points deter-

mined by C and C, for we know that the cells of C may be redivided to any de-

gree of smallness.

If the chain C does not fill up the entire space Hn, the residual part of 77*

will form a certain domain 77" — C made up of inner points. We proceed to

define the connectivity numbers of this domain. Any chain of any subdivision

of 77" will be called a chain of 77* — C provided it is wholly contained in 77*— C.

Among the chains of 77* — C will be set up the following homologies: (1) Each

closed ¿-chain will be said to be homologous to its derived chains; (2) each closed

¿-chain which bounds an open (i + l)-chain of 77* — C will be said to be homolo-

gous to zero. We combine homologies (1) and (2) like linear equations modulo

2 and denote by (R* — 1) the maximum number of linearly independent closed

¿-chains of 77* — C. A priori, there is no reason why the number R* should be

finite in this case, since we are now dealing with equations in an infinite number

of variables. It will be proved further on, however, that the numbers R' are

all finite and also pure topological invariants of the domain 77* — C, in spite of

the fact that a metric on 77* has been used in defining them. The number P°

is of particular importance and evidently denotes the number of separate con-

nected regions in 77* — C.

Since we shall only be concerned with the relations between chains under

homologies, it will be legitimate to do away with the distinction between a chain

of 77* — C and its derived chains. We shall therefore regard any two chains

with a common derived chain as equivalent chains, to be denoted by the

same symbol K\ A closed ¿-chain will then be said to bound if it bounds in any

of its derived forms, so that the terms bounding and homologous to zero will hence-

forth be synonymous.

On the dual connectivities of C and 77* — C

9.   We now come to the body of the discussion.

Theorem V. Let C be a cellular i-chain (§4) immersed in the n-sphere 77".

Then, the connectivity numbers of the domain 77" — C residual to C are all unity.

In other words, every closed chain L  of H   — C bounds.

The theorem is trivial if i is zero, in which case, C reduces to a point C°.
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For there are no closed chains in H" — C' of dimensionality greater than or

equal to ». Moreover, by the corollary to Theorem S", every closed (» — 1)-

chain of H" — C° bounds twice in H" and therefore once in H" — Cc. Every

closed chain of lower dimensionality bounds as often as we please in H" — C°.

The general case will be handled by induction with respect to ¿. We shall

assume the validity of Theorem T*~   and first prove a lemma.

Lemma U'. Let the cellular i-chain C be subdivided into two cellular i-chains

A and B, respectively, meeting in a cellular (i — l)-chain C* . Then every k-

chain L of H" — C which bounds both in H" — A and H" — B must also bound

in H"  —   C

If k = « — 1, the chain L bounds exactly two open «-chains of H* meeting

in L , by the corollary of § 7. The connected set of points C' = A + B

must therefore lie wholly within one of these two open «-chains, since it does

not meet L . Consequently, the other «-chain lies in H" — C, and L bounds

in this region.

Now, suppose that k< n — 1, so that there exist chains in H" of dimension-

alities as high as k + 2. By hypothesis, there exist two open chains L A and

L B   suchthat

Lkïl=Lk (mod 2, H" -A)

L; Lrt1 = Lk (mod 2, H" - B)

and these combine to form the closed chain

Lk i ' + Ü % ' = 0 (mod 2, H" - C"-1),

as illustrated in the figure which is purely schematic. We shall assume that

L A and L B meet B and A, respectively, otherwise the lemma would be true

without further argument.

Now, by Theorem T'~ , which we are assuming in the induction, there exists

an open (k + 2)-chain M        such that

Mk + 2=Lktl +Lktl (mod2, Hn - C~l).

This chain cuts the chains A and B in mutually exclusive closed sets of points

and may therefore be broken up into cellular (k + 2)-chains so small that no

one of them meets both A and B, since there is a definite interval of separation

between two non-overlapping closed sets of points. Now, letAf be the sum

of the cellular (k + 2)-chains of M that meet A, and therefore not B, and let

L       be the boundary of M Then we have

(5)      Mk + 2 + Mk + s=(L"ii +L* + 1)+L*Î1e=0 (mod2, Hn - C*'"1).
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But L B    4- L        meets neither A nor B and therefore lies in 77* — C\    Hence,

by (5) and the first relation in (4),

Lk + x  + jk + i  s Lk (mod 2, 77" - C),

which establishes the lemma.

Theorem T' now follows at once by the ordinary pinching process. If the

theorem were false for the chain C, it would be false for one of two cellular sub-

chains, by the lemma, and by repeating the argument it would be possible to

find a sequence of sub-chains C'5 of C closing down upon a single point C°

and for each of which the theorem would be false. But, by Theorem P°, every

closed fe-chain L of 77" — C, and therefore of 77" — C°, would bound a chain

L of 77" which did not meet C° and which therefore could not meet all of the

chains C\ converging on that point. Therefore, the theorem must be true, since

the assumption that it is false leads to a contradiction.

Corollary V'.   A cellular i-chain immersed in an n-sphere H" cannot fill

77".

For let C be broken up into two cellular parts, A  and B, as in Lemma U',

and let PA and PB be points of A, and B, respectively but not of the chain C*~

common to A and B.   Then, by Theorem T'~ , the 0-chain PA + PB bounds

a 1-chain in H" — C'-1 which must contain a broken line of geodesies connecting

PA with PB.    But this broken line meets A and B in mutually exclusive closed
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sets of points and must therefore contain points that belong to neither of these

sets.    Such points must be points of Hn — C.

Corollary W'. Let C be the sum and C'~ the intersection of two closed sets

of points A and B. Then every closed k-chain L (k<n — 1) of Hn — C which

bounds a chain LA+1 of H" — A and a chain Lb of H" — B must also bound

in Hn — C provided the chains LA andLB maybe so chosen that LA + LB+1

bounds in H" — C~ . Moreover, the corollary is valid even if k = «—1 unless

C*~   is the null set.

For the proof of Lemma U' is applicable here with scarcely a change.

10. We are now in a position to prove the duality theorem mentioned in the

introduction. In order to separate out the difficulties, however, let us first

consider an important special case which admits of a simpler proof than the

general one.

Theorem X'. Let C be an i-sphere immersed in an n-sphere Hn. Then the con-

nectivity numbers Rs of C are related to the connectivity numbers Rs of the resid-

ual space Hn — C* by the equations

Ri  =  g*-i-l   =  2j     g  =  #-'-1   =   l tS9¿ ¿),

The theorem states, in other words, that there exists but one independent

closed non-bounding chain in H" — C This chain will be of dimensionality

(« — ¿ — 1).    It will be said to link the ¿-sphere C.

If ¿ = 0, the ¿-sphere C' is a pair of points, so that the theorem is both trivial

and obvious. The («— 1)-chain linking C is any closed (« — l)-chain ofLM_1

such that one of the points of C lies in each of the two open »-chains bounded by

L"-1 in H", (§7). All closed chains of lower dimensionalities bound as often as

we please in H* — C.

The case ¿>0 will be solved by induction with respect to ¿. Let us sub-

divide the ¿-sphere C into a pair of cellular ¿-chains A and B meeting in an

(i — 1 )-sphere C'~l. Then by Theorem T\ every closed chain L oiHn— C* must

bound two open chains LA and LB in H" — A and HH — B, respectively.

Therefore, by Corollary W', L must also bound in H" — C* unless the closed

chain LA + LB+1 fails to bound in H" — C~x. But, by Theorem X'-1,

which we have a right to assume in the induction, this can only occur if

LA+1 + LB x is the(w — ¿)-chain linking C~ , in which case k — n — i — 1.

Consequently,

RS   =   £H-S-1   =   j (j  ^ ^

On the other hand, the chain L"-* of Hn — C*~l which does link C*-1 nec-

essarily meets both A and B in mutually exclusive closed sets of points, for if

it failed to meet A, for example, it would bound in H" — A, by Theorem T*,
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and hence a fortiori in 77* — C    , contrary to hypothesis.    The chain L"

may thus be written as the sum of two open chains (cf. Lemma U'),

(6) L"-¿= PP 4- L"T

lying in 77* — A and 77* — B, respectively, and having a common boundary

L"~'-1 in 77" — C\ The chain L"-'-1 is then the required chain linking C*.

For, otherwise, there would be an open chain L*-', such that

£,_<   s  ¿«-<-l (mod 2>  H«   _   Ci^

and, consequently, one or the other of the closed chains L*-' + LA~' or L*-' 4-

LB~' would have to link C'~ , since their sum VA% + LB~l would. But suppose,

for example, that L"_i + P*f' linked C~l. Then, Ln~i + LnA~' would

have to meet A, which would be impossible since, from their definitions, neither

of its parts L"~' nor LA~' could. A similar contradiction would arise if we as-

sumed that L"-,+ Pa-' linked C'~ .

Finally, L*-'-1 is the only independent chain linking C\ For, if M*~'-1 de-

note any (n — i — 1)-chain of 77" — C* linking C', there is associated with

M"-'-1 a closed chain MA~' + MnB~' linking C\ defined after the manner of

the chain LA~* + LB~' in (6) associated with L*-'-1. Consequently, with the

chain P"~'-1 4- M"-'-1, there is associated the chain

(p*r + Mr1) + (prf + mi-')

which cannot link Ci_1. Therefore, by Corollary W}, L*-'-1 4- M"-'-1

bounds in 77* — C, andM"-1-  is dependent on L"~'~ .    Thus, finally

Ri _ ^„_,-i = 2

The chain of 77" — C which links C* may evidently be chosen to be irre-

ducible, for if it consisted of several irreducible parts, one at least of these parts

would have to link C\

11.    This brings us to the central theorem:

Theorem Y. Let C be any chain immersed in an n-sphere 77*. Then, between

the invariants R' of C and the invariants R' of 77" — C there exists the following

duality relation:
Ri = ^n-,-i        (Oá*án-l).

To lay the foundations for a proof by induction, let us first examine the

trivial case where the chain C consists of 0-cells only. Obviously, a closed

chain of 77" —C of dimensionality less than n—1 bounds as often as we please in
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77"— C, so that P"_1_ = R* = 1 (¿>0). To determine the remaining con-

nectivity number P*~ , let us make a subdivision of 77* such that each point

A ° of C appears as an interior point of some cellular «-chain M * of the subdivision

and such that no two of the points A°s belong to the same cellular «-chain M".

The boundary of each cellular «-chain M" will be a closed (n — 1)- chain which

we shall denote by L" ~  :

(7) M^Lr1 (mod 2,77").

Now, every closed («— 1)-chain L"~ of 77* — C is homologous to some combi-

nation of the chains Ls ~ ; for the chain L*     surely bounds in 77",

(8) Mn = L*"1 (mod 2, 77"),

and if the bounded chain M" contains points of C, we have merely to add to

(8) such relations of the set (7) as correspond to the points in question to obtain

an open «-chain free from points of C and bounded by L"~ together with some

linear combination of the chains L*

Finally, there is one and only one homology between the chains L"_ . For

by §7, any linear combination of the chains Ls bounds exactly two «-chains in

77", one of which must be free of points of C if the combination is to be bound in

77" — C. Evidently, this can only occur if the linear combination includes all

the chains L*~ .    Thus, if there be a points to C, we have

R"-1 - 1 = a - 1 = P° — 1,

by §6, which establishes the equality of R"     and 7?°.

As usual, we treat by induction the case where the chain C contains at least

one cell of dimensionality greater than zero.

Let B be the chain obtained by leaving off an ¿-cell of C of the highest dimen-

sionality possible, and let A be the cellular ¿-chain determined by this ¿-cell. We

shall assume that the theorem holds for B and shall prove that when A is restored,

every change of connectivity on B is balanced by a dual change in the residual

space so that the theorem continues to hold for C.

Evidently, such changes of connectivity as are produced on B by the addition

of A are caused by the appearance of new independent ¿-chains containing A

or the disappearance of independent (i — l)-chains by bounding open ¿-chains

containing A. We denote the boundary of A by C and distinguish two cases

according as

(I) The chain C ~  does not bound on B ;

(II) The chain C'~   bounds some open ¿chain A' of P.
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In the first case, no new closed ¿-chain can be created, since such a chain would

be of the form A + A' which would imply

A* = C~l (mod 2, B),

contrary to hypothesis.    On the other hand, we have

A E- C~l (mod 2, C),

so that the independent chain C'~ is lost. No other independent chain is lost,

for a second relation

A+D'^D'-1 (mod 2, O

would imply

D''^C,'-1+/Ji-1 (mod 2, B)

showing that D'     was dependent on C'" .

The second case is treated with equal facility. Without going into details,

we find that a single independent ¿-chain A + A* is gained and that no indepen-

dent (i — l)-chain is lost.

To calculate the compensating changes of connectivity produced in the resid-

ual space, we define a closed (» — ¿ — l)-chain of the residual space which

will be said to be dual to the chain A. Let an irreducible (» — ¿)-chain

Ln~'oîH* — Ci~ be chosen linking the boundary C'~ of A and therefore meet-

ing A in a closed set of points. Whenever we can, we shall choose the chain

Ln~' in such a way that it contains at least one point not of A. It will then be

possible, by the process already so frequently employed, to break the chain Ln~'

up into a pair of open chains bounded by a closed chain L"~'~* of H" — C and

such that one of the open chains which we shall call Mn~' contains all the points

of intersection of L"~' with A but no point of B:

(9) M"-' m L""*'-1 (mod 2, H" - B).

The chain Ln~'~ will be said to be dual to A. It evidently links any ¿-sphere

contained in C and containing A, for it has been obtained by exactly the construc-

tion given in the proof of Theorem X* for finding the chain linking such an

¿-sphere. Moreover, as we note for future reference, if e be any positive constant,

the chain M"~' bounded by Ln~'~ may evidently be so chosen that each of its

points is within a distance € of some point of intersection of M"~* with A.

We derived the dual Ln~'~ of A on the assumption that a chain L"~' linking

C~ could be found which contained a point not of A. Now, as a matter of

fact, it is easy to prove that any chain linking C'~ must contain such a point.

Rather than digress to prove this, however, let us merely say that if no chain
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L*~ contains a point not of A, then M"~ ' = L"-' and the boundary of M"~'

is the "null"  («—¿ —l)-chain.

We now prove two lemmas.

(a) If a closed chain L of 77" — B does not link the boundary C'_1 of A,

there is always some chain of H" — C (that is to say, some chain not meeting A )

which is homologous to L 1 in Hn—B. If the chain L +1 does link C'-1, how-

ever, there is no chain of 77" — C homologous to L

For if L +1 Hnks C'~ it must cut the cellular ¿-chain A, otherwise it would

bound in 77" — A, by Theorem V, and therefore a fortiori in 77"+ 1 — C,_1.

The same is true of all chains homologous to L

On the other hand, if L does not link C , there exists an open chain

M* + 2 such that

M" + 2 = Lk + 1 (mod 2, 77" - Ci_1).

We may again use the figure going with Lemma U' to represent the situation

schematically, provided we let L A + L B represent the chain L + ' and imag-

ine that L A is nearer to the eye than B and does not intersect B, though

Mk + ¿ may. Now M " ' meets A and B, if at all, in mutually exclusive closed

sets of points, therefore we may repeat the argument of Lemma U' and find a

chain Lk+1 + Lk + ' which does not meet ,4 (nor B in this case). But, with the

same notation  as before,

S7* + 2=7?+1~0 (mod 2, 77" - 7?).

Therefore,

Lk+l + 7?+l ~L"+\

showing that there remains in 77* — C'a representative of the family of chains

homologous to L        in 77" — P.

Thus,   in   view of Theorem X', the addition of A to B cannot reduce the

number of independent non-bounding chains of the residual space aside from

those of dimensionality « — i.    Moreover, not more than one independent

(« — ¿)-chain   can  be   destroyed, since the   sum of two chains linking C~

cannot link C

(|3)     Let L  be a closed chain of 77" — C which bounds in H" — B;

Lb+1 = Lk (mod 2, 77" - B)

and, necessarily, of course, in 77" — A

(10) LA+1 =L* (mod 2, 77" - A),
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6y Theorem T'.    Then, L fails to bound in H" — C if and only if the closed chain

(11) LA+1 + LkB+1 = 0 (mod 2, H" - C1'1)

links C'~ for every posible choice of the chain LB   .

For, as we saw in (a), L = LA + LB must cut A if it links C*~ . Con-

sequently, LB must cut A, since LA does not (see figure). But if this occurs

for every choice of LB    , L cannot bound in Hn — C.

On the other hand, if LB x can be so chosen that LA + LB ' does not link

C'~ , then, by Corollary IV, L must bound in H" — C. As an immediate con-

sequence of (ß), no new independent non-bounding closed chains of dimension-

alities other than » — i — 1 can be created in the residual space when A is

added to B.

Let us now combine the two results obtained.

(I') If the space H" — B contains an (» — ¿)-ehain L linking C' , no

new independent (n — i — l)-chain can be created in the residual space.

For, in place of relation   (10)   in   Lemma   (ß),   we   may  equally   well   write

(10') L + LA+l  = Ü (mod 2, H" - A),

(where k = n — i — 1), and so obtain in place of (11) the expression

(11') (L + LkA+1) +L*/1  esO.

But not both of the chains (11) and (11') can link C' ~~ ; therefore L ' must bound

in H" — C, by Corollary W'. The net result of adding A to 7? is therefore to

diminish by unity the number R" ' but to leave invariant the remaining con-

nectivity numbers of the residual space.

(II') If the space H — S contains no (» — ¿)-chain linking G" , none of

the connectivity numbers Rs can be diminished. However, in this case, a chain

of H" — C'~ linking C' must meet both A and B. Consequently by a literal

transcription of the proof of Theorem A"', we find that a single new independent

(« — ¿ — l)-chain is created which is nothing more than the dual of .4.

The number R"~ is therefore increased by unity. It also follows that

every independent non-bounding (« — i — 1)-chain of H' — C is homol-

ogous in that region to some linear combination of the duals of the ¿-cells of C.

Now, it will be observed that the changes of connectivity (I') and (II') of the

residual space are exactly the ones wanted to compensate for the changes of

connectivity (I) and (II), respectively, of the immersed figure. Furthermore,

whether or not similarly numbered changes occur together when A is added to B,

the differences R' — R'~ and Rn~'~ — R"~' both increase by unity in every

case and therefore remain equal to one another.    Thus to complete the proof we
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have only to show that the number R* of C is equal to the number P"~,_ of

77" — C.    This we proceed to do.

Let C be the chain obtained by eliminating all the cells of C of highest di-

mensionality ». Then, to each cellular (i — l)-chain A' of C may be found a

dual (« — ¿)-chain L"~' of 77* — C so close to A ' that it meets only such ¿-cells of

C as contain A ' on their boundaries. The latter cells it must meet, however,

since it links their boundaries. We may therefore break up the chain L*~

into a set of open ¿-chains each containing the points of intersection of L"~' with

one alone of the ¿-cells of C and each bounded by the dual of the chain deter-

mined by that ¿-cell. Thus, if L*~ denote the dual of A],, we shall have a

set of homologies

Eq T.^l ~ '" " * ~ 0 (mod 2, 77" - C)
í

where the coefficients egi> have precisely the same significance as in the rela-

tions Eq of (§ 6). Furthermore, every homology among the duals P*-'- of

chains A\ is expressible as a linear combination of the fundamental homolo-

gies Eq.    For suppose

(12) M*-, = X/*»L;ri~1~0 (mod 2, Hn-C).
u

Then, by combining with (9), we obtain the closed chain

M*~* + Y,au Ml ~ ' = 0 (mod 2, 77" - C).
u

But this chain is expressible linearly in terms of the duals of the cellular (i — 1)-

chains of C'so that the homology (12) is expressible in terms of the homologies

Eq.    We therefore have

P1' - 1  = a - p = 7?" - ' - 1 - 1

(cf. § 6), which establishes the equality of P' and R"~'~  .

12.    In closing we give a few corollaries of the fundamental theorem.

Jordan-Brouwer Theorem. If M"~ 1 be an (« - 1) dimensional manifold

(§6) immersed in an n-sphere 77", the residual domain 77* — M" ~ consists of

exactly two connected regions.    For P° =  Rn ~ *  = 2.

Let us distinguish between these regions by arbitrarily calling one the interior

and the other the exterior of M" ~  .   Then,

If the manifold M be homeomorphic with an (n — l) -sphere, the connectiv-

ity numbers of both interior and exterior are unity.    ForP' = P"-'-1 = 1 (i > 0).
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Accessibility Theorem. In every neighborhood of every point of M" ~ ,

there is a point of M" which is accessible from any point P of Hn — M" ~ by

a broken line of geodesic arcs made up of points of H" — M" ~  .

For consider any subdivision of Mn into cells. Then, it is always pos-

sible to join the point P to a point Q on the other side of M" ~ by a

broken line which meets M" in one (w — l)-cell of the subdivision only. Be-

cause, if that one (»— l)-cell were omitted, we should have Rn ~ = R° = 1 and

the space residual to M" would become connected. But this (n — l)-cell

may be chosen in an arbitrary neighborhood of an arbitrary point of M" ~ ,

which proves the theorem and also the following corollary:

There are interior and exterior points in every neighborhood of every point of

M" ~   ;   for example, points of the broken line PQ.

By the same device of omitting an arbitrarily small (n — l)-cell, the theorem

on the invariance of dimensionality may be proved.

LetC beany cellular k-chain (k = » — 1) immersed in .an n-sphere Hn. Then,

there are points of H" — C in every neighborhood of every point of C ; namely,

points of a 1-chain linking the boundary of the omitted (» — l)-cell.

The theorem on the invariance of regionality is, of course, an immediate con-

sequence of the separation theorem:

Let C" be a cellular n-chain immersed in an n-sphere Hn. Then no interior

point of C" is a limit point of points of H" — C". For the boundary of C" is

an (n — 1 )-dimensional manifold separating H" into Hn — C" and the interior

of C.

Finally, we note that Theorem Y establishes the purely topological character

of the invariants i?'and Rn        .    For R" does not depend at all upon the par-

ticular cellular structure of C, but only on the set of points determined by C;

therefore, the same must be true of R\ Conversely, R' is not affected by the

choice of the metric on Hn; therefore, neither is Rn~l~l.
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