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1. Introduction. Near the vertices of the equilateral triangles described in

the plane of Jupiter's orbit and on the line joining the Sun and Jupiter as base

are to be found six of the planetoids. Four of these,f Achilles (588), Patrocles

(617), Hector (624), and Nestor (689), oscillate about one vertex in much the

same way as the mythological luminaries of the same names circulated about the

walls of Troy. Two planetoids are found at the other vertex, but their names

are unknown to the author. Î These six planetoids are in the vicinity of two of

the five well known points of libration in the problem of three bodies. § The

three other points lie on the line joining the Sun and Jupiter, one point lying be-

tween the Sun and Jupiter, another on the side of the sun remote from Jupiter,

and the third on the side of Jupiter remote from the Sun. One of these straight-

line points in the case of the Sun and Earth, viz., the one on the side of the Earth

remote from the Sun, has a physical significance in that it may account for the

"Gegenshein."[| The equilateral triangle points of libration were considered by

Lagrange in his celebrated prize memoir of 1772 as "pure curiosities," but re-

cent astronomical discoveries show that these points likewise have some phys-

ical significance attached to them.

The object of this article is to determine orbits for these planetoids of the Sun

and Jupiter which will approach the equilateral triangle points of libration as the

time approaches infinity. As these orbits are asymptotic to the above men-

tioned points of libration, we have designated the planetoids which move in such

orbits as "asymptotic planetoids." These planetoids are considered to be of

appreciable mass, and their perturbations upon the Sun and Jupiter are deter-

mined.   They are assumed to move in the plane of Jupiter's orbit.

* Presented to the Society, December 31, 1919.

t Marcolongo, II problema dei tre corpi, S c i e n t i a, vol. 1 (1919), No. 8.

t I am indebted to Professor E. W. Brown for this information, as he communicated it

to me when this paper was presented to the Society.

§ Lagrange, Collected Works, vol. 6, pp. 229-324; Tisserand, Mécanique Céleste, vol. 1,

chap. 8; Moulton, Celestial Mechanics, pp. 309-318.

Il Gyldèn, Sur un Cas Particulier du Problème Astronomique, vol. 1; Moulton, Celestial

Mechanics, p. 305.
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In plain mathematical language, divorced from every astronomical applica-

tion, the paper treats of two-dimensional asymptotic orbits near the equilateral

triangle equilibrium points in the problem of three finite bodies. The paper con-

cludes with numerical examples of orbits in which the ratios of the masses are

not those of the Sun, Jupiter and the planetoids, but are chosen so that the or-

bits near each point can be drawn to the same scale.

Several classes of asymptotic orbits have already been obtained, but with one

exception, number (6) below, they belong to the particular case of the problem

of three bodies in which one body is infinitesimal and the finite bodies move in

circles. The following is a list of the solutions which have been ob-

tained :

(1) Warren determined two-dimensional orbits which are asymptotic to the

points of libration lying on the straight line joining the two finite bodies.

(American Journal of Mathematics, vol. 38, No. 3,pp. 221-248.)

The remaining cases were found by the author of the present paper.

(2) Two- and three-dimensional orbits which are respectively asymptotic to

the two- and three-dimensional periodic orbits near the straight line equilibrium

points determined by Moulton* in the chapter on Oscillating satellites. (Amer-

ican Journal of Mathematics, vol. 41, No. 2, pp. 79-110.)

(3) Two-dimensional orbits which approach the equilateral triangle points of

libration. (Transactions of the Cambridge Philosophical

S o c i e t y, vol. 22, No. 15, pp. 309-340.)
(4) Three-dimensional orbits which are asymptotic to the three-dimensional

periodic oscillations near the equilateral triangle equilibrium points which

were determined by Buck.f This paper forms part of the paper mentioned

in (3).

(5) Three-dimensional orbits which are asymptotic to the isosceles triangle

solutionsj of the problem of three bodies. (Proceedings of the Lon-

don Mathematical Society, ser. 2, vol. 17, No. 1, pp. 54-74.)

(6) Two-dimensional orbits which are asymptotic to the straight line equi-

librium points when the three masses are finite. §

2. The differential equations. Let mx, m2, and m3 represent the masses of the

three bodies and let M denote their sum. Let a system of rectangular axes be

chosen having the origin at the center of mass of the three bodies and the plane

of their motion as the plane of reference. Let the axes rotate about the origin

with the uniform angular velocity n and let the coordinates of the three bodies

m¡ be denoted by (x¡, y,), i = 1, 2, 3.     If the bodies are subject to their mutual

* Periodic Orbits, chap. 5.

t Buck, chap. 9 of Moulton's Periodic Orbits.

i Buchanan, chap. 10 of Moulton's Periodic Orbits.

§Rendiconti   del  Circolo  Matemático  di   Palermo,   vol.  45, pp.  1-25.
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attractions according to the Newtonian law, then the differential equations

which define their motion  are

Xi — 2wy,- - n2x¡ -. — -—,
m¡ ox,

y"i + 2nx'i - n27i = - |^ (i = 1, 2, 3),
(1) m i úy,

H _ ui [mxPh  ,   w2«t3      m3mx~\

L   ^12 ?"23 ?"31   J

r« = [(*< - XjY + (y¿ - y,.)']1/2 (¿, / = 1, 2, 3;  i * j),

where k2 is the factor of proportionality and the accents denote derivation

with respect to /.

These equations admit the vis viva integral

3

i = l

(2) £ m¿x? + y? -*l-yh = 2u + c,

where C is the constant of integration.

It is shown in treatises on celestial mechanics* that the equilateral triangle

configuration with proper initial components of velocity is a particular solution

of the differential equations of motion (1). If the units of distance and time are

so chosen that the mutual distances and k2 are unity, then the angular velocity of

rotation « must satisfy the condition

«2 = M.

Since the unit of mass is so far arbitrary, it is possible, without loss of generality,

to put M — 1.    Hence n2 is also unity.

If the axes are initially orientated so that the «-axis is parallel to the side of

the equilateral triangle joining m2 and m3, then the values of the coordinates for

the particular solutions are either

Configuration I (Fig. I),

Xx = s (W3 ~ W2)> y* = ö ^ ^W2 "*" m^'

(3) xi = - mi 4- «is, y2 = - - V3 mi,

X3 = — (xmi + mi),       y 3= - - y/3 mu

* See Moulton's Introduction to Celestial Mechanics, pp. 309-11.
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or

xx =
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Configuration II (Fig. 2),

- (m3 — m2), yx = - - \/s (m2 + m3),

[June

(4) x2 = - Wi + y2 = g V3 wi,

«3 = - Í g »»i + W2 J,   y3 = 2 y/z »»i.

Fig. 1.—Configuration I.

TTli

Fit",. 2.—Configuration II.

Since the origin of coordinates is at the center of mass, it follows that

mxxi + »»2*2 + »»3*3 = 0, Wiyi + »M2y2 + wi3y3 = 0,

and therefore the coordinates of one of the bodies may be eliminated from the

differential equations.    Let us suppose x3 and y3 are thus eliminated by

(5) xz = — — (miXi + »w2x2), y3 = — — (»»iyi + m2y2).
m3 m3

When these substitutions are made in (1), and k2 and » are both put equal to

unity, the differential equations of motion become
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j      9 t m2(xi — xt)       (mx + m3)xx + m2xt
xx      ¿yx      X\ —

„3 r?
9\1 P\3

y
" _l 9,v'     „, -     tni(y-i — yd     (»mi + »M3)yi + »w2y2
i -f ¿xx      yi — —- —-,

x2 — 2y2 — xt -

Pit Pl3

>»i (xt — xx) _ mxxi + (m2 + m3)x2

Pl2 P23

(6) »i«'                      mx(yt — yi)       Wiyi + (m2 + m3)y2
y2 -f- ¿x2 — y2 — —- —-,

,? „3
Pl2 P23

Pi2 =  \(xx - x2)2 + (y, - y2)2]1/2,

= — [{(1 — »»2)xi + m2x2\2 + {(1 — m2)yi + m2y2|2]1/2,Pi3
»M3

= — .[Uiii + (1 — »»i)x2¡2 + {miyi + (1 - Wi)y2¡2]1/2P23
»»3

3. The equations of variations.    Let

(7)

xi = - (m3 — m2) + eui, yx = - -\/3 (»»¡2 + »m3) + »Vu

x2 = -mx + m3 + eu2, y2 = — - \/z mx + ev2,

where ux,. . ., v2 are new dependent variables, and « is an arbitrary parameter.

The additive quantities e»i,. . ., ev2 denote the components of displacement of Wi

and »m2 from the vertices of the equilateral triangle in configuration I (Fig. 1).

We shall not consider configuration II (Fig. 2) in detail as the coordinates in

Fig. 2 differ from the corresponding ones in Fig. 1 only in the sign of \/3. Since

\/3 does not occur explicitly in the differential equations, we may change the sign

of V3 in any solutions which we obtain for configuration I and thereby obtain

the corresponding solutions for configuration II.

When equations (7) are substituted in (6) the right members of the differen-

tial equations can be expanded as power series in e which will converge for e

sufficiently small. Since the expressions in (7) that are independent of e are

particular solutions of equations (6), there will be no terms independent of e after

the substitutions (7) have been made. Hence the factor € can be divided out of

the equations, and when m3 is replaced by 1 — mi — m2 the differential equa-

tions (6) become
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(d2 - |) ui - | 2P 4- ^ (1 - 2m2) \vi + 0u2 - ^Ç m2v2

= tUf 4- e2U[3) + • • •  + e"-1!/?0 4- • • -,

LD _ 3^/3 (1 _ 2mj \Ui + iD2 - |) »i - ^Ç miu2 + Ov2

(8) = V3 [tV? 4- e2V[3)  +■■■   + en~lV[n) +■■■],

9 3V3 ,   /ni      „   ,   9     \ /on      3a/3     \
— - »îi«i — —j- miVi + ( 7J2 — 3 + ¿ Wi I «2 — I 27?-— >«! 1 v2

= eP<2) + e2U¡3) 4-  •■•  +eB-1pW+ •■•,

3V3 ,9 ,/,n,   3a/3     \ /n2      9     \
— -j- mi«i 4- -. miVi + ( 2P -\-— mi J u2 + ID2 — - mA v2

= V'3 Wf 4- ¿Vf 4- ... 4- e'-'Vf > +...],

where D denotes the operator d/dt, and U™,.. .,V2k) (k = 2,...,«,.. .) are

homogeneous polynomials in «i, «2, Wi» % of degree k. In all these poly-

nomials, -\/3 occurs only as a factor of the odd powers of Vi and v2, considered

together.

If we consider only the linear terms in (8) we obtain the equations of variation.

They are

(d2 - I) «i - Ud + 3-^p (1 - 2m2)}vi + 0u2 - 3-^v2 = 0.

i2D - ^ (1 - 2w2)| ui + (d2 - 5) »i - ^p wi2w2 4- Ovi = 0,

(9)
9.       3V3.   ,  /n,     0  ,  9 _ \ „_      /on      3V3(o2 - 3 + ? «1) «2 - (2P - ^ mi)— - «iiMi — —— miVi 4- ( P2 — 3 + 7 «*i ) u2 — ( 2P — —;— mi]v2 = 0,

3V3
«Î1M1 4- 2 Wîifli + i 2P 4--7- mijui+ yD2 — -mi \vi = 0.

4. The solutions of the equations of variations. The solutions of the equa-

tions of variation can usually be obtained by differentiating the generating solu-

tions, equations (3), with respect to the arbitrary constants which denote the

initial time and the scale factor.* This is not possible in the case under con-

sideration since the generating solutions are constants.

Equations (9) are linear differential equations with constant coefficients,

and in order to obtain their solutions we consider the operator D as an alge-

* Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, vol. 1, chap. 4.
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braic quantity and equate to zero the determinant formed from the coefficients

of «i, »s, vu v2 in (9).    This gives

(10)

A =
= 0.

"-§,        -2D-3-y^(l-2m2),       0,        -3-^p»M2

W -^ (1- 2m),       D2-\,        - 3-^ m2,       0

9 3V3 n2      „  ,  9 3VÍ4 Wil'        ~~ ~ä~ mi'       D       3 "*" I Wl'        - 2Z? + -^— mi

3\/3 9 3V3 n2      9   .
—— »Mi,        - wi,        2D + —— wi,        D2 — - Wi

4 4 4 4

This determinant reduces to

A = D2 ID6 + 2D4 + i 1 + ^ (wiw2 + w2»»3 + w3wi) > D2

(11) L (4 )
27 n

+ -r (wiW2 + w2w3 + W3W1) I = 0.

If we neglect the factor D2, the preceding equation is a cubic in D2 and its dis-

criminant is

27
— (wiWa + »w2w3 + m3mx)2 [27(mxm2 + w2ra3 + w3Wi) — 1].

Since Wi + w2 + w3 = 1 and since wi, w2, and »»3 are all positive, this dis-

criminant is positive, and therefore the cubic has one negative root and two con-

jugate complex roots.    Let these roots be X,, X2, and X3 where

(12) Xi = y/~=\ X,        X2 = p + y/^\ v,        X3 = p - y/^ï v.

Then the solutions of (11) are

(13) D = 0,       0,        ± Xi,        = X2,        ± X3,

and the solutions of the differential equations (9) are therefore

»i = «i + a2t + a3e™ + aie~M + abe™ + a,e~M + a7eX31 + a^~w,

Vi   = ßfai + ß™a2t + pfW*1' - pfW^" + p1 V - pf W^2'
+ pf >«** - ^W"**,

(14) «2 = 7Í% + tS°W + y?a3eM + y^W"*" + 7ÍW" + y^V^'
+ 7ÍV + Y?'«*-*.

% - *(o)b[0)ax + 5<0)a2Z + ô'V - í««*-*" + ««W - b22)a^~M

+ S<3WX3' - í««*"*-,
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where «i, . .., a» are the constants of integration. The remaining symbols ß[ ,

..., 523) denote constants which are defined by the following equations and prop-

erties :

pf = -J— \l - y¡? (1 - mi) - \ (m    - V3m2)
1 — mx [9        3 3

4- —-:  {mx(m2 +m3) + Am2m3] \,
9(«zi — 1) J

(0)      (mx — 1) (s/3 mx 4- 9»«ira2) 4- \/3 \mx(m2 + m3) + Am2m3\
y i    — ■-,

9m2(mi — l)2

5[o> =  _ _L [(1 _ 2m2) ?» + 8(m - Wi) + ^1
2w2 L 9(mi - 1) 3 J

(0) _      m3 — m2 K0) _      mx ,(0) _    «i + 2w3

V3(mi - 1)'        72 mi- Ï 2 V3(mi - 1)'

(0 =    3V3 [(in, - w2)X2 + 2V3(1 - wQX, + 3(m2 - m3)\

1        4X? -   X?(5 - 9mi) + 6V3(m3 - m2)\¡ + 27(1 - mi)'

,  4\/3 ,        1 - 2«i2
T   -   X¿  —   -,

9m2 2»î2
rf. = if* (x? - !) rf

9w2  \ 4/

«• = ̂  (xf - ¡) - {^ x, + LzJïïl ef-.        «■ , ,. 2,3).
9w2  \ 4/       t 9w2 2ra2     )

The following pairs of constants differ only in the sign of \/3 :

tíP.ÚP;   tÍ0,^;   «î0,^; (* - 1.2,3).

The following pairs are conjugate complex :

o(l) o(D.     «,(1)    -.CD.      <¡(l)    _   ¿(1).      o(2)    o(3). (2)        (3).     Ä(2)     rl3).        fZ,   _   1     0\Pi  . — Pi   '   7i  » 72   .   fli  >       »2   ,   P* , P*  ,   7* > 7*  >   o* , o¿   ,     (,/e — 1, Z)

The solutions for P in equations (13) are called the characteristic exponents.

Since the original differential equations (1) admit the integral (2), then two of

the characteristic exponents will be zero.* It was to be expected, therefore,

that two roots of (11) should be zero.    Poincaréf has also shown that if equa-

* Poincaré, loe. cit., p. 188.

t Loe. cit., p. 69.
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tions (1) do not contain t explicitly, which is always the case in all problems of

mechanics in which there is a conservative system, then the characteristic expo-

nents are always equal in pairs but opposite in sign. It is this property of the

solutions that makes the determinant (11) even in D.

5. Construction of Asymptotic Solutions in e~x*' and e~Xii. We shall now

construct solutions of the differential equations (6) which are asymptotic in the

sense of Poincaré, * that is, each term of the solution must have the form

e" P(i),

where c is a constant having its real part different from zero, and P(t) is a periodic

function of Z or, in particular, a constant. Such solutions will therefore approach

zero as Z approaches + oo or — oo according as the real part of c is negative or

positive, respectively.

The only terms of the solutions of the equations of variation which are

asymptotic in the sense just defined are those in e* 2l and e*X3'. These terms

approach zero as Z approaches — x or + oc according as the + or — signs are

taken with X2 and X3.

In this section we shall construct the solutions which approach zero as t ap-

proaches + 00. These solutions will obviously involve powers of e~ ú and

e~*ü. In the next section we shall show how the solutions in e x*' and e+M

can be obtained directly from the solutions in e~ *' and e~ 3t.

Only the formal construction of the solutions is considered in §§ 5 and 6, but

the convergence of the solutions obtained is established in § 7.

We propose to integrate equations (8) as power series in e and this is the reason

why e was introduced in equations (7).    Accordingly we substitute

(15) »,- = J2 Ujj ¿,        v¡ = J2 Vij ej (i = 1, 2),
j = 0 j = 0

in equations (8), and as we shall have frequent occasion to refer to the resulting

equations we shall cite them as (8')- These equations (8') are to be satisfied

identically in e and we may therefore equate the coefficients of the same powers

of e. In this way we obtain sequences of differential equations in utj and v#

which can be integrated step by step, as we shall show, subject to suitable initial

conditions and restrictions.

The first two steps of the integration will be considered in detail, and then an

induction to the general term will be made to show that the process of integra-

tion can be carried on indefinitely.

* t ™ cit., p. 340.
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Step 1. Terms in (8') independent of e. The terms in (8') which are indepen-

dent of e are obviously the same as the equations of variation (9) if the subscripts

on the dependent variables in (9) are altered so as to read Uxo, Vi0, u20 and v20

instead of «i, u2, vi, v2. Hence the solutions of these equations are the same as

(14) with the corresponding changes of subscripts. Now only two of the ex-

ponentials, viz., e~ "' and e~ s, approach zero as t approaches 4- °o and we

therefore put equal to zero the arbitrary constants associated with the other

exponentials.    The solutions at this step are, then,

uK = o40) e~™ + a[0) e-™,     via = - pf a^ e~™ - ßf a¡0> e~^,

ui, = yf «<0) «Tw + yf «$0) r**,   v20 = - 5<2> «("> e~™ - 8<« «<°> e~M,

where a6   and a80) are arbitrary, and ß2 , . . ., b2   are defined as in equations (14).

It is evident that the complementary functions at all the succeeding steps of

the integrations Will be the same as (14) and that after the exponentials are re-

jected which do not have the proper form, two constants of integration will re-

main undetermined. Hence, besides rejecting all the exponentials except e~ 2<

and e~ '', it is necessary to impose two initial conditions upon these solutions

so as to determine the arbitrary constants arising at each step of the integration.

Let us suppose that

(17) ux (0) = ex,        u2 (0) = y,

where «i and 7 are arbitrary. Since U\ and u2 are multiplied by the arbitrary

parameter e in (7) we may put ei or 7 equal to unity. Let us suppose «i = 1.

When the conditions (17) are imposed on (15) it follows that

(18) Mio (0) = 1,       uxj (0) = 0,

M20 (0) = 7,       u2j (0) = 0 (j = 1, ...,cc).

Now applying these conditions to the solutions (16) we obtain

_<« _    7^ - 7 (o)  _    7 - 722)

6      y^-yr 8    ~723)-7r

Since 72   and 72   are conjugate imaginaries, it follows that a6° and o£ are like-

wise conjugates.

In order to unify the notation, we put

„(0)   _       (10)           _   o(2)      (0)   _   fí(10) (2)      (0)   _       (lOi         _   g(2)      (0)   =    oClOl

flOA         6                  10    '                             "6              PlO   > 72     «6              «20    >               °2     «6              P20    >
„(0)   _       (Oil           _   o(3)      (0)   _   o(01) (3)      (0)   _       (01)         _   g(3)      (0)   =    o(01)
a8      —   a10    '                 P2     a8              PlO    1 11      "8              "20    '               °2      «8              P20    ■
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Since a(6°\ a™; ß2\ ß23); y2\ y23); S2\ bl23) are conjugate pairs, it follows

that the symbols in (19) which differ only in a permutation of superscripts are

likewise conjugate pairs. This notation will be adopted in the sequel to

denote conjugate complexes. Thus a¡{ ) and a,\ ) (/ 9e k), are conjugate

imaginaries.

On employing the above notation, we obtain for the desired solutions at this

step

(20) »10 = o410) e~M + «fc« e~M,    vin = fjg« e~M + flg" <TX*        (i = 1, 2),

where a¡\  , ..., /3,q   are linear in y.

If we put

X2 = p + V'— 1 v,        X3 = p — V'— 1 v,

and suppose that

«r = \ tàï> + V- 1 &Í?],     tó0) = I [cfi> + V=~i 4°],

then the solutions (20) become

«,-0 = e-"' [a.-g' cos vZ + 6,-^ sin y<],

»io = *""' I^ô' cos "Z + ^Ô} sin rt].

This second form of the solutions is more convenient than (20) for numerical

computation but is more cumbersome in obtaining the solutions at the succeed-

ing steps.

Step 2. Coefficients of e to the first degree. When the solutions (20) have been

substituted in (8'), the differential equations obtained by equating the coeffi-

cients of « to the first degree are

(d2 - I) »11 -Í2D + 3^0 (1 - 2m2) \vn + 0 u21 - ^ m2v2X = Un,

Ud - 3-^0 (1 - 2w2) I »h + (d2 - ?) »i, - ^ m2»2, + 0 v2l = Vlh

(22)      9               3V3 ,   / n.      „   .  9     \
K**J - - W1M11-^— mxvn + I D2 - 3 + - wi 1 »2i

-Ud-3-^3 mx\ vu = Un,

--T- mxuu + T »Wn + ( 2D + ——• wij utX + ID2 — - wij v2X = V2X;
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Un = A\f e~2M + A\\ú e~^ + M)l + A[f e'2^',

Vn = B™ e~2M 4- B[\l) e~^ + Xä)< + B[f e~2™,

(   ' U2i = A[\a) e~2M + A2f e~ix< + Xi)/ + A2f e~2x",

l/21 = 7?220) e-2™ + B(2\l) e-*' + X3)< + P<°2 > *"»*,

where Af^, ..., B21 are quadratic expressions in y having constant coefficients

The constants like AW0 and Af* which have the same subscripts but which have

their superscripts reversed are conjugate imaginaries. The other constants

A[\ú, ..., B2\tí are real.

The complementary functions of equations (22) are the same as (14), and the

particular integrals can be found by the method of the variation of parameters

as at the previous step.    These particular integrals are

«ft = ¿ «g* *~°'X' + *Xl)i (i + k = 2,    i = 1, 2),

(24)

where

(25)

j,k = o

vil = 22^)e~UXl+mt>

A[- 0'X2 + k\3)]' A[- (j\2 + k\3)]'

\(Jk) aW*i
a21      - "-&T =

A[- (;X2 4- k\3)]' A[- (j\2 + k\3)]

The preceding symbols are defined as follows :

A[ — (j\t 4- k\3)] denotes the determinant A in (10) when D has been re

placed by — (/X2 + &X3);

A^ , i = 1, 2, 3, 4, denotes the preceding determinant A[ — (/X2 4- k\3)]

when the elements of the ¿th row, reading from top to bottom, have been replaced

by iC, B™, Af\ P2f, respectively.

The constants in (25), viz., a^ , .. ., ß2{ axe found to have the same form

as the constants in (23). Thus a^ and auJ are conjugate complex if ; ¥■ k,

but real if ; = k.

If the right members in (22) contained any constant terms, or terms in t or in

e±x'', ¿ = 1, 2, 3, that is, terms which are the same functions of / as the terms in

the complementary functions, then the denominators in (25) would vanish and

the particular integrals would not take the form (24), but would contain terms

in t, f or t e*Xi'. Hence, such terms would appear in the particular integrals

if and only if the right members contained constants, terms in t or e=fcX,/, re-

spectively. In order, then, to show that there are no terms in the particular

integrals which do not satisfy Poincaré's definition of asymptotic solutions, it
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is sufficient to show that the right members do not contain any terms which

are the same functions of Z as any part of the complementary functions.

To obtain the complete solutions of (22), we combine the complementary

functions, equations similar to (14), and the particular integrals (24). The par-

ticular integrals have the desired form for asymptotic solutions, but we must re-

ject all the terms of the complementary functions except those in e~Xil and

g-x,( ^js js p0SSjk]e) 0f course> by equating to zero all the arbitrary constants

of integration except those associated with the exponentials e~M and e~x,i. The

desired solutions are therefore

«„ = «<*> e~M + «<» e-™ + «g» <T2X" + a[\l) e~^ + Xj)< + «g» e~2M,

vn = ~ß? «Sa «~W - pf > «8° e-Xlí + ß\\0) e~2M + ß™ e~^ + Xj)/

+ ß™ <T2X",

un = t« a?» *">* + y<3) «<» ,~w + «<f ,"*- + <' e-(x< + x'j' <> «T2X*,

<ta = - «?> ai" e~X" - S<3) a[l) e~x" + /S?« e~2X" + ßi\Ü *~(X° + Xl)<

+ ßif e2*",

where ael and a¿ are the constants of integration. By virtue of the initial

conditions (18), these constants must satisfy the equations

a™ + «<l> = - [«if + «<»> + a<f>] - A«

y<» a« + y<3) a<n = -  [«#> + «g» + afi»] « Ä?>,

or

(1) _ Jrf> y<3> - lff> « _ *<" - *i» 7?»

y^-y,»   '        8    "    y^-y?'   '

Since axx\ «if' and a2*0), a2l2) are conjugate pairs and a^ and a^ are real,

R[ and ¿?2 are likewise real. But as y22 and y23 are conjugates, it follows

that a,1 and a,1 are also conjugates.

In order to unify the notation, as at step 1, we put

„<D   =   „i1") _   «(*> „(1)   =   fldO) «,(2) „(1)   _   „110) _   a(2)      (1)   _   fl(l0)a6 "11    > P2     a6 Pll    , y2     "6 "21    > °2     a6 P21    ,

„(1)   =   „(01) _   o(S) „(1)   =   o(0l) (3)      (1)   _       vUl) _   g(2)      (1) o(0l)
a8 "11 P2      a8 Pll    , y2     "8 "21   > °2     "8 P21   >

and the desired solutions at this step take the form

2

«<i = XI °$
(26)

2
0'*) „-(A! + **>)'
1

y, * - 0

«¿1 = X tó'*' e~°'X! + *X,>' (j +k = 1 or 2,    ¿ = 1, 2).
i, * - o
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If   we   put

x2 = p + V— i ".     x3 = p — V— i ".

and if we suppose that

<#• = \ \&> + V=~i b^], «r = I [c$xk) - V~i b%»],
(27) 2 2

fl(i« = i [<£» + v^i dg»i ô^ = \ [c^ - v~i <%») a = i, 2),

where b¡x   and dtl   are different from zero when / ^ k, but equal to zero when j

= k, then the solutions (26) become

«ft = e-»1 [c410) cos vt 4- &g* sin rf] + e~2^ [j ó«,1« + a<20) cos 2k í

4- #i0) sin 2r il       (¿=1,2),

«Vi = e~" [4î0) cos j- ¿ + 4l0) sin *> ¿] 4- e-2"' H 4U) + c,i20) cos 2„ 1

4-di20)sin2Ml.

The succeeding steps of the integration are similar to the preceding step, and

an induction to the general term will now be made to show that the process of

integration may be carried on for any desired number of steps.

Let us suppose that uü, vit, i = 1, 2, have been computed for 1 = 0, . . .,

«   —   1, and that

M(.i=í¿1af)e-üX! + ^",

(28) i,*^°

vu ='¿>f > e~^~ + *X3" (j + k = l,2,...,l + l).

where a¡/ anda,;'; âj and ßü} are conjugate complex if j¿¿k but real if j = k.

In order to make the induction it will be necessary to show from the differential

equations in uin and vin obtained from (8') that the solutions for these variable

are the same as (28) if  I = «.

Step n + 1 : Coefficients of t" in (8'). Let us consider the differential equations

obtained by equating the coefficients of e" in (8') after the various solutions in

(28) have been substituted.    They are found to have the same form as (22) if the
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second subscript on the variables and the right members is changed to n.   The

right members, however, have the form

(29) >b*+=°
Vin -VBgk) e~^ + *Xl)<      0' + * - 2, 3, ...,» + 1;   t = 1, 2),

i, * - o

where A¡n and 5,-¿ are complex quantities similar to those in (28). The com-

plementary functions of these differential equations which have the desired ex-

ponentials are the same as (16) if the second subscript on the variables and the

superscript on the constants of integration are replaced by ». The particular

integrals of these differential equations can be found as at the previous step by

the method of the variation of parameters.    They are

n + 1 AÜ + *) n + 1
u    _ V^ Am_ e-(j*i + ftx,)< _ V"* a(jk) g-O'x* + »Xi)«

ln ,.,&„ A[-(A2 + fex3)] ;^0W

n + 1 A(i + k) n + 1
0    _ y^ A2n_e_ÜX2 + *x>)< = V1 ßüi:) e-üx> + *Xí)'

(30) B+_i aü + *> ..   .    "-L.1
3B_-,-O'Xï + *x,)< _ v* «i»'*) »-üXí + *x,)í

Í, * = 0   A [ -   (A* + feX3) ] ¿ t"¿ 0

«   +   1 AÜ + *) «   +   1
j,     _ Vs A4n_ e_ÜXi + kXl)t = V* fl^tt é>-üX! + »Xi)«

2M   ,,^0 A[-(/Xi + *X,)] ,-,^0

O' + fe = 2, 3, ...,»+ 1).

The various A's in the preceding equations are defined as follows :

A[ — (7X2 + k\3)] denotes the determinant A in (10) if D is re-

placed by — (7X2 + k\3). Since ; + k is not less than 2, these de-

nominators do not become A( — X2) or A( — X3) and are therefore different

from zero.

Ai„      , i = 1, 2, 3, 4, denote the preceding determinant if the elements of

the ¿th row, reading from top to bottom, are replaced by A^n , BXH , A2n   and

B2n , respectively.

On determining the constants of integration <*6   and ag   by the initial condi-

tions (18), and then unifying the notation as at step 2, the complete solutions
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which have the desired form are found to be the same as (28) if Z = «.     This

completes the induction.

The solutions, therefore, at the general step « are

n + i

"in / j «in     e ,

j, k = 0

(31) íta-"¿1flíf)«~ü*, + to*
i, k = o

(¿ = 1, 2;   ; 4- k = 1, 2, ..., n + 1;    n = 0, 1, 2, . . .).

When equations (31) are substituted in (15), the asymptotic solutions of the

differential equations (8) are then found to be

■ r v «$?>.-<*•+*»*«".:M¿   =   2      12  a
(32) "■"'»■'

«»i - £   Ê &? e~UX' + ** <"       <« - 1» 2;   ; + t - 1, 2.»),
« = i j, * = o

where the second subscript on the constants a,^    and ßf„   has been made to

conform with the powers of e.

If these solutions are expressed in trigonometric form by the substitution

used in (27) we obtain

« «< = /i (+ a/3, - 0 - £   2 ¿'     ¿* [Ui? _ *' 2* - " cos(2 * - 1) v t
/oo\ M — 1     j = 1    £ = 0 or 1

+ &ff - '• 2* ~ ° sin(2fe - 1) „ f} »"« - "" 4- lag* 2*> cos 2Jb v t

+ bgJ'm sin2kvt} e-2ilú]tn,

ev¡ = gi (+ a/3, - t) (¿, = 1,2),

where 2' denotes that the highest value of 21 — 1 or 21 is w, and 2* denotes that

the lowest values of 2k — 1 and 2fc are 1 and 0, respectively. The function

gi ( 4- a/3, *- t) is the same as ft ( 4- a/3, — t) if the constants a and 6 with their

subscripts and superscripts are replaced by c and d, respectively, with the same

subscripts and superscripts. When these equations are substituted in (7) we

obtain the parametric equations of the orbits which approach the vertices of the

equilateral triangles in configuration I, viz.,
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«i = ô (m3 — M»2) + /i ( + y/3, — t),
2

^ (w2 + w3) + gi ( + \/3, - t),

(34)

» 2

X2 = - W! + W3 + ft ( + V3, - Z),

y2 = - ^ »»i + g2 ( + V3, - z),

*3 =-(wi xi + w2 xt),
m3

y3 = — — (»»! yi + w2 y2).
w3

The orbits which approach the configuration II are obtained by changing the

sign of y/3 in (34).    They have the equations

X\ - s (w3 - ws) + /i (- V3, - Z),

yi =-s- (»«2 + »«s) + gi (- \/3, - Z),

«2 = 2 wi -f »Ms + /2 (- V3, - Z),

y2 = -21 »»i + g2 (- V73, - Z),

*3   =   —    — (»M, Xi + W2 X2),
m3

y3 = — — (»Mi yi + w2 y2).
w3

Equations (34) and (35) therefore represent the orbits which approach the

vertices of the equilateral triangles in configurations I and II, respectively, as

the time approaches plus infinity. These orbits deal with the future of the system

and, at the risk of being censored, we shall cite them as future I andfuture II,

respectively.

6. The asymptotic solutions in ex?i and ex'1. This section deals with the

asymptotic orbits which approach the vertices of the equilateral triangles as

the time approaches — oo. Such orbits deal with the past while the previous

orbits forecast the future. So then the mathematical astronomer can say with

more than poetic license

"Backward, turn backward, O time in your flight."

(35)
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It is obvious that these orbits can be constructed by making the same use of

the exponentials e '' and e * as was made of e~ and e~ * in constructing

the previous orbits. This construction will not be considered in detail as we

shall show that the past orbits can be obtained from the future orbits in a very

simple way. This method, it will be observed, is the converse of the adage of

"history repeating itself."

Let us consider the differential equations (8) and let their solutions (33) be

denoted by/¿( 4- a/3, - t), g,( 4- a/3, - t), * = L 2. Next consider the effect

of changing the signs of t, \/3, v¡ in (8). The left members of the first and third

equations of (8) remain unchanged while those of the second and fourth change

signs. Since u[ and v[ are even in a/3, vu and v2, considered together, the above

changes of signs will leave these expressions unaltered. But as the right members

of the second and fourth equations in (8) contain the factor A/3, these changes of

signs will produce a change of sign not only in the left members but also in the

right members of these two equations and the minus sign can be cancelled off

in both equations. Hence the differential equations (8) are unchanged if the

signs of /, a/3, î>i and v2 are changed. These changes of signs have no effect upon

the initial conditions (18) and consequently if we make the same changes of signs

in the solutions f{( + \/3, — t), g,( 4- \/3, — 0, it will still leave them solutions

of (8). Thus/¿( - a/3, + ') and - g,( - a/3, + t) are solutions of (8) and

the corresponding solutions of (1) are

Xi

yx

Xi

(36)

y*

x3

y*

These are the orbits which approach the vertices of the equilateral triangle in

configuration I as the time approaches — oo, and will be cited as past I. The

corresponding orbits for configuration II, past II, are obtained from (36) by chang-

ing the sign of a/3-    They are

= \ (m3 - mi) + ¡i (- a/3, + t),

= ~ (mi + m3) - gi (- a/3, 4- t),

= g wi + m* + /» (- V3. 4- t),

= _ V_3 mi - g2 (_ v% + 0>

-(mi xi + m2 xt),
m3

= .-(mi yi 4- m% yt)-
m3
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(37)

*i = 2 (Ws - m*) + h (+ V3, + t),

y/3 r-
yi =-g- (w2 + w3) - gi (+ V3, + z),

x2 = - «ti + m* + /* (+ V 3, + Z),

y2 = + ~ mi - g2 (+ VS, + Z),

X3  =-(Wi Xi + W2 Xi),
m3

y3 = — — (wi yi + w2 yt).
m3

From the form of the equations of these four orbits it is evident that the past

II orbits are obtained from the future I orbits by changing the sign of t in the

latter and reflecting in the x-axis. The same relation exists between past I and

future II orbits.

7. The convergence of solutions. Only the formal construction of the solu-

tions (8) has been made, and we shall now consider their convergence.

The convergence of the solutions (32) of the differential equations (8) de-

pends upon the form of the characteristic exponents in terms of which the so-

lutions are expanded. No«v it has been shown by Poincaré* that such solutions

as (32), (34) and (35) will converge as t approaches + oo provided that the real

parts of the characteristic exponents in terms of which the solutions have been

expanded are different from zero and positive, and likewise solutions such as

(36) and (37) will converge as t approaches — oo provided that the corresponding

exponents are different from zero and negative. The characteristic exponents

of this problem are 0, 0, * Xi, = X2, * X3, equations (13), but only X2 and X3

have their real parts different from zero, and it is in terms of only these exponents

that the solutions have been expanded. Hence the solutions (34) and (35)

converge as Z approaches + 00, and the solutions (36) and (37) converge as t

approaches — 00.

8. Illustrative examples. We shall conclude this paper with illustrative

numerical examples. The values of the masses chosen are not the ratios of

the masses of the Sun, Jupiter and the planetoids mentioned in § 1, but more sim-

ple values to illustrate the nature of the orbits.

Let Wi = 0.2, W2 = 0.3 and m3 = 0.5. Then M, the sum of the masses, is

unity,  and n, the mean angular motion, is + 1 or— 1.    We have chosen the

"Loc. tit., vol. 1, pp. 338-343.
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counter-clockwise direction of rotation and put n = + 1. The vertices of

the equilateral triangle for configuration I are (0.1, 0.4a/3), (0.6, — 0.1a/3)

and ( - 0.4, - 0.1a/3), and for configuration II (0.1, - 0A\/3), (0.6, 0.1 a/3)

and ( — 0.4, 0.1a/3) for mi, m2 and m3, respectively.

The computation has been carried out for only the linear terms in e for the

orbits (32). The values of the various constants together with the equations

which define them are listed in the following table. The conjugates of the var-

ious terms are omitted.

Table I

Constant

X,

Xî = n + V—i »

ai

■Y(2)
T2

„(0)   = „(10)a6 "l0

-0« af»   =  <>

*8° <40) = 4o0)

Equation

(11)

(12)

(12)

(14) et seq.

(14) et seq.

(14) et seq.

(16), (19)

(16), (19)

(16), (19)

(16), (19)

Value

D\D« +2D1 +3.0925D2 +2.0925)
' v-1

0.688+0.987 ^-1

0.15240.948 V^l

-0.24640.547 y/^l

-0.630-0.315 V~l

0.500-(0.225+0.914?) V-Î

-(0.289+0.8667)-(0.440-0.139v) V-Í

0.500v + (0.328+0.225T) y/—î

(0.386+0.288t) + (0.015-0.578t) V~-i

The solutions for e U\, t Vi, t u2, and « v2 are

tui = e-0.688l- [ eos 0.987/ - (0.450 + 1.828t) sin 0.987«] « + ....

&l = e-0.688/ [(0.578 + 1.732t) cos 0.987/ + (0.880 - 0.2787) sin 0.987/] t + ....

tUl = g-o.688< [ y cos 0.987/ + (0.656 + 0.450t) sin 0.987/] . + ....

ev2 = e-0.688/ [(0.772 + 0.576t) cos 0.987/ + (0.030 - 1.152?) sin 0.987/] « + -...

Example I.

If we put e

tions become

7 = 0.1 and consider only the linear terms in e, these solu-

eu, = e-0.688/ [0.1000 cos 0.987/ - 0.0633 sin 0.987/],

evi = - e-0.6S8< [0.0751 cos 0.987/ + 0.0852 sin 0.987/],

tU2 = e-0.688; [0.0100 cos 0.987/ + 0.0701 sin 0.987/],

&2 =      e-0.688i [0.0830 cos 0.987/ - 0.0085 sin 0.987/].

The values of the above quantities for various values of t are listed in Table II.

The corresponding values for t u3 and « v3 have been computed from the center
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of gravity equations. The coordinates (e «i, e vx), (e »2, « v2) and (e »3, e v3) de-

note the x- and y-displacements of Wi, m2 and m3, respectively, from the vertices

of the equilateral triangle in configuration I.

Table II

= 0.1   7 = 0.1

0.6
0.7
0.8
0.9
1
1.2
1.4

e«]

+0.100
+0.087
+0.075
+0.063
+0.052
+0.041
+0.032
+0.023
+0.015
+0.008
+0.001
-0.009
-0.017
-0.021
-0.024
-0.025
-0.022
-0.017
-0.011
-0.006
-0.0015

+0.0015
+0.0027
+0.0026
+0.0019
+0.0004

e»i

-0.075
-0.078
-0.079
-0.079
-0.078
-0.076
-0.073
-0.069
-0.065
-0.061
-0.057
-0.047
-0.037
-0.028
-0.020
-0.012
-0.001
4-0.006
+0.008
+0.009
+0.0072
+0.0046
+0.0021
+0.0003
+0.0006
+0.0009

ett2

+0.010
+0.016
+0.021
+0.024
+0.028
+0.030
+0.031
+0.032
+0.033
+0.033
+0.032
+0.030
+0.027
+0.023
+0.019
+0.015
+0.008
+0.002
-0.001
-0.003
-0.0037
-0.0032
-0.0021
-0.0011
-0.0003

+0.0004

tv->

+0.083
+0.076
+0.070
+0.063
+0.056
+0.049
+0.043
+0.036
+0.030
+0.025
+0.019
+0.010
+0.003
-0.003
-0.007
-0.010
-0.013
-0.012
-0.009
-0.006
-0.0033
-0.0006

+0.0008
+0.0014
+0.0013
+0.0005

tu?,

-0.046
-0.044
-0.042
-0.040
-0.037
-0.034
-0.032
-0.029
-0.026
-0.023
-0.020
-0.014
-0.010
-0.005
-0.002

+0.001
+0.004
+0.005
+0.005
+0.004
+0.0028
+0.0011
+0.0002
-0.0004
-0.0006
-0.0004

el's

-0.020
-0.015
-0.010
-0.006
-0.002

+0.001
+0.004
+0.006
+0.008
+0.010
+0.011
+0.013
+0.013
+0.013
+0.012
+0.011
+0.008
+0.005
+0.002
+0.0002
-0.0009
-0.0015
-0.0014
-0.00097
-0.00052

+0.00005

The diagram of the orbit of mx for Example I is shown in Figure 3.    This

orbit is, of course, with respect to the rotating axes.   The arrow indicates the

directions of motion.

Example II.

We have also computed the orbits when e = 0.1 and y — 1.    The equations

determining the displacements, in so far as the linear terms in e are concerned, are

tUl = ,¡-0.688; (0.100 cos 0.987/ - 0.228 sin 0.987/),

«,, = - e-0.688i (0.231 cos 0.987/ + 0.060 sin 0.987/),

eu2 = «-0.688* (0.100 cos 0.987/ + 0.111 sin 0.987/),

m = e-0.688/ (0.135 cos 0.987/ - 0.112 sin 0.987/).

On substituting in these equations the various values of Z as in Table II and mak-

ing use of the center of gravity equations to determine t u3 and í v3, the following

displacements are found :
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Fig. 3.
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Table III

6   =   0.1        V    =    1

431

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2
2.4
2.8
3.2
3.6
4
4.5
5
5.5
6
7

e«i

+0.100
+0.072
+0.046
+0.024
+0.004
-0.014
-0.029
-0.042
-0.053
-0.061
-0.068
-0.076
-0.078
-0.076
-0.071
-0.063
-0.044
-0.026
-0.011
-0.0001

+0.0061
+0.0087
+0.0078
+0.0054
+0.0028
-0.0004

ad

-0.231
-0.221
-0.208
-0.195
-0.179
-0.164
-0.149
-0.133
-0.119
-0.104
-0.090
-0.063
-0.039
-0.019
-0.003

+0.009
+0.024
+0.028
+0.026
+0.0198
+0.0130
+0.0054
+0.0003
-0.0024
-0.0031
-0.0018

tu-i

+0.
+0.
+0.
+0.
+0.
+0.

100
103
105
104
103
100

+0.096
+0.092
+0.086
+0.080
+0.074
+0.062
+0.049
+0.037
+0.026
+0.016
+0.001
-0.008
-0.011
-0.0114
-0.0095
-0.0061
-0.0028
-0.0004

+0.0009
+0.0012

ez'2

+0.135
+0.115
+0.096
+0.079
+0.062
+0.047
+0.033
+0.020
+0.008
-0.001
-0.010
-0.023
-0.032
-0.038
-0.040
-0.040
-0.034
-0.024
-0.015
-0.0066
-0.0008

+0.0032
+0.0045
+0.0039
+0.0027
+0.0004

e»3

-0.100
-0.091
-0.081
-0.072
-0.063
-0.054
-0.046
-0.038
-0.031
-0.024
-0.018
-0.007

+0.002
+0.009
+0.013
+0.016
+0.017
+0.015
+0.011
+0.0069
+0.0033
+0.0001
-0.0015
-0.0019
-0.0017
-0.0005

eflj

+0.011
+0.019
+0.026
+0.031
+0.034
+0.038
+0.040
+0.041
+0.042
+0.042
+0.041
+0.039
+0.035
+0.030
+0.025
+0.020
+0.011
+0.003
-0.001
-0.0039
-0.0047
-0.0041
-0.0028
-0.0014
-0.0004
-0.0005

The diagram of the orbits of the three bodies in this example is found in Fig-

ure 4. The length of the side of the equilateral triangle is taken as the unit

length.

In conclusion, the author wishes to express his thanks to his former colleague,

F. M. Wood, M.A., B.Sc, for verifying the algebraic and numerical computa-

tions in this paper.

The University op British Columbia,

Vancouver, Canada.

ERRATA, VOLUME 23

Page 51.    J. F. RiTT, Prime and composite polynominals.

Page 63.    Line 7, for ^_t (v)  read        ^^(w);

line 25, for <P~*(v)    read        4>~l(w).


