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Part I.   Introduction

1. Prologue. Thus far, very little has been published on the general theory

of formal modular invariants or covariants. Workers have, on the whole,

obtained results for special, more or less isolated, cases; and although some

beautiful and important general theorems have been proved, they are more or

less unrelated. This is, of course, only natural in any division of knowledge

in its formative state.

Nevertheless, no worker in the field could fail to be conscious of a certain

uniformity common to the special cases that have been studied in detail;

though (alas !) this uniformity usually appeared to be broken ruthlessly in the

next case studied. This breaking of an apparent law signified, however,

merely that we did not know these special cases with a sufficient thoroughness

of illuminating detail, or were trying unwittingly to make the laws conform to

certain standards, unconsciously preconceived. This latter handicap was laid

on us naturally enough by our thorough knowledge of algebraic invariants and

the fact that this newer kind of covariants is, in many ways, strikingly like

the older, classic covariants, though so tantalisingly different.

Their similarity and their difference show themselves in the very beginning

of the study: in the definitions, in the simplest examples. Perhaps the dif-

ferences that first come to mind are those which are inherent in the fields of

definition, which, in the case of classic covariants, is the field of reals or ordinary

complex numbers and, in the case of modular covariants, is a Galois field,

GF[pn], of order pn. These differences are too obvious to mention in detail,

but one who has studied the beautiful proofs given by the old masters of

invariant theory has been forced to the conclusion that most of the proofs

seemed to use the properties of a field of characteristic zero, not in some

accidental manner, but rather in veriest necessity.

Growing from the surface differences between the two fields are two very

important distinguishing characteristics of the two kinds of covariants.    It

* Part II was presented to the Society, September 7, 1920; Part III, December 28, 1921;

Parts IV and V, December 27, 1922.
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is well known that an algebraic covariant is necessarily such that all of its

terms have the same weight—i.e., it is isobaric; but a modular covariant is not

necessarily isobaric. Nevertheless, although its terms are not in general of

exactly the same weight, their weights can differ at most by multiples of

pn — 1. Moreover, if two classic invariants are identical in value for all

marks of the field, they are necessarily identical in form, and conversely;

whereas, if two formal modular invariants are identical for all marks of the

field of definition, they are not necessarily identical in form. Nevertheless,

although two such invariants can be of different degree and appear quite

different in form at a casual glance, yet they necessarily have in common

certain fundamental characteristics.* There are other differences that will

occur to any worker in the field, but I think that I have mentioned the most

refractory.

As indicated above, in spite of the great differences between the algebraic

covariants and formal modular covariants, there are certain fundamental

likenesses which are more easily sensed than they are analyzed. A feeling

that there is some theory which underlies all the special cases, and yet which is

comparatively simple, made the writer try to crystallize this theory into words.

In the spring of 1918, came the feeling that the theory of formal modular

covariants of a binary form, /, for the field GF[pn], must be, in essentials,

equivalent to the theory of simultaneous algebraic covariants of / and certain

other forms obtained from/by replacing the coefficients of/by their respective

pnth powers. This is natural enough, since these powers of the coefficients of

/ are cogredient with the coefficients of / for the transformations of the group

used, and this is the only way in which a formal modular covariant differs

from an algebraic covariant of /. Then there appeared other indications

that there is an intimate relation between formal modular covariants of / and

algebraic covariants of a system of forms consisting of / and related forms.

This paper is an attempt to put in systematic form the theorems which emerged

when these eventually crystallized.

2. Summary of literature.    Let

/ ( a; x ) = ao xm + aL xm~l x2 + ■ • • + «m-i Xi a:m_1 + OmXm

be a binary form and let G be a group of linear transformations

(1) Xi = tix'i + Vix'2 (¿=1,2)

whose coefficients, the £'s and 77's, are in the field F. If / (a) be a polynomial

in the a's which, under all transformations of the group, is transformed into

I (a') such that

(2) I(a') = DwI(a)    (in the field)

* Some of these characteristics are indicated in a paper by Hazlett, these Transac-

tions, vol. 22 (1921), pp. 144-157, especially p. 145.
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where
D = ( £77 ) = £1772 - £2 771,

then I is said to be an invariant of / under the group G. Similarly, if C ( a ; x )

is a polynomial in the o's and the a:'s which, under all transformations of the

group G, is transformed into C(a'; x') such that

(3) C(a';x') = Dw C (a; x)    (in the field),

then C is said to be a covariant of / under the group G. Also, we speak of

invariants and covariants of a system S of binary forms /,-.

When the field of definition, F, is the field of all reals or the field of all

ordinary complex numbers, the covariants of S are the ordinary covariants of

S of the classic invariant theory, with which are associated the names of

Cayley, Sylvester, Hermite, Aronhold, Gordan, Clebsch and Hilbert.

When the field of definition, F, is the Galois field, GF[pn], of order p", the

covariants of S are called modular covariants. Here the £'s and 77's are marks

of the Galois field, GF [ pn ], of order pn* defined by the prime p and an

algebraic equation, P (X) = 0, of degree n; and thus (2) and (3) are con-

gruences, reduced modulis p and P (X). This means that, in (2) and (3),

the left member is identical with the right member if we replace the pnÛi power

of £,• and of rji by £,• and 77,- respectively, in view of Galois' generalization of

Fermat's theorem, f For a modular field there are two different types of

covariants. If the coefficients of the forms (the o's) range over the marks of

GF[pn], and if (2) and (3) are congruences which are true if Fermat's theorem

is applied, not only to the £'s and 77's, but also to the o's, then the covariants are

called simply modular covariants. If, on the other hand, the o's are independent

variables, Fermat's theorem does not apply to them; and hence, in (2) and (3),

the left member is understood to be identical with the right member without

any reduction in the exponents of the o's.    Such covariants are called formal

* Let p be any prime and let P ( X ) = 0 be any algebraic equation of degree n which has

its coefficients integers reduced modulo p and which is irreducible, modulo p. Then, if we

reduce any polynomial in X modulis p and P (X), we obtain a polynomial of the form

M (X) = c.,2'-1 + c„_s X»-« + • • • + c, X + Co

where each of the c's is an integer of the set 0, 1, ■ ■ • , p — 1. The totality of all polynomials

congruent modulis p and P ( X ) to the same M ( X ) is said to form a class of residues. Since

there is a class of residues for each set of values for the c's, there are p" such classes. The

totality of the classes of residues are closed under addition, subtraction, multiplication and

division (provided the divisor is not zero) and so constitute a field containing pn marks or

elements. Any two such fields are the same for a given p and a given n. This is called a

Galois field of order pn and is denoted by GF[pn]. Moreover, any finite field is simply iso-

morphic with a Galois field.

t If a is any mark of GF[pn], defined by p&ndP(X), then a"" s a (moddp, P(X)).

See any standard work on Galois fields, such as Dickson, Linear Groups, Teubner, 1901, p. 11;

Serret, Cours d'Algèbre Supérieure, vol. 2, p. 180.
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modular covariants. If the covariant is independent of the variables, it is

called a modular invariant or a formal modular invariant according as the a's

are marks of the field or independent variables.

Although Hurwitz introduced the notion of formal modular invariants in

connection with the determination of the number of solutions of higher con-

gruences,* Dickson discovered them independently four years later from a

different point of view.t Practically all important results in the theory are

due to Dickson. J

Clearly, every formal modular covariant of a system S is a modular covariant

of S, though not every modular covariant of S is also a formal modular co-

variant of S. For a modular invariant, /, of S is concerned solely with the

values of I for the different sets of values of the a's in the field of definition,

whereas a formal modular invariant of S is concerned not only with the values

but also with the form of I. This statement has to be modified somewhat for

covariants that are not invariants, since, in (2) and (3), the left member is the

same as the right member in a purely formal sense as far as the x's are con-

cerned, for both kinds of covariants. For example, if a is any one of the

coefficients of /, then apn — a always has the value zero when a is a mark of

GF[pn] and hence it is a modular invariant of/; but it is not a formal modular

invariant, since it is changed in form if we interchange Xi and x2.     To take

a less trivial example,
q = (a + c)(b2 + ac - 1)

is a modular invariant of / = ax\ + 2bxi x2 + cx\, mod 3, but is not a formal

invariant, since a + c goes into — a — b + c under the transformation

Xi = x[ + x2, x2 = x'2.

In 1909,§ Dickson studied modular invariants from a different point of

view and introduced the notion of classes of forms. This enables one to see

to the very heart of the theory and the finiteness theorem follows almost

directly from the definition. Later, || he proved the finiteness theorem for

modular covariants.

* lieber höhere Kongruenzen, Archiv der Mathematik und Physik, ser.

3, vol. 5 (1903), pp. 17-27.
tInvariants of binary forms under modular transformations, these Transactions,

vol. 8 (1907), pp. 205-232.
t Anyone wishing to gain familiarity with this beautiful theory should read the article by

Hurwitz mentioned above and Dickson's papers, of which the most fundamental are I. General

theory of modular invariants, these Transactions, vol. 10 (1909), pp. 123-158; II. Proof

of the finiteness of modular covariants, ibid., vol. 14 (1913), pp. 299-310. Also one should read

the brief but important paper by Miss Sanderson, Formal modular invariants with application

to binary modular covariants, these Transactions, vol. 14 (1913), pp. 489-500. All

results obtained up to 1914 are summarized in Dickson's Madison Colloquium Lectures, and

all essential results published up to August, 1922, are summarized briefly in Chapter 19 of his

History of the Theory of Numbers, vol. 3.

§ Dickson, I.

|| Dickson, II.
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There is, however, an intimate relation between modular invariants and

formal modular invariants. For Miss Sanderson's theorem* tells us that,

corresponding to any modular invariant, i, of a system S under any group G

of linear transformations with coefficients in GF[pn], there is a formal invari-

ant, I, under G such that I = i for all sets of values, in the field, of the coeffi-

cients of the system S. This enabled her to construct modular covariants of

a system S of binary forms, /,-, from the modular invariants of another system

S', consisting of the forms /» and an additional linear form with coefficients x2

and — Xi. Moreover, every modular covariant of S is a polynomial in the

universal covariant, L = xfn x2 — xx xf1, and the modular covariants ob-

tained in the manner indicated by Miss Sanderson's theorem.f Since every

algebraic covariant of S is obtained from the algebraic invariants of S' with-

out the need of any additional covariant, analogous to L, this result shows

one of the fundamental differences between algebraic and modular covariants.

In connection with this last remark, several minor results are of interest,

as they point the way toward more general results. In 1920, it was shown that,

for the field GF[pn] with p 9a 2, every modular covariant of a binary form,

/, whose degree is not divisible by p, is expressible as a rational function of

the universal modular covariants, L and Q, and of algebraic covariants of/.

For formal modular covariants of /, there is a theorem which is more com-

plicated in statement but similar in essence. J Then, in 1922, W. L. G.

Williams announced that every formal modular seminvariant of / (aside from

a power of a0) is a polynomial in the algebraic protomorphs and in

ß = al-ai aV

for GF[p] when the form/is such that binomial coefficients can be used.§ He

also proved the analogous theorem for formal seminvariants of two or more

binary forms. In this latter, it is interesting to note that, to a fundamental

set of algebraic protomorphs, it is necessary to adjoin only one new semin-

variant, namely, one of the same type as ß but formed for any one of the forms

/,-. It will be seen that these results indicate relations between modular

covariants and algebraic covariants, in spite of their superficial differences.

3. Summary of this paper. We first explain a symbolic notation for formal

modular covariants which is like that generally used for algebraic covariants

in most respects, but is (necessarily) different from the latter in one essential.

* These Transactions, vol. 14 (1913), pp. 489-500.

t Hazlett, A theorem on modular covariants, these Transactions, vol. 21 (1920),

pp. 247-254.
J Hazlett, Associated forms in the general theory of modular covariants, American

Journal of Mathematics, vol. 43 (1921), pp. 194-196.

§ Fundamental systems of protomorphic formal modular seminvariants of binary forms, read

before the Society (Rochester, N. Y.), Sept. 8,1922. I saw this article in MS. after announcing

to the Society (Toronto), on December 28, 1921, the results of Part III of this paper.
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This notation, however, has the advantage that it can be used for both algebraic

covariants and formal modular covariants; and thus, by its use, the proof of

every theorem in this paper is such that it applies both to the modular and the

non-modular cases. To help the reader appreciate the diversity of these two

interpretations of this theory, the more important theorems are applied to a

number of special cases.

As in the symbolic theory of algebraic covariants, it is readily seen that all

formal modular covariants are polynomials in a finite number of symbolic

expressions having the invariant property. Then are proved several other

elementary theorems which assume a simple and familiar form for algebraic

covariants, but which, for formal modular covariants, assume a form rather

strikingly different.

It is then shown that every isobaric formal modular covariant, C, of the

system S is congruent, in the field, to a function of the coefficients of S which

is (in a certain general sense) an algebraic covariant of S. When, however,

C is not isobaric, it is not congruent to an algebraic covariant of S; but it is,

nevertheless, congruent to an algebraic covariant of an enlarged system, S',

consisting of the forms of S and other forms obtained from the forms of S by

replacing the coefficients of S by their pnth powers. By various devices, there

are expressed in symbolic form the formal modular invariants of a fundamental

set for the cubic, modulo 2, and for the quadratic, modulo 3; and the above

theorems are verified.

Finally, by using the same theorems, we prove that the set of all formal

modular covariants of any binary system, S, with respect to the Galois field,

GF[pn], is such that (1) all syzygies among them are consequences of a finite

number of such syzygies; and (2) all formal modular covariants are expressible

as polynomials in a finite number of such covariants.

Part II.   Symbolic notation

4. Explanation of the notation. As in the theory of algebraic covariants,

formal modular covariants of a binary form, /, assume a form which is both

simple and elegant when the form / is expressed as a product of symbolic linear

factors. In the theory of algebraic covariants, it is customary to express a

binary form / of degree m as a symbolic mth power; but, for reasons which

were explained elsewhere in detail,* it is not possible to express the general

form/of degree m as a symbolic mth power and then express all formal modular

covariants by means of these symbols for the general Galois field.

For this reason, represent

/ = a0 x? + ai xf1 x2 + • • •

* New proofs of certain finiteness theorems in the theory of modular covariants, these Trans-

actions, vol. 22 (1921), pp. 152-153.
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as

/ = irax = ir ( ax xx + a2 x2 ) = ( ax Xi + a2 x2 ) ( ßi Xi + ß2 x2 ) •••

where it is understood that there are m symbolic factors which are symbolically

distinct, and consider its formal modular covariants under the group of trans-

formations (1) where the £'s and 77's are any marks of the Galois field, GF[pn],

of order pn such that the determinant is not zero in the field. Then, as has

been proved elsewhere,* every rational integral covariant (both classic and

modular) of / is a polynomial in the symbols a, ß, • • • and in the a;'s. The

converse is also true; though, in order that a polynomial in the x's and in the

symbols be rational in the o's, ( i ) it must be symmetric in the m pairs ( «i, a2 ),

(ßi, ß2 ), • • • and such that each term contains as many a's as ß's, as many

ß's as 7's, etc.; or (ii) it must be a sum of a number of expressions described

under (i). Similar remarks apply to covariants of several binary forms.

For convenience, any polynomial in the a^'s and the symbols which has the

invariantive property under a transformation of the group will be called a

symbolic covariant, even if it do not satisfy the conditions that it be rational

in the a's.

5. Fundamental set of symbolic covariants. Early in the symbolic theory

of algebraic covariants, it is proved that all algebraic invariants are expressible

as polynomials in a finite number of symbolic invariants of the type

(aß) = aiß2 — a2ßi.

Similarly, all algebraic covariants are expressible as polynomials in a finite

number of symbolic covariants of the type ( aß ) and ax = «i a^i + a2 x2.

For formal modular covariants we have a similar theorem, though we have

to use new types of symbolic covariants.

For simplicity, we shall first consider covariants of a single form, / = irax.

Now it is known that the pair ( «i, a2 ) is pseudo-cogredient with ( a;2, — Xi ) .f

Accordingly, any formal modular covariant may be regarded, for any purpose

not involving the notions of weight or index, as if it were actually an invariant

of m + 1 cogredient pairs, consisting of the pairs of symbols and the pair

(a;2, — Xi). But it is known that the formal modular invariants of a number

of cogredient points have the finiteness property.î Notice that this argument

applies equally well to a system of binary forms, and thus we have

Theorem I. All rational integral formal modular covariants of a system of

binary forms, fi = ir(aiXi + a2x2) — axßx • ■ ■, with respect to the Galois

* Preceding reference, top of p. 153.

t That is, the two pairs are cogredient aside from a multiplicative factor which is a power

of the determinant of the transformation.

X F. B. Wiley, Proof of the finiteness of the modular covariants of a system of binary forms and

cogredient points, these Transactions,  vol. 15 (1914), pp. 431-438.
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field GF[pn], of order pn, are polynomials in a finite number of symbolic co-

variants which are polynomials in the x's and in the a's, ß's,

6. Illustration of Theorem I. Dickson* has shown that all formal modular

invariants of the binary quadratic / = a0 x\ + 2oti xi x2 + a2 xi, modulo 3,

are polynomials in

A = a\ — a0 d2,        J = aa yo = a0 (a0 + ai + Oi) (a0 + 2ai + a2) a2,

B = ßyi =• ai(oi - ao) (a2 - a0) (a\ - a\),

r = (ao + a2) (2a0 + 2ax + a2) (2a0 + ax + a2).

If we express/in symbolic form (§ 4) as/ = ( «i xi + a2 x2 ) (ßi xi + ft x2 ),

then a0 = aißi, ai = — ( «i ft + a2 ßi ) mod 3, a? = a2ß2. Hence it is

readily seen that

A=(aß)2,        J= (a*a)(ß*ß),

B = Z(a*ß)2(ßsß),

T = - Ni (mod 3),

where

Ni = [(as ß)2 (ßs ß) - (ß* a)2 (a* a)]/(aß)3

is one of a fundamental set of formal invariants of the pairs (ai, a2) and

(ßi, ft) and is an integral function of the a's and ß's. Thus Theorem I is

verified for this case. Note, also, that the rational invariants of / are ex-

pressible as rational functions in the determinantal symbolic invariants,

(aß), (a3 ft), (aßs), (a3 a), (ft ß).

Part III.   Relation between classic and modular covariants

7. Two kinds of congruences. In the following sections, we shall frequently

have to distinguish between two kinds of congruences, identical congruences

and residual congruences. Two polynomials <pi (x) and <j>2 (x), with in-

tegral coefficients, are said to be residually congruent with respect to the field

GF[pn] if 0i (a;) = <j>2 (x) whenever x is any mark of the field; if, however,

4>i (x) = <p2 (x) when x is any number whatsoever, then <¡>i (x) is said to be

identically congruent to <p2 ( x ). For example, xpn = x is a residual congru-

ence, and (p + l)a;=.a;isan identical congruence.

Moreover, if 4>i and <j>2 are polynomials in two sets of variables, the a;,- and

2/i, then we might have a congruence which is residual as far as the x's are con-

cerned, but which is identical as far as the y's are concerned. For example,

when C is a modular covariant, (3) in § 2 is a residual congruence as far as the

a's are concerned but is an identical congruence as far as the x's are concerned.

If, on the other hand, C is a formal covariant, then (3) is an identical con-

gruence with respect to both the a's and the x's.    In each case, however, (3)

* Madison Colloquium Lectures, p. 42.

Trans. Am. Math. Soo. ¡SO.
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is a residual congruence with respect to the £'s and 77's. Since there is no

simple notation which will indicate those variables with respect to which a

congruence is residual, we shall indicate them in words directly after each

congruence.

8. Manner in which covariants are transformed. An algebraic covariant,

C, is usually defined as a function such that its transform, C, is given by the

formula C = Dw C where D is the determinant of the general transformation

of the group; but it is often defined as a function such that C" = MC where M

depends merely on the coefficients of the transformation, and the multiplier

is then proved to be a power of D. Now it has been customary thus far to

define a formal modular covariant in a manner analogous to the first of these

methods, but, in this paper, we shall use the second definition and then prove

it is equivalent to the first.

Although the definition of a formal modular covariant says nothing explicitly

about the nature of its transform except for values of the £'s and 77's in the

field, let us see if this indirectly imposes any restriction on the actual form of

the transform before we reduce the exponents of the £'s and 77's by Fermat's

theorem. For example, under the transformation (1), ii = aT a2 — «i aÇ

is replaced by the same function of the primed letters, which is identically

equal to
Dx a'T1 + D2 of «2 - D3 «i of + Dt av2+1,

where

Di = £f 771 - £1 vT,       D2 = £f 772 - 77Ï" £2,

D3 = £1 vT — £2" Vi,       Di = £2" V2 — £2 77J2".

It will be observed that each Di is a formal modular invariant of the two pairs

(£1, 771) and (£2, r?2) when they are transformed cogrediently, and that

Di = Di = 0, D2 = D3 = D, when the £'s and 77's are all in the field.

Let C be any formal covariant of the system S. Then, under (1), C formally

—i.e., before any reduction is made modulo p—goes into

(4) C(o';a;') =SZ>i(£, 77) Pi (o; a:)

where each D* and each P, is a polynomial in its arguments. If (1) is followed

by the transformation

x'i = eixi + fix'¡ (¿=1,2),
where

A = ei/2 - e2fi + 0    (in the field),

this is equivalent to applying to the original forms of S the single transformation

(10_ *t-M+ti't4 (¿=1,2),
* These multipliers, Z)¿, will depend on the covariant, C. When C is L, then the D's are

as given in the preceding paragraph.
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where the two pairs ( £i, 77Í ) and ( £2, 772 ) are obtained respectively from the

pairs ( £1, 771 ) and ( £2, 772) by applying the transformation of matrix

<5> C: ;;)•
Accordingly, if in (4) we replace the a! and the x' by the corresponding a"

and x", and apply the transformation (5) to the pairs ( £, 77 ), then we get an

equation of the type (4) but formed for the new transformation (1'). Thus,

before any reduction is made modulo p,

(4') C(a";x") = ZP, (£', 77') P, (a; x);

and also

(6) C(a"; x") = MC (a'; x')    (in the field),

whenever the e's and /'s are in the field. Both (4) and (4') are ordinary

equations, but (6) is a congruence in the field, being an identical congruence

with respect to the a's and x's.    Combining these, we have

Pi (£',77') =MP,-(£,7,)

as an identical congruence in the £'s and 77's.    Hence we have proved

Theorem II. // C is any formal modular covariant of a system, S, of binary

forms with respect to the Galois field GF [pn], of order pn, then under any

linear transformation (1) of the group, C is formally replaced by an expression of

the form 2P, (£, 77) P, (a; x) where each Pi is a polynomial in the a's and x's

and each Di is a formal modular invariant of the two cogredient pairs (£1, 771)

and ( £2, 772 ).

In a later section^ we shall prove that each Di which is not congruent to

zero when the £'s and 77's are in the field is congruent to a power of D (the

determinant of the transformation) whenever the £'s and 77's are marks of the

field. For isobaric covariants, see Lemma 4 (§ 10) ; for pseudo-isobaric

covariants, see § 16.

Note that this proof holds equally well for classic covariants, and thus, both

for classic covariants and modular covariants, the theory of covariants of a

system of binary forms has its foundations in the theory of invariants of two

cogredient points. The essential differences between the modular and classic

theories are, accordingly, associated with two facts: (1) in the classic case, all

invariants of two cogredient points are polynomials in one invariant, the

determinant £1772 — 771 £2; whereas, in the modular case, several other types

arise; (2) in the classic case there is no invariant, other than zero itself, which

vanishes whenever the £'s and 77's are in the field; whereas, in the modular

case, there are invariants of the two pairs which are not identically congruent

to zero and yet vanish whenever the £'s and 77's are in the field.    From (1)
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we see why the transform of a modular covariant is not in general identically

a multiple of the original covariant, and from (2) we see why the transform of

a modular covariant in general contains terms having no counterpart in the

original covariant, before Fermat's theorem is applied. Both remarks are

illustrated by L at the beginning of this section.

9. Remarks on isobarism. Another fundamental difference between alge-

braic and modular covariants was mentioned in the introduction and will now

be discussed briefly. An algebraic covariant is always isobaric—i.e., all its

terms have the same weight.* In fact, an elementary way of determining

classic invariants of f(a; x) is to write down a general linear combination of

all possible terms having the same degree in the o's and the same weight and

then determine what the coefficients of these terms must be in order that the

expression be an invariant of /.f But a modular covariant is not in general

isobaric, though the weights of any two of its terms can differ at most by a

multiple of pn — 1.

These differences are well shown by the algebraic invariants of

/ = a0 xl + 2oi xx x2 + a2 xl

and the formal invariants of the same form, modulo 3. All algebraic invariants

of / are polynomials inj

A = Oi — o0 o2,

and the modular invariants are polynomials in A, J, B and V (see § 6). It

will be noticed that of the modular invariants, only one is isobaric and that is

the one which is also an algebraic invariant of /; the weights of any terms of

the others differ at most by multiples of pn — 1 = 2.

Isobaric covariants

10. Preliminary lemmas.

Lemma I. Let C be a formal modular covariant of a system, S, of binary

forms and a number of cogredient points under a group G with coefficients in the

Galois field GF [pn],of order pn. Then, if C is isobaric, it is invariant modulo p

under any transformation (1) where the £'s and n's are independent variables.

For, since C is invariant modulo p under the transformation

xi = x'x + x2,

x2 = a;2,

* In the binary form / = a0 x? + ai x¡"-1 x2 + ■ ■■ + am x?, the weight of the coefficient

at is defined to be i, and the variables x1 and xi are assigned the weights 1 and 0 respectively.

See any standard book on algebraic invariants, such as Elliott, Algebra ofQuantics, first edition,

pp. 36, 48; Dickson, Algebraic Invariants, pp. 31, 38.

f For examples, see Elliott, pp. 125-126;  Dickson, pp. 36-37.

î Dickson, Algebraic Invariants, pp. 48, 84; Elliott, loc. cit., pp. 98-99.
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and is isobaric, it is formally invariant, modulo p, under any transformation

Xi = x'i + kx'i,

x2 = kx'2>

where k is a general non-zero scalar. Again using the isobarism, it follows

from this last that C is invariant modulo p under the transformation

xi = x'i + kx'i,

x2 = x2.

Also, C satisfies the condition for covariancy under the transformation

Xl = x2,

(8)
x2 = Xi,

without using Fermat's theorem. Now, using (7) and (8) in conjunction

with the isobarism, we prove the lemma.

Lemma II. If a formal modular covariant is isobaric, then every one of its

factors is necessarily isobaric.

For, let Ci and C2 be any two formal modular covariants which are not

isobaric. Then the totality of terms in Ci C2 which have the greatest (least)

weight is simply the product of the terms of Ci which have the greatest (least)

weight by the terms of C2 which have the greatest (least) weight. The lemma

follows at once.

Lemma III. When a formal modular covariant C is isobaric, each of the

multipliers Di ( £, 77 ) of Theorem II is also isobaric.

For, by Theorem II, under any transformation (1), we have (3) holding

formally as to the a's, x's, £'s and 77's. Since C is isobaric, it is invariant

whenever Xi or x2 is multiplied by p, where p is any non-zero scalar. This

means that the right member of (3) is homogeneous in £1 and 771, and also in

£2 and 772. Being also invariant whenever we interchange the x's, the right

member of (3) must be of the same degree in £1 and 771 that it is in £2 and 772.

Hence, if wi, w2, w3 and w4 are the degrees of any term of some P, in £i, 771, £2

and 772, respectively, then wi + w2 = w3 + w4. Similarly, since C is invariant

formally whenever x[ or x2 is multiplied by p, we have wi + w3 = w2 + W4.

Therefore Wi = w* and w2 = w3.

Lemma IV. When a formal modular covariant, C, is isobaric, each of the

multipliers Di of Theorem II ¿5 either identically congruent to zero or to a power

of the determinant, D, of the transformation.

By Lemma III, P, is a linear combination of terms of the form £Î 77?"* £""* 77*,

where w is constant for a given covariant, C; and thus each P, which is not

congruent to zero for every transformation of the group is of the form*

* For if Di is not congruent to zero when the £'s and 7j's are in the field, then it must be

equal to unity for the identical transformation and hence must contain a term in £™ n2 with

coefficient unity.
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(9) Di - (£i772 -77i£2)- + Ai,

where A,- is divisible by 771 £2 and vanishes whenever the £'s and 77's are in the

field. But Di and £i 772 — 771 £2 are both formal modular invariants of the

two pairs, (£i, 77,), and are also isobaric; hence A,- is likewise. Being divisible

by 771 and £2, A¿ is divisible by Lt = £f 77»- — £¿ r¡T (i = 1, 2). By Lemma

II, this is impossible unless A,- is identically zero in the field. Finally, each

Di which is congruent to zero whenever the £'s and 77's are in the field is of the

same type as the A,- above.    Thus the lemma is proved.

11. Isobaric seminvariants in terms of the roots. If a formal modular

seminvariant 7 of a system, S, of binary forms with respect to the field GF [ pn ]

is isobaric, then, by Lemma I, it is invariant, modulo p, under any trans-

formation
xi = x[ + Mx'i,

(10) _   ,
X2 — x2,

where M is a general scalar. Hence, as in the theory of algebraic semin-

variants, we can prove

Lemma V. Let I be any isobaric formal modular seminvariant of a system,

S, of binary forms with respect to the Galois field, GF [pn], of order pn which is

of degree d and weight w. Then I is congruent, modulo p, to the product of a% by

a symmetric polynomial, S, in the symbolic ratios a2/ai, ß2/ßi, • • • which is

homogeneous in these ratios of degree w. Moreover, S is expressible as a poly-

nomial in the differences of these ratios.

The proof proceeds as in the theory of classic seminvariants, but (for the

saH of completeness) we shall reproduce it for the case when S contains only

one form. Since 7 is isobaric, it can not contain o0 as a factor, by Lemma II.

Hence / is Oo multiplied by a polynomial, S, of degree d in Oi/o0, a2/a0, • • •,

Om/ao. Thus S is a polynomial in the elementary symmetric functions of the

symbolic ratios
j      a2   ß2    72

oci    ßi    7i

and is of degree d in each such ratio; and since I is isobaric, S is homogeneous

in these symbolic ratios of total degree w.

But, since I is formally unaltered, modulo p, under transformation (10),

it is formally unaltered, modulo p, when the symbolic ratios are diminished

by any scalar, M.    Accordingly, set

182 _ (ßi       Oi2\ .

ßi-\ßi-ai) + Ä'
and similarly with the other ratios; and thus

(id    s==(^y^+(^ri^-i+---+^'
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where each Ai is a polynomial in the differences such as (ft/ft) — (a2/ai),

( T2/71 ) — ( «2/01 ),•••• As in classic invariant theory, this is impossible

unless the Ai (i S 1 ) are all zero in the field. Hence the lemma is proved.

The converse is also readily proved, but will not be needed here.

12. Isobaric invariants in terms of the ratios. When I is an isobaric formal

modular invariant of a binary form,/, then (by Lemma I) its transform under

any transformation (1) when the £'s and 77's are general scalars is connected

with I by the relation (2), where (2) is an identical congruence as to the a's

and thus is essentially of the same type as the corresponding relation for an

algebraic invariant of/. Hence, as in the theory of algebraic invariants, we

can prove for invariants the result which is a generalization of Lemma V.

A similar argument obtains for an invariant of a system of binary forms and

hence for covariants of a system of forms.*   Thus we have

Lemma VI. Let C (a formal modular covariant of a system S of binary forms,

fi ) be of degree di in the coefficients offi and of degree d in the variables, xi and x2,

and let it be isobaric of weight w .

I. Then C is identically congruent, modulo p, to Haß1 x2 multiplied by a linear

combination, K, of products of the expressions ( Xi/x2 ) + ( «2/0:1 ), and of dif-

ferences of the type (ft/ft) — (a2/ai), where the a's and ß's may be symbols

arising from the same form, fi, or may be symbols arising from two different forms.

II. Moreover, K is homogeneous in the symbols for each form, fi, and such

that each ratio a2/ai for this form, fi, occurs in exactly di factors in each product..

III. Finally, K is symmetric, modulo p, in these symbols for each form fi.

In applying the results of §§11 and 12, the reader must remember that,

although the seminvariant (or invariant) is always symmetric in the pairs

(«i, a2), (ft, ft), • ■ • in the form in which it first appears, yet the poly-

nomial, K, in the differences (ft/ft) — (a2/ai) is not in general symmetric

in the ratios a2/ai, ft/ft, • • •, but is merely symmetric modulo p. For the

binary quadratic / = aa x\ + «i Xi x2 + a2 x22 = ax ft has the formal modular

invariant ai = «ift + a2 ft = «ift [ (ft/ft) — (a2/ai)], modulo 2. The

first is actually symmetric; but the second is not symmetric, though it is

symmetric modulo p = 2.

13. Isobaric formal covariants as algebraic covariants. From Lemma VI

it is evident that, if we express a0 for each form, /,•, in terms of the symbols,

we have

Theorem III. Every isobaric formal modular covariant, C, of a system of

binary forms is expressible as a polynomial in symbolic covariants of the type

ax = «i Xi -f- a2 x2 and in determinantal symbolic invariants of the type

* For every formal covariant of the system <S is a formal modular invariant of the system

S' consisting of the forms of S and the additional linear form I = X2 Xi — X¡ x2 in which

Xi, Xi have been replaced by Xi,x2, respectively. The proof of this is the same as for algebraic

covariants.



300 O.  C.   HAZLETT [December

(aß) = «i|32 — a2ßi.

But it is well known that the product, P, of xi liai1 by any expression, K,

in the symbols satisfying the conditions I and II of Lemma VI is an algebraic

covariant of the system S of forms, though not necessarily a rational one.*

A necessary and sufficient condition that P be rational in the coefficients of /,•

is that K be actually symmetric in the ratios ß2/ßi, a2/ai, • • • formed for /,■.

This is stronger than condition III of Lemma VI, as is illustrated by the

symbolic invariant (aß) for the binary quadratic, mod 2 (see § 12). The kth.

power of (aß) is symmetric, mod 2, for any k; but is actually symmetric

only when k is even.    Thus we have

Corollary 1. Every isobaric formal modular covariant of a system, S, of

binary forms with respect to the Galois field, GF [pn] of order pn, is congruent,

modulo p, to an algebraic covariant of S, either rational or irrational.

But every irrational algebraic covariant of S is known to be a root of an

algebraic equation whose coefficients are rational, algebraic covariants of S,

and thus we have

Corollary 2. Every isobaric formal modular covariant of S is congruent,

modulo p,toa root of an algebraic equation whose coefficients are rational algebraic

covariants of S.

Pseudo-isobaric covariants

14. Informal discussion. In the preceding sections, we have considered

formal modular covariants that are actually isobaric and have seen that, in

many ways, such a covariant is much the same as an ordinary classic covariant.

But if a formal modular covariant is not isobaric, what then? For example,

consider the formal modular invariants of a point with respect to the field

GF[pn]. Any such invariant, I, whose degree, d, is less than pn + 1 must

be an ordinary invariant of the point. For, since the weights of any two

terms would have to be congruent, mod pn — 1, I would have to be of the

form Ax'f"1 + BxÇ-1 where A and B are constants. But, if the degree is

< pn, there is no opportunity to apply Fermat's theorem to the coefficients

of the transformation, and thus I must be invariant in the classic sense and
therefore identically zero in the field.    If pn < d Si p2n, it can be shown by a

* Dickson, Algebraic Invariants, p. 55, ex. 7; Elliott, loc. cit., p. 93. (Some people do not

agree with my statement, and (in justification) say that P in general has no actual meaning

in the a's. But any polynomial, P, in the symbols which is not actually symmetric in the

symbols, a¡, oa, ßi, ßi, • • • for a particular form,/¡, is a root of an algebraic equation whose

coefficients are the elementary symmetric functions of P and the other symbolic invariants

obtained from P by interchanging any two pairs of symbols for this form .ft; and hence P is a

root of an algebraic equation whose coefficients are polynomials in the coefficients of/,-. Simi-

larly, P is a root of an algebraic equation whose coefficients are polynomials in the coefficients

of S, and thus P is an algebraic function of the coefficients of S, though it is not necessarily

an explicit algebraic function of these coefficients. Hence why is it not an algebraic covariant

ofS?)
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similar argument that either I is an ordinary invariant of the two cogredient

pairs, ( xi, x2 ), ( xf, xf ), and therefore I = kL where k is a constant and

L = xf x2 — Xi xf; or LI is an ordinary invariant of the two cogredient

pairs (xi, x2) and (xf", xf"), and therefore LI = k(xfnx2 — xxxfn).

In fact, it is well known that all formal modular invariants of the point ( Xi, x2 )

are polynomials in L and Q = (xp2n x2 — xi x?2n)/L. This might be stated

more strikingly by saying that every such invariant is a rational, integral

algebraic invariant of three points, or is a quotient of two such invariants.

Moreover, a similar statement is true of the formal modular invariants of a

pair of cogredient points, ( xi, x2 ) and (2/1,2/2)-*    Is this true more generally '

15. Preliminary lemmas. Consider a formal modular invariant, 7 = £7-

of the binary form/(a; x) which is of degree d and which is not isobaric. In

particular, let 70 be a term of I whose weight, wo, is less than or equal to that

of any other term of I, and let 7i be any other term of I. Then, since I is

pseudo-isobaric, the weight of 7i will be wi = wo + I ( pn — 1) where I is an

integer, positive or zero. When the coefficients of/(a; x) are replaced by

the corresponding functions of the symbols ai, a2, ft, ft, • • •, 7 is homo-

geneous of degree md in these symbols. Also, if I¡ is of weight w¡, it is of

degree md — w, in symbols with subscript 1 and of degree w¡ in symbols with

subscript 2. Their difference, md — 2wj, we shall call the excess, as in classic

invariant theory.

Lemma VII. The excess of any term of a formal modular covariant is con-

gruent to zero, modulo pn — 1 .f

For, by interchanging the subscripts 1 and 2 throughout 7, it follows that

7 contains a term whose degree in the symbols with subscript 1 is w}- and whose

degree in the symbols with subscript 2 is md — w¡, and therefore of weight

md — Wj. Hence md — w¡ m w¡ ( mod pn — 1), and the excess of any term

of 7 is a multiple of pn — 1, say Ej (pn — 1).

Now 7P" is identically congruent in the field to T.I'f,% and thus the latter

is a formal modular invariant of f(a; x). It may ako be regarded as an in-

variant of f(apn; x), but we shall show that it is better for our purpose to

regard it as a simultaneous invariant of/(a; x) and/(ap"; x).

For in Iv" the term I%" is of excess E0pn (pn — 1), and hence, if we replace

E0(pn — 1) factors of the form af by as many factors of the form «i, the

excess of the resulting symbolic expression is E0(pn — 1). If w0 = E0, then

by replacing E0 additional factors of the form a? by as many factors cti,

* W. C. Krathwohl, Modular invariants of two pairs of cogredient variables, American

Journal of Mathematics, vol. 36 (1914), pp. 449-^60.

t After finishing this MS., I discovered that Professor Glenn stated and proved this in

Concerning an analogy between formal modular invariants and the class of algebraic invariants

called Booleans, American Journal of Mathematics, vol. 37 (1915), p. 75.

X Dickson, Linear Groups, p. 15.
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the excess of the resulting symbolic expression is zero. I'Ç is now of degree

Eopn in a's having subscript 1 and of degree zero in a's having subscript 2;

also, it is of degree (w¿ — Ea)pn in a's having subscript 1 and of degree w0 pn

in the a's having subscript 2. Here and elsewhere in this work, we use the

expression "symbols a's" to denote any and all symbols such as ai, a2, ßi, Yi,

• • • ; similarly with the expression " symbols a."

Moreover, if wo = E0, the same device will serve to make all terms of Ip"

of excess zero and also to make all terms of the same weight, we. For the

weight of any term, 7,, of 7 is w0 + k ( pn — 1 ) and hence is of excess

( Eq — 2k ) ( pn — 1 ) which we shall assume positive for convenience. Accord-

ingly, if in If we replace (E0 — 2k) (pn) factors of the form oûf by as many

factors ai, the result is of excess zero, but of weight [w0 + k (pn — 1)] pn.

Next replace kpn factors af by as many factors ai and replace kpn factors

aÇ by as many factors ce2, and we get an expression whose excess is zero and

weight is wopn• This is legal, since wo = E0 — k + 1 and w0 = k. In case

the excess of /„ is negative, interchange the subscripts 1 and 2 in the foregoing

by an argument similar to that used in Lemma VII. Thus the remark at the

beginning of this paragraph is proved.

For convenience, we shall speak of the a's, ß's, • • • (the symbolic coefficients

of the linear factors ax, ßx, • • • of f(a; x) ) as the primary symbols; and we

shall speak of the totality of the original symbols ai, a2, ßi, ß2, • • • together

with the new symbols ai,a2,ßi,ßi, • • • , and any other symbolic coefficients

introduced in the above manner as the secondary symbols.

Wë see, accordingly, that every pseudo-isobaric formal modular invariant,

I, of f(a; x) is such that a suitable power of 7 is isobaric in the coefficients of

the symbolic linear factors oif(a;x) and of/(opn; x), provided 0 ¿¿ w0 = E0.

Even if 0 5¿ wo < Eo, this argument shows that the excess of Ipn in the

secondary symbols is ( E0 — w0 ) ( pn — 1 ) less than that of the original 7.

But, since the excess is finite, it follows that, by repeating this process at most

[Eo/wo]* times, we prove Lemma VIII for the case w0 ^ 0. It will be ob-

served, however, that for Ais purpose we have to introduce another set of new

symbols, say äi, ä2, ßi, ß2, • • •, and possibly still other sets having three or

more dashes. These, together with those introduced above, we group under

the heading "secondary symbols."

When wo = 0, we first multiply 7 by any invariant which is not an absolute

invariant and then proceed as above.    Thus we have

Lemma VIII.   Let I be a pseudo-isobaric invariant of a binary form

f(a;x) = Uax

with respect to the Galois field, GF [pn],of order pn; and let the lowest weight of all

* Here [ Eo/w0 ] means the smallest integer which is not less than E0/wt>.
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the terms of I be denoted by wo • Then, if wo 9e 0, some finite power of I is con-

gruent to a polynomial in the secondary symbols for f which is isobaric. If

wo = 0, then some power of I is congruent to the quotient of two polynomials in

the secondary symbols each of which is isobaric    For examples, see Part IV.

16. Pseudo-isobaric modular covariants as algebraic covariants. Let J de-

note that formal modular invariant of/which is obtained as a result of applying

the method of Lemma VIII to the pseudo-isobaric invariant 7 and which is,

accordingly, isobaric of weight w in the secondary symbols. If we apply to

J the transformation (1), then the transform J' = J ( a' ) is identically equal to

(12) J(a';a';a'; ■■■) = T.Dk(H, v) Pk(a;a;a; •••) +r

where each Dk (i) is a formal modular invariant of the two pairs (£i, 771) and

( £2, »72 ), ( Ü) is congruent to zero or to Dw whenever the £'s and 77's are all in

the field, (iii) is isobaric of weight w in the £'s and 77's; and where r is a poly-

nomial in the £'s and 77's and in the secondary symbols which vanishes whenever

the dashed symbols are replaced by the proper powers of the corresponding

primary symbols. That is, J is not in general an invariant function of the

secondary symbols when these symbols are taken as independent, but it is an

invariant function when the dashed symbols are replaced by the proper ex-

pressions in the primary symbols.

Since J is isobaric in the secondary symbols, Lemmas I-IV apply to J. If

we proceed to Lemma V, we see that the proof applies to J with the exception

that, since J is not in general rational in the coefficients of f(a; x) ,f(apn; x),

f(ap,n; x), • • •, then J is not in general congruent (modulo p) to the product

of a¡5 by a symmetric polynomial, S, in the secondary symbolic ratios; but,

nevertheless, J is congruent (modulo p) to a product of secondary symbols

with subscript 1 by a polynomial, S, in the secondary symbolic ratios. Hence,

as before, S is expressible as a polynomial in the differences of the secondary

symbolic ratios. Thus the proof of Lemma VI applies to J with the restric-

tions noted.

Hence we prove Theorem III and its corollaries for J, and we have

Theorem IV.    If I is a formal modular covariant of a system of binary forms

with respect to the Galois field GF [ pn ] of order pn, then Iq (where qisa sufficiently

large integer) is congruent to one of the two following forms:

(1) a polynomial in symbolic covariants of the types ax,ax,Ax, (aß), (Aß),

etc., where X = xp" and A = ap";

(2) a quotient of two polynomials described in (1).

Since these symbolic expressions are (symbolic) algebraic covariants of

f (a; x), f(apn; x), etc., we have

Corollary 1. Every pseudo-isobaric formal modular covariant, C, of a

system S of binary forms with respect to the Galois field GF [ p" ] is congruent,
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modulo p, to a symbolic algebraic covariant, C, of the forms of S and certain

related forms obtained from the forms of S by replacing each coefficient of these

forms by its pnth power.

In particular, this means that the function J may be chosen in such a way

that, under the transformation (1), J goes into J', where J' is equal to (not

merely congruent to) Dw J, when J is expressed as an isobaric function of the

secondary symbols. Note, however, that J is not necessarily rational in the

coefficients of the forms of S and the related forms. These remarks are

illustrated by examples given in Part IV.

17. Finiteness of determinantal symbols. In the preceding section, we

proved that all formal modular invariants 7 of a binary system, S, are con-

gruent, modulo p, to rational functions in symbolic invariants of S of a certain

special type called determinantal symbols. That is, 7 is congruent, modulo p,

to a rational function of symbolic invariants of the types (aß), (ap" a) and

symbols obtained from these by replacing a pair of symbols by their pnth

powers one or more times. Conceivably, as the degree of 7 increases, the

degree of the requisite determinantal symbols might increase without bound,

so that we would need an infinite number of determinantal symbols to obtain

all formal modular invariants of S.

But, in Part II, we proved that all formal modular invariants of S are con-

gruent to polynomials in a finite number of symbolic invariants which are

formal modular invariants of the (symbolic) coefficients of the symbolic linear

factors of the forms of S. Now apply Theorem IV to these symbolic in-

variants, and we see that all symbolic invariants of S are congruent to rational

functions of determinantal symbols.    Hence we have

Theorem V. All formal modular covariants of a system of binary forms are

congruent, in the field, to rational functions of a finite number of symbolic co-

variants of the types described in Theorem IV.

In fact, this theorem could have have been proved directly in much the

same manner as Theorem IV was proved and then Theorem IV would have

followed as a corollary of Theorems I and V.

Part IV.   Expression of covariants in symbolic form

18. Method for algebraic covariants. In the symbolic theory of algebraic

covariants, after proving that every such covariant is expressible as a poly-

nomial in symbols of the two types, (aß) and ax, there is then given a clear-

cut method for expressing any covariant in terms of these symbolic covariants.

For completeness, this method will be reproduced here, as we shall need to

refer to several of the results.

Let 7 be any algebraic invariant, of weight w, of a system of forms whose

coefficients are the o's; and let 7(a') be its transform under (1).    Under this
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transformation, ai and a2 go into ae and a,, respectively; and similarly for

the fts, 7's, etc. Just as the a's are polynomials in «i, a2, ft, ft, • • •, so

their transforms are polynomials in a(, av, ft, ft, • • •. Hence, in the equa-

tion (2),

( i ) replace every a' by the corresponding polynomial in ae, a„, etc. ;

( ii ) operate on both sides of the resulting equation w times with

V =     d2 d2

d£i d?72      d£2 dr/i '

( iii ) divide both sides of the result of ( ii ) by ( w + 1 ) ! w !.

From the left we get a polynomial in the symbolic invariants of the type

(aß), and from the right we get 7(a).

In proving this, use is made of the following:

Lemma A.
Vw(fr)w = (w + l)lwl.

Lemma B. The result of operating by Vw on a product of k terms of type a$

and I terms of the type ft is a sum of terms each containing k — w factors a£,

I — w factors ft and w factors (aß).

19. Difficulties in modular case. It is at once evident that this method is

not applicable directly to formal modular invariants, since the divisor in ( iii )

is congruent to zero in the field whenever w ^ p — 1. This difficulty, of

course, might be superficial in the sense that it might be due to some accidental

peculiarity in the proof and not to any essential characteristic of the problem ;

but, as will be apparent presently, there is a deep-seated difficulty.

Lemma B is proved by direct verification combined with induction, and

thus is lost the full significance of the reason why it is true. Now each symbolic

expression a( and each ft is an invariant of the two points ( £1, £2 ) and ( 771, n2 ),

which are transformed cogrediently when the original variables are subjected

to any linear transformation

/1 o\ •*•' = K^t ~r* "^2,      a -v    _£ n(13) ,     _        A = KV — \p ¿¿ U,
x2 = pxi + vx2,

thus replacing (1) by

/j ,-, Xi = £1 x'i + 771 x'2,

x2 = £2 x'i + rj2x2,

where the £'s and 77's are cogredient with the x's. Moreover, V is an invari-

antive operator whenever the £'s and 77's are transformed cogrediently. Lemma

B is an inevitable consequence of these facts.

If we look at Theorem II (§ 8), we see that in the modular case we have

the identity (4) where each P,- is a formal modular invariant of ( £1, 771 ) and
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(£2,772) when they are transformed cogrediently; but Z>, is not in general a

formal modular invariant of the two pairs (£1, £2) and (771, t72), though it

is clearly a modular invariant of these pairs. Moreover, the only way to

operate on a product of a number of symbols of the type a{ and ßv in such a

way as ( i ) to eliminate the £'s and 77's and ( ii ) to obtain as result a formal

modular invariant of the a's, ß's, etc., is to use an operator which has the in-

variantive property when ( £1, £2 ) and ( 771, n2) are transformed cogrediently.

Now the natural analogues of V for the formal modular case are, by Theorem

II, those formed on

£r V2 - 7?r £2, etc.,

as models—i.e., by replacing each £ by the operator indicating partial differ-

entiation with respect to that £, and similarly with the 77's—but they can not

give the desired results since these operators are not invariantive when the £'s

are transformed cogrediently with the 77's.

20. Significance of results of Part III. Such is the essential difficulty of the

problem and such is one of the reasons for proving the théorems of Part III.

There it is shown that ( i ) if C is isobaric, then each 7A- is an algebraic invariant

of the two pairs ( £1,771 ) and ( £2, r¡2 ) and hence is an invariant of the two pairs

(£i> £2) and (771, 7?2); (ii) if C is not isobaric, then a suitably high power of

C, say Cq, is such that, when (2) is formed for Cq, then each Di is an algebraic

invariant of the two pairs ( £1, 771 ) and ( £2, 772 ) and hence is an invariant of

the pairs (£1, £2) and (r¡i, V2) ■ In view of the remarks of § 19, these results

smooth out some of the difficulties.

21. First method. Let 7 be any formal modular invariant of a system S of

binary forms with respect to the Galois field, GF [ pn ], of order pn, and let /

be a formal modular invariant of S which is obtained from 7 by applying the

method of Lemma VIII and which is isobaric in the secondary symbols. The

first method of expressing J in symbolic form is suggested by the proof of

Lemma V (§11). Although it lacks originality, it has the advantage that it

leads at once to a result without exception or qualification. If J is of degree

di in the coefficients of fi, divide / by Traí' where the ai range over all symbols

for fi having subscript 1. Do this for every form /,-. The quotient, S, is

a polynomial in the ratios a2/ai, ft/ßi, • • •, a2/a~i, • • • with coefficients which

are marks of the field. Single out any particular ratio of the primary symbols,

say a2/ai, and select all terms of S which do not contain a2/ai as a factor.

In the resulting expression, replace ß2/ßi by (ß2/ßi) — (a2/ai), af/af by

(ajÇ/a'C) — (a2/ai), and similarly for all symbolic ratios. The resulting

expression, E, is clearly an invariant, since it is a polynomial in the determi-

nantal symbols. Moreover, it is identically congruent, modulo p, to J, for it

is simply Ao in equation (11).
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22. Second method. It is usually easy to determine by inspection a product,

it, of determinantal symbols in such a way that the terms of 7r which have

the greatest excess are among the terms of J which have the greatest excess;

and hence, by a finite number of steps, we can express J in symbolic form.

No attempt has been made to crystallize this into a definitive, systematic

process, though possibly this might be done.

For example, .consider a0 x\ + 2ai xi x2 + Oi x\. Modulo 3, this has the

formal modular invariant

B = ai (ax — ao) (ax + a0) (2a0 + a2) (2ai + a2) (ai + a^)

= (aift+ a2ft)(aift+ a2ft + «ift ) («ift + a2ft - «i ft)

X (- aift + a2ft)(aift + a2 ft + 0:2 ft) («ift + a2 ft - 02ft)

^ Hat ft3 ft3 - £<*? ft ft5 + E«í ßl a¡ ft3

- E«? ft2 a\ ßi + Zaï a2 ft6 - Z«ï «f ßi

^Z(a3ß)2(ß3ß) (mod 3).

The terms of greatest excess in B are £aï ft3 ft3 which suggests that we use to

"kill off" these terms £ (a3ft)2 (ft ft), since the only way to express a\ß\ß\

in the secondary symbols ax, a2, ft, ft, a\, al, ßl, ft3 in such a way that it

shall be isobaric in these secondary symbols is a\ ft a\ ft ft3 ft. Thus we take

as 7T, (a3 ft)2 (ft ft). It is then readily discovered that £ (a3 ft)2 (ft ft)

accounts for all terms, modulo 3.

23. Third method. The preceding method is closely related to the one

about to be explained. Although the second method has none of that gener-

ality which attracts the artist in pure mathematics, yet it has the advantage

in any concrete case, while the present method is to be preferred in any general

argument.

Under transformation (1), J is carried into

(15) J(a') = PwJ(a) (modp)

where this is an identical congruence in the a's and the coefficients of the

transformation. Moreover, it is understood that J (a') is so written that it is

isobaric of weight w in the secondary symbols as in Lemma VIII. Thus, if

each a' is replaced by its expression in terms of the a£ and a,, a£ and a,, etc.,

the left member of (15) is the sum of a number of terms each of which is a

product of w linear functions of the £'s and w linear functions of the 77's.

Now operate on both sides of (15) with Vw as given in (ii), § 18. Since

the left member is isobaric in the secondary symbols, we can apply Lemma B.

Hence, from the left member we get a sum of a number of terms, each of which

is a product of w determinantal symbols such as (aß), (ap" ß), (ap" a), etc.

From the right we get (w -\- 1) \ w\ J (a).    Call the result equation E.
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If (w + 1) Iwl = 0 (modulo p), then the totality of those terms on the

right of equation E whose coefficients are not congruent to zero, modulo p,

constitute a syzygy, modulo p. Moreover, since the right member of (15)

is symmetric, modulo p, in the primary symbols, this syzygy must be sym-

metric, modulo p, in these symbols and hence congruent to a function which is

rational in the coefficients of the ground forms, / . Hence, if we know the

necessary syzygies or use discretion, we can replace equation E by one (i)

which is equivalent to E and (ii) which has each coefficient congruent to

zero, modulo p. If we now cancel p from both sides of this equation, we have

an equation, Eif of the same type as E, but such that the multiplier on the

right is not divisible by so high a power of p. Now treat equation Ei as we

treated E above. These steps are all justified, since J is an algebraic invariant

of certain forms.

24. Illustrations. A fundamental system of formal modular invariants,

modulo 3, of the binary quadratic was expressed in symbolic form in § 6.

It is known that a fundamental set of formal modular invariants, modulo 2,

of the cubic

a0 xl + Oi x\ x2 + o2 a;i a;2 + a3 xl

= 7raz = (aiXi + a2x2)(ßiXi + ß2 x2) (7i «l + 72 x2)

is

K = oi + a2,       A = o0 a3 + ai a2,       7 = al + a0 K + 50o,

k = a0ooo, g = ßl+ß(A + K2) + (A + Ôoo) (ß + ao K + K2)

where
ß = a0 ai + al,

öoo = ( Oo + Oi + a2 + a3 ) a3.

After a little computation, it is readily seen that

(aß)(ßy)(ya),

(a*a)(ß*ß)(y*y)

(a2a)(ß2ß)(y2y)^       T     '

(a2a)(ß2ß)(y2y).

But every attempt to express K as a polynomial in the determinantal symbols

is bound to fail, since it is not possible to express K as an isobaric function of

the secondary symbols. In fact, K is the invariant which forced the author

to realize Theorem IV and the lemmas that lead thereto. It is easy to show

that
K2 = Z (a* 7) (ß27) + (aß) (ßy) (ya).

Similarly, it is not possible to express a as a polynomial in determinantal

symbols, though (by Theorem IV) a power of g is so expressible.

A

I

k
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The author has also expressed some covariants of these two forms in symbolic

form, but the amount of numerical work necessary to do this seemed to increase

rapidly with the degree of the covariant called J in Part III. In short, the

author would not recommend that the theory of Part III be applied in detail

to any but the simplest concrete case, unless there should prove to be some

powerful systematic procedure not yet discovered.

Part V.   Finiteness theorems

25. Preliminary. In Part III, we saw that every formal modular covariant

of a system, S, of binary forms with respect to the Galois field GF[pn],

oí order pn, is expressible as a polynomial in a finite number of symbolic co-

variants. Moreover, if the covariant is rational and integral, it must be such

that when expressed in terms of these symbolic covariants it is unaltered,

modulo p, when any two pairs of primary symbols, ( «i, a2 ) and ( ft, ft ), are

interchanged. It must be carefully noted, however, that this is not equivalent

to saying that it is symmetric in the symbolic covariants.

Using this result, we can prove that the set of all formal modular covariants

of S which are rational and integral possesses the finiteness property—i.e.,

they are all expressible as polynomials in a finite number of these covariants.

The proof given below is Hubert's proof of the finiteness theorem for algebraic

covariants, with only one slight modification. The theorem is proved for

invariants of a general binary system, S, since the covariants of a system S are

coextensive with the invariants of another system S'.

It is readily seen that Hubert's beautiful proof,* when shorn of non-es-

sentials, depends entirely on the following properties of algebraic invariants:

I. All invariants are polynomials in a finite number of polynomials, P, in

a certain finite set of pairs of auxiliary variables. Since these polynomials, P,

are invariants under the group, we shall call them elemental invariants. In the

case of algebraic invariants, these auxiliary variables are the coefficients of

the symbolic linear factors of the forms of S and the elemental invariants are

the determinantal symbolic invariants of type (aß).

II. If the invariant is rational and integral, it must be such that, when

expressed in terms of the elemental invariants, it is unaltered (with respect

to the field of definition) when any two pairs of the auxiliary variables are

interchanged.

His proof uses the following theorem about diophantine equations: A system

of any number of linear diophantine equations has only a finite number of

simple sets of solutions, all other solutions being sums of positive multiples of

this finite number of sets of solutions.

* lieber die Endlichkeit des Invariantensystems für binäre Grundformen,   Mathema-

tische Annalen, vol. 33 (1889), pp. 223-226.
Trans. Am. Math. Soc. 21.
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Now Part II proves that these two properties hold for formal modular

invariants where the auxiliary variables are the primary symbols ai,a2,ßi,ß2,

• • • and where the elemental invariants are the finite number of symbolic

invariants of Theorem I. Moreover, Hubert's proof makes no use of properties

peculiar to a field of chpracteristic zero except in one place which is readily

avoided.   Thus his proof applies here.

26. Finiteness of covariants. For convenience, let 7i, 72, • • •, 7„ be a

fundamental set of symbolic formal modular invariants of S. Then every

formal modular invariant of S is expressible in the form

(16) 7 = Y.Mirlir2*--- iss

where the exponents, s,, are positive integers or zero and the coefficients, Mi,

are marks of the Galois field, GF[pn]. Necessary and sufficient conditions

that 7 be a rational and integral function of the coefficients of the forms of S

are that (i) when the right member of (16) is expanded, it is a function of the

pairs (ax, a2), (ßx, ß2), • • • which is symmetric, modulo p, (ii) each term

of this expansion contains the same number of a's as ß's, the same number of

ß's as 7's, etc.

If dj (a) denotes the degree of Ij in the pair (ai, a2), then the last condition

gives a set of linear diophantine equations of which two are

d = sxdx (a) + s2d2 (a) + ■ • • + s^d» (a)

= «idx(ß) +s2d2(ß) + ••• -r-s^d^ß),

there being one such equation for every pair of symbols. By the theory of

linear diophantine equations, it follows that every rational integral invariant,

7, is expressible in the form

(18) I = -ZNiCl*CÏ'--Cr',

where each d is a symbolic invariant of S which has the property (ii) above

and where (iii) there is one C, corresponding to each simple set of solutions

of the set of diophantine equations (17), and (iv) the C, are the same for all

invariants, 7, of the system S.

Moreover, if a-, is the number of the symbolic invariants which are not

identically congruent, modulo p, and which are obtained from a particular

d by interchanging any two pairs of symbols, then C,- satisfies an algebraic

equation of degree a,- where the coefficients of the various terms are (aside from

sign) the elementary symmetric functions of Ci and its conjugates. Since C,

and therefore each of its conjugates has the property ( ii ), these coefficients,

Kj, are formal modular invariants of S which are rational and integral in the

o's.    Hence 7 may be written

(19) 7 = ZLj ( ZQi CV C2> • • • C's) (0SU< o-i)
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where the Q's are in the field and where the summation in the parentheses is

symmetric, modulo p, in the pairs of symbols ( «i, a2 ), (ft, ft ), etc. More-

over, the Lj are polynomials in a finite set of rational, integral formal modular

invariants, viz., the K's.

Hence by referring to the sufficient conditions given above that a symbolic

invariant be rational and integral, we have

Theorem VI. Let S be a system of binary forms with coefficients which are

independent variables and let G be the total group of linear transformations on the

variables whose coefficients are marks of the Galois field, GF[pn], of order pn.

Then all formal modular covariants of S under the group G are expressible as

polynomials in a finite number of such covariants.

27. Finiteness of syzygies. By using, as in classic invariant theory,

Hubert's useful theorem about an infinite sequence of polynomials, we can

show that every syzygy, S = 0, among the covariants of the system S is of

the form
S = Y.Hj Sj,

where    (i) the 77, are formal modular covariants of S ;

( ii ) the Sj are polynomials in the formal modular covariants such that

Sj = 0 is a syzygy among the formal modular covariants of S;

( iii ) the Sj are finite in number and are the same for all syzygies.

Thus we have

Theorem VII. The syzygies among the formal modular covariants of the

system S possess the finiteness property in the sense that all of them are con-

sequences of a finite number of them, Si = 0, S2 = 0, • • •, Sk = 0.
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