$$\left(\frac{h_2\left(x\right)}{h_1\left(x\right)}\right)', \left(\frac{h_3\left(x\right)}{h_1\left(x\right)}\right)', \cdots, \left(\frac{h_n\left(x\right)}{h_1\left(x\right)}\right)', \left(\frac{f\left(x\right)}{h_1\left(x\right)}\right)'$$

implies its validity for the n+1 functions $h_1(x)$, $h_2(x)$, \cdots , $h_n(x)$, f(x), as may be shown by (13) and by Rolle's theorem. I had originally based my demonstration of Theorems I, II, III on Theorem V. I was led to the treatment of the subject I finally adopted by a kind remark made by Professor H. Weyl.

EIDG. TECHNISCHE HOCHSCHULE, ZURICH, SWITZERLAND.

ERRATA, VOLUME 24

J. F. Ritt, On algebraic functions which can be expressed in terms of radicals. Page 21, lines 30 and 33, for "n2" read "n".