
ON THE INTEGRALS OF ELEMENTARY FUNCTIONS*

BY

J. F. RITT

I. Introduction

This paper contains an extension of Liouville's work on the determination

of the circumstances under which the integral of an elementary function is

itself elementary.t

The elementary functions are understood here to be those which are obtained

by performing algebraic operations and taking exponentials and logarithms.

For instance, the function

tan [e*2— log¿(l + Vz )J + (2? +log arcsinz)9

is elementary.

Liouville's first result in this field was the theorem that if the integral of

an algebraic function of z is elementary, the integral is of the form

«o (z) + cx log «i (z) + Ci log a2 (z) -|-1- Cn log a„ (z),

where each « (z) is an algebraic function, and each c a constant.f It follows

from this theorem that no abelian integral of the first kind is elementary.

Liouville also obtained a very broad generalization of the above result, on tne

basis of which it can be proved, for instance, that the integrals

are not elementary functions. §

* Presented to the Society, Feb. 25, 1922.
Í No acquaintance with Liouville's work is necessary for the understanding of the

present paper.

Î Journal de l'École polytechnique, vol.14 (1833), p. 36.
§ Journal für die reine und angewandte Mathematik, vol. 13 (1833), p. 93.
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We shall investigate here the circumstances under which the integral of an

elementary function can satisfy an elementary transcendental equation. This

problem is mentioned by Liouville* and by Hardy,t but nothing seems to

have been done towards its solution. Our result is the

THEOREM. If w, the integral of an elementary function of z, satisfies an

equation F(w, z) = 0, where F(w, z) is an elementary function of w and z,

not identically zero, then w is an elementary function of z.

Thus no abelian integral of the first kind can satisfy an elementary trans-

cendental equation; nor can, to give special cases again, the integrals of

e1* and of l/logz.

If a function satisfies an elementary transcendental equation, its inverse

also satisfies such an equation. It follows from the above that no elliptic

function can satisfy an elementary transcendental equation. In particular, no

elliptic function is elementary.^

Whereas, notwithstanding their formal character, little need be added to

Liouville's papers to make them rigorous, the work in the present paper has

to be largely function-theoretic. This is due principally to the fact, seen in

§ HI, that we may not suppose ourselves to be working in a region in which

F (w, z) is analytic. On this account, we have had to make, in § Tí, a careful

examination of the elementary functions.

It is natural to inquire as to whether an integral w of an elementary function

is itself elementary if it is one of n functions, w, wx, ..., wn-i, which satisfy

a system of elementary equations

Fi(w, wx, .. ., wn-i\ z) = 0 (i = 1, 2, ..., n).

While the formal elements of our proof, given in § IV, can be extended to

settle this question affirmatively, we see no way of avoiding certain function-

theoretic assumptions, which, though light in almost any other case, would

be out of place in a problem of this kind. We shall therefore not write now

on this question.

* Journal de l'École polytechnique, vol.14 (1833), p. 40.

f The Integration of Functions of a Single Variable, Cambridge, 1916, p. 41. Appendix

I of this tract contains further references to Liouville's work on elementary functions.

I This does not follow, of course, from the fact that the integrals of the first kind are

not elementary. I do not know where it is proved in the literature that the elliptic

functions are not elementary, but this result of the present paper can be established by

the same method which Liouville uses for the integrals. It can be shown that if the inverse

of an abelian integral is elementary, it is either algebraic, or of the form e"4"*, where a

and b are constants.
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n.   THE  ELEMENTARY  FUNCTIONS

We shall deal with certain analytic functions of w and z, which we shall

call elementary functions.

An analytic function of w and z will be said to be analytic almost everyivhere,

if, given any element of the function P(w — w9, z — z0),* any curve

w = tp(X),        z = ip(X) (0 < X £ 1),

where y>(0) — iv0 and i/>(0) = z0, and given, finally, any positive e, there

exists a curve

(1) to = fi(X),        z = V'i(A) (0<iSD,

where <fX (0) = u?fl and i/'i (0) = ¿o, such that

IftU)—9 (*) I < *, I V»(A) — V(*)|<*»

for 0<^X <1, and such that the element P(w — tv0, z — z0) can be continued

along the entire curve (1). Eoughly speaking, an element of the function, if

it cannot be continued along a given path, can be continued along some path

in any neighborhood of the given one.

An algebraic function u, given by an irreducible equation

(2) «8 (to, *)»w+«i (w, e)um~1 + •■• +am(w,z) = 0,

where each a is a polynomial in w and z with constant coefficients, is analytic

almost everywhere, for the space of w and z is four-dimensional, and the sin-

gularities of u lie along the two-dimensional manifolds obtained by equating

a0 (w,z) and the discriminant of (2) to zerot.

In what follows, the algebraic functions will frequently be called functions

of order zero, and the variables w and z monomials of order zero.

The functions e* and log v, where v is any non-constant algebraic function,

are called by Liouville monomials of the first order. It is seen directly that

ev is analytic almost everywhere. If v is analytic, and nowhere zero, along

a given curve, log v is analytic along the curve. If v should vanish for some

points of the curve, there is a curve arbitrarily close to the given one on which

v is everywhere different from zero|. Thus log v is analytic almost every-

where.

* It is to be recalled that an analytic element, P (w — iv0, z— z0), is a series of positive

integral powers of w—w0 and z — z0. The point ( iv0, z0 ) is called the center of the element.

t It is not hard to make the proof formal.

Î A formal proof can be based upon the fact that in continuing v along the given curve,

only a finite number of elements of v need be used.

15»
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More generally, we shall say, following Liouville, that u is a function of

the first order, if it is not algebraic, and if it satisfies an equation like (2), in

which each a is a rational integral combination of monomials of orders zero

and one.

To obtain each a one must be given, for some point (w0, z0), an element of

each of the monomials on which that a is based. A proper combination of

these elements furnishes an element of the a, from which all other elements of

the a are found by continuation. Each a is analytic almost everywhere.

Similarly, in stating that u is determined by (2), we mean that for an element

of each of the functions u and a,- (¿ = 0, 1, ..., m), the first member of (2)

vanishes. If the first member of (2) is reducible in the domain of rationality

of the given elements of the «'s, we may replace it by that one of its irredu-

cible factors which vanishes for the given element of u. It may thus be

assumed that the discriminant of (2), which is analytic wherever every a is

analytic and a0 is not zero, does not vanish identically. We see now that u

is analytic almost everywhere, since in the neighborhood of every curve there

is a curve along which each a is analytic, and on which a0 and the discriminant

of (2) are everywhere different from zero.

The functions of orders zero and one form together a set which is closed

with respect to all algebraic operations. That is, a function determined by

an equation like (2), in which each a is a rational integral combination of

functions of orders zero and one, is, itself, either algebraic, or a function of

the first order. This fact, which will be very important for us, can be proved

in exactly the same way as it is shown that algebraic operations performed

upon algebraic numbers lead always to algebraic numbers.*

An exponential or a logarithm of a function of order n — 1 is called a

monomial of order n, provided that it is not among the functions of orders

0, 1, ..., n — 1. With the same reservation, any function defined by an

equation like (2), in which each a is a rational integral combination of monomials

of orders 0,1, ...,«, is & function of order n. As above, we may assume that

the discriminant of (2) does not vanish identically.

One sees by a quick induction that a function of any order n is analytic

almost everywhere. For every n, the functions of orders 0, 1, ..., n form a

set which is closed with respect to all algebraic operations.

The functions to which orders are assigned by the preceding definitions

will be called elementary functions of w and z.

We now inquire as to whether an elementary function of w and z becomes,

when w is held fast, an elementary function of z; that is, a function which can

* See, for instance, Landau, Einführung in die elementare und analytische Theorie der

algebraischen Zahlen, Leipzig, 1918, p. 7.
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be obtained from z alone, without introducing a second variable, by performing

algebraic operations and taking exponentials and logarithms. Perhaps an

illustration is necessary to show that there is a real question here. Consider

the equation

gCOtMW j,  _ » gCSCtt'Z   _—    o

It determines u as an entire function of w and z, which reduces to z when

w = 0. The equation itself is meaningless when w = 0. Certainly, then,

it is possible for u (w, z) to be an elementary function of w and z and for

u (wx, z) to be analytic in z, but for the operations which produce u (iv, z)

to be meaningless when w = ivx. In the above example, it is easy to show

that u (ivx, z) is an elementary function of z, but we cannot be certain that

this is possible in all cases.

We shall not settle this question completely, but shall limit ourselves to

deriving a result which will suffice for our later purposes. We deal with an

elementary function u (w, z), of which some branch is analytic at a point

(wx, zx). If w is assigned the fixed value wx, and if z is allowed to range over

the neighborhood of zx, the given branch of u becomes an analytic function

of z. It is the monogenic analytic function of z obtained by continuing this

branch in which we are interested.

It is of course obvious that if u is an algebraic function of w and'z, u

becomes an algebraic function of z if iv is held fast. Let v be algebraic in w

and z. If log v is analytic at (wx, zx), then v must be analytic at (wx, zx).

Hence log v(ivx,z) is an elementary function of z. Consider nowe". If

ev is analytic at ( wx, zx ), there is a point ( w2, z2 ), arbitrarily close to ( wx, zx ),

at which ev is not zero, so that v is analytic at (wí, z2).* Hence eviw*z) is

an elementary function of z. More generally, if w is held fast at a value

sufficiently close to w2, e" becomes an elementary function of z.

Suppose now that a is a rational integral combination of monomials of orders

zero and one, and that a is analytic at (wx, zx). We may suppose that the

element of a with center at (wx, zx ) is obtained by continuing, along a path C,

the element of a with center at (u>0, z0) which is found by multiplications and

additions from the given elements of the monomials at (w0, z0). As each

monomial is analytic almost everywhere, we can continue a irom(w0, z0)

along a path C", very close to C, on which every monomial is analytic. We

can reach in this way a point (w2, z%), arbitrarily close to (w\, Zi), at which

a has an element which is an immediate continuation of the above mentioned

element at (wx, zj). Also, from what we saw above, there is a point (w3, z3),

* Whether e" can ever be zero, even at a singularity of v, is a matter with which we need

not concern ourselves here.
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arbitrarily close to (w2, z2), such that if w is held fast at any value sufficiently

close to iv3, each monomial becomes an elementary function of z. While it

might appear at first that (w3, z3) is different for different monomials, it

becomes plain quickly that a common point may be used for all. For any

value of w close to ivs, a is an elementary function of z.

Suppose now that u, analytic at (ivi, Zi), is given by (2), where each a

involves monomials of orders zero and one. There exists a point (iv2, zt),

arbitrarily close to ( wx, zx ), at which each a is analytic, and such that if w

is given a fixed value sufficiently close to ivt, each a is an elementary function

of z. We may suppose also that (w2, z2) is so chosen that the coefficients a¿

do not all vanish at ( w2, z2 ). In that case, if to is held fast at a value close

to Wi, u becomes an elementary function of z.

In the general case, it is clear that if u is an elementary function of w and z,

analytic at (wi, zx), then there is a point (w2, z2), arbitrarily close to (wx, zx),

such that if w is held fast at any value sufficiently close to iVi, u becomes an

elementary function of z.

We consider now the differentiation of the elementary functions. Let u be

a function of the first order, defined by an equation like (2). The first member

of (2) being irreducible, its partial derivative with respect to u cannot vanish

for every w and z. Thus, the partial derivative of u with respect to w has an

expression rational in u, the a's, and the derivatives of the a's. The derivative

of every a is a rational integral combination of the monomials which enter

into that a, and of algebraic functions. It follows that u satisfies an equation

like (2), in which no monomials of order one appear which do not appear in the

equation for u. Proceeding by induction, we can prove that if u is elementary,

uw and uz are elementary. We prove in the same induction that if, in the

equation (2) which defines u, the highest order of the monomials which involve

w* is r, and if there are s distinct such monomials of order r, the derivatives

of u satisfy equations like (2), in which the monomials which involve tv are at

most of order r, and if of that order, are among the s monomials mentioned

above. This fact will be used in § IV.

III. Formulation of the problem

When, in what follows, we say that F(w, z) assumes the value zero at

(wQ, ¿b), we shall mean that there exists an analytic element of F(w, z), with

center at (w0, z0), which assumes there the value zero.  There may be other

* In saying that a monomial involves w, we mean not only that w appears in the

operations which produce the monomial, but also that the value of the monomial varies

when w varies. Furthermore, from what goes before, we know that if a monomial is

independent of jo, it can be produced by operations which involve only z.
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elements with centers at (w0, z0) which are not zero there. When we say

that F(w, z) has a singularity at (w0, z0), we shall mean that there exists a

sequence of elements of F(iv,z), each an immediate continuation of the

preceding one, whose centers approach (w0, Zo), and the radii of whose

restricted domains of convergence approach zero.* F(tv,z) may have a

singularity at (w0, zj), and also have branches which are analytic at (w0, z0).

Consider any elementary function of z alone. Let iv represent an integral

of this function. Our problem is to determine the circumstances under which

there exists an equation

(3) F (w, z) = 0,

where F(w, z) is an elementary function.

Consider any circle in the plane of z, within and on the boundary of which

some branch of w is analytic. Pairing the values of z in this circle with the

corresponding values of the mentioned analytic branch of w gives a two-

dimensional manifold — call it C— in the space of tv and z. It will suffice to

assume that (3) holds on such a manifold.

It would be unreasonable to require that F (w, z) be analytic on C. It is

even possible that every point of C should be a singular point of F (iv, z) and

that (3) should serve well to determine w.   For instance, the equation

(tv — zY =0 gives w = z, but wherever w = z, (w — z)a has a singu-

larity. In this particular example, the singularities can be removed by

squaring, but we have no assurance at present that there do not exist compli-

cated equations which cannot be freed from singularities.

The best way to meet this situation is to extend our problem. We shall

undertake to determine the circumstances under which, for each point of C,

F (w, z) either assumes the value zero or else has a singularity.\ Our residt

is the

THEOREM. If at each point of an uncountable set of points of C, F (w, z)

either assumes the value zero or has a singularity, w is an elementary

function ofz.%

* The radius of the restricted domain of convergence of an element P (w — w0, z — z0)

is a number p such that the element converges when |w — w0\ <p, and \z — za\ < p,

and diverges when |w — w01 > p and \z — z0\ >p.

t It is understood in this that some of the points of C may be zeros, and the remaining ones

singularities.

+ In using any uncountable set on C in the hypothesis, rather than all of C, we are not

seeking generality. Such an uncountable set has to be used in the proof, and it saves time to

introduce it immediately.
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We need not seek to formulate a notion of F (w, z) assuming the value zero

at a singular point. The mere existence of the singular points will permit us

to prove that w is elementary.

Let n be the smallest integer such that a function F (w, z) of order n exists

which satisfies the hypothesis of our theorem. In what follows, F(w, z) will

be assumed to be of order n.

Let us see what happens if F (w, z) is zero for each point of an uncount-

able set of points of C.

For each such point, F(w, z) has an element with center at the point,

which equals zero at its center. There must exist a positive e such that, for

some uncountable subset E of those points, the radii of the restricted domains

of convergence of the elements of F(w, z) exceed f. If no such e existed,

the elements, at the centers of which F (w, z) vanishes, could be denumerated.

Let (a, b)be any point of condensation* of E. Consider the neighborhood

of (a, b) given by

\w — a\ < y,        \z — b\ < —,

and the uncountable subset E' of E which lies in this neighborhood.

We now form for (a, b) the immediate continuations of the elements

of F(w, z) with centers at the points of E'. The radius of the restricted

domain of convergence of each of these elements exceeds s 12, and each new

element equals zero at the center of the element of which it is the immediate

continuation.

An infinite number of these immediate continuations must be identical, else

there would be an uncountable set of distinct elements of F (w, z) with

centers at (a, b), and we would have a contradiction of the well known

Poincaré-Volterra theorem.

It follows that one of the elements is zero for an infinite number of points

of E'. Such an element is a uniform function of w and z in a four-dimensional

region containing part of C. Substituting for w, in this element, its value in

terms of z, we have an analytic function of z which vanishes at an infinite

number of points of the circle mentioned above, and which is therefore identi-

cally zero.

We conclude that F (w, z) is analytic in a four-dimensional region which

contains part of C, and vanishes on that part of C.

We consider now the case in which F ( w, z) has a singularity at each point

of an uncountable set of points of C. Let u = F(w,z) be defined by an

* A point in every neighborhood of which there is an uncountable subset of E.
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equation like (2), in which each a is a rational integral combination of mono-

mials of orders not exceeding n. If F(w,z) has a singularity at (a, b),

there exists a curve ending at (a, b), along which, except at (a, b), F(w, z)

is analytic* If this curve is subjected to a slight deformation, its end being

held fast at (a, b), F(iv,z) will also be analytic along the new curve,

except at (a, b). As each a in (2) is analytic almost everywhere, we

can so choose the new curve that every a is analytic along it, except,

perhaps, at (a, b).f If, as the new curve is followed to (a, b), each « should

prove tobe analytic at (a, b), and if neither a0 nor the discriminant of (2) should

vanish at (a, b), the new curve could not lead to a singularity of F(w, z).

Suppose that there is an a which has an uncountable set of singularities on

C. In that case one of the monomials on which that a is based must have an

uncountable set of singularities on C. If the monomial is of the form e", v

must have a singularity wherever the monomial does. If the monomial is of

the form logv, v must either assume the value zero, or have a singularity,

wherever log v has a singularity. We find, in any case, a contradiction of the

fact that no function of order less than n has an uncountable set of singu-

larities on C, or is zero on such an uncountable set.

Thus, either a0 (tv, z) or the discriminant of (2) must be zero on an uncount-

able set of points of C.

The hypothesis of our theorem has implied the existence of a function of

order n, either F (w, z), a0 (iv, z), or the discriminant, which is analytic and

equal to zero in a neighborhood on C. Let Cx denote that neighborhood, and

let the function — call it m — be defined by an equation like (2).\ As none

of the monomials which appear in the equation (2) for the function can have

an uncountable set of singularities on C, there must be a neighborhood C2, in

Ci, for which all of the monomials have analytic branches, which, together

with m, satisfy (2).§

As u vanishes in C2, am (w, z), the term independent of u in the equation for

u, which, since (2) is irreducible, cannot vanish identically, must vanish in C2.

IV. Completion of the proof

There is a set — call it A — of rational integral combinations of monomials,

each combination of the minimum order n used in § III, which vanish in a

* This statement is equivalent to the definition above of a singular point.

fit should perhaps be emphasized that (a,b) does not correspond to the point (w0, z0)

used in defining "analytic almost everywhere". It is a point to which we approach by analytic

continuation, not from which we start.

I If the function is a„ or the discriminant, the equation will be linear.

§ This statement is easily proved, using the fact that the monomials are analytic almost

everywhere.
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neighborhood on C, but do not vanish identically;* we have just shown the

existence of one such expression. With each expression in A may be associated

two numbers; first, r, the maximum of the orders of those monomials in the

expression which involve w\ second, s, the number of such monomials of

order r. Many different expressions will represent the same function; the

two numbers will vary with the expression.

Of all the expressions in A, there is a set Ax for which r has a minimum

value r0. Of the expressions in Ax, there is a set A2, for which s has a

minimum value s0.

Let u be a particular expression in A2. Those expressions in A2 which

contain no monomials which do not appear in u constitute a set A3. All ex-

pressions in A3 contain the same s0 monomials of order r0 which involve w.

Let 6 be one of those monomials.

There is an expression in A3.

« = ßo 9* + Afl<-1 + -..+A,

where each ß is a polynomial in monomials other than 6, which is of a minimum

degree ¿in 0.

In the neighborhood on C in which u vanishes, there is a neighborhood Ci

in which every monomial in the expression for u is analytic. There is, in fact,

a neighborhood Ci, in which, for every monomial, whether of the form ev or

log v, the function v is analytic?

The partial derivative

ug = iß0 F-1 + (*— 1 ) ßx e¿-2 + • • • + ßi-i

cannot vanish for every tv and z. If it did, the function in — Oüß, which could

not vanish identically, since u does not, would be in A3 and would be of degree

less than ¿in 0. Hence Ug cannot be zero throughout Cx, else it would be a

function in A3 of degree less than ¿in 6.

Thus there is a neighborhood Ct in Cx in which the equation û = 0 can be

turned into the form

(4) 9=f(w,z),

where f(iv, z) is analytic throughout C2.

If »o = 0, (4) states that w is an elementary function of z.

*The neigborhood may be different for different expressions.

f This follows from the fact that no v can have an uncountable set of singularities on C.
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Suppose that 0 = ev(w'z), where v (w, z), of order r0 —1, is analytic through-

out Cx. Let (w0, 2b) be any point of C». Equation (4) shows that / (w0, z«)

is not zero. Let, then, g be a number such that v (w, z) and log f(w, z) are

analytic for \w — tv0\ < g and \z — z0\ < g. We have, for a neighborhood

C3 in Ci, which contains (w0, z0) and lies within the region just described,

(5) v(w, z) = \ogf(w,z).

Let f (z) be the elementary function of which w is the integral. Differentia-

ting in (5) with respect to z, we have, throughout C3,

(K\ „   (,„  ,ï    (»\J-„ c,„  ,"> —  fw(w,z)(f(z)-\rf (w,z)
(b) V,c (W, Z) if (Z) + Vi (W, Z)   =   -J7-r-.

/ (w, z)

Having regard to the fact that the equation (2) tor f(w, z) is the equation

tí — 0 with 0 replaced by u, and to the remarks in the last paragraph of

§ II, we see that the second member of (6) satisfies an equation (2) in which

no monomial which involves w is of order greater than r0, and in which there

are at most s0 — 1 such monomials of order r0. The first member of (6) satis-

fies an equation (2) in which every monomial involving w is of order less

than r0.

The two members of (6), considered as functions of w and z, must be iden-

tical. If they were not, the integral w would satisfy an elementary equation (6),

from which we could derive an expression in A2 with r<r0, and with s<s0

if r — r0.

The two functions

(7) v(w-\-p, z), logf(w + fi,z)

are analytic in w, p and z for | w + /* — w0 \<g, \ z—Zt> \<Q. Let ô be any

positive number less than g, and let C4 be any neighborhood in C3 for which

\w — w0\<g — o, \z—z0\<g. If (i is assigned a fixed value, less in

modulus than ô, and if (iv, z) is kept in C4, the functions (7) become functions

of z whose derivatives are given by the members of (6), with w + p substi-

tuted for w. Since (6), being an identity, will hold after this substitution,

the difference of the functions in (7) must stay constant as (w, z) varies over

Ci. We have thus, on C4,

(8) v(w + p,z) = ß (p) + log f(w + P,z),
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where ft (/*), being the difference of two analytic functions of /*, is analytic

for | (i | < d. Differentiating in (8) with respect to ¡i, and putting /i = 0 in

the result, we have, on Cá,

(9) vw(iv,z) = ft'(0)+fJ^^.

As above,  (9) must be  an identity,   so that, integrating, we have for

\w — W0\^Q,    \Z — 2b|<Ç,

(10) v(w,z) = fi'(0)w + logf(w,i) + r(e),

where y (z), analytic for | z — z01 < Q, is still to be determined.

As (5) is not an identity, there is a point (wx,zx), with | ivx — w0 \ <q,

| z—z¡> I ■<(>, which does not satisfy (5). By § II, (wx, Zi) may be so chosen

that/Ot'x, 2) is an elementary function of z alone. Substituting wx for to

in (10), and comparing the resulting equation with (10), we obtain, for

\w— W0\<Q,    \Z — Z0\<Q,

(11); v(w, z) —ft' (0) w — logf(w, z) = v(wi, z) — ft'(0) wi — \ogf(wi, z).

Because of (5), we must have, in C3,

(12) ft'(0)w = ft'(0)w% + logf(w1,z)-v(wi,z).

Now ft' (0) cannot be zero. If it were, log/ (ivx, z) — v (wx, z) would vanish

in an area in the 2 - plane, and therefore for every z, whereas, by the choice

of (wi, 2x ), it cannot vanish at 2x.

Thus (12) gives w as an elementary function of z.

Consider now the case of 0 = log v (w, z). Equation (4) becomes

f(w, z) = logz; (w, z),

and with almost no modification in the treatment of (5) other than an inter-

change of the letters/ and v, we find again that w is an elementary function

of 2.
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