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1. INTRODUCTION

It is assumed in the theory of relativity that physical quantities are re-

presented by expressions derived from tensor components, and that the laws

of nature may be expressed as equations stating the equality of two tensors.

This assumption is made so as to satisfy the requirement that physical laws

must be expressible in a form independent of the particular coordinates used.

If we start with this latter assumption, we are tempted to require merely that

the equations expressing a law of nature be invariant, as a set, under trans-

formations of coordinates, and the question arises as to the relation of equations

of this type, referred to in the sequel as an invariant set of equations, to the

tensor equations usually assumed. The requirement of invariance implies that

there is a law at transformation for the equations in terms of the transforma-

tion of coordinates, which will be given if the equations involve merely tensor

components and the coordinates. If these quantities enter into the equations

in a sufficiently simple manner (which, however, is as general as is required

in most of the equations of physics), we may completely answer the question

raised above by the theorem

An invariant set of equations whose members are formed from the components

of one or more tensors and point functions by addition, multiplication, and

differentiation with respect to the coordinates is equivalent to a set of tensor

equations.

Here, as throughout this paper, the tensors relate to a Biemann «-space.

We apply this theorem to the classification of invariant equations involving

the derivatives of the fundamental quadratic tensor (ga) and show that

An invariant set of equations involving the derivatives ofthegij, the second

derivatives appearing linearly, and no derivative higher than the second occurring,

is equivalent to one of five standard tensor equations.

A theorem nearly equivalent to this for 4-space was given by G.D.Birkhoff.t

Besides holding for «-space, our discussion is free from the assumptions that

the equations are homogeneous, which rules out Einstein's "cosmological

equation", and that the coordinates have a certain reality character.

* Presented to the Society, April 28, 1923.
t Relativity and Modern Physics, Harvard university Press, 1923, pp. 211-220.
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The above theorems constitute the chief results of this paper. We proceed

to the proofs.

2. Equations linear in a single tensor

We shall begin with the special case of equations involving the components

of a single tensor, and these linearly, and shall prove that such an invariant

set is equivalent to a set of tensor equations, the left members of these equa-

tions being linear combinations of the single tensor given, and tensors easily

derived from it, with scalar coefficients. To fix the ideas, we shall give the

details in full only for a tensor of the fourth order; the methods are, however,

general.

If we consider our equations at a single point, the coefficients of the tensor

components, which in general are point functions, become constants. If we

further introduce normal (orthogonal geodesic) coordinates at this point, we

have there

(1) ga = ay,      dgij/dxk = 0,

and the transformations of coordinates which change one such system into

another are those belonging to the orthogonal group. Since our equations

remain invariant under all coordinate transformations, they retain their form

(as a set) for any linear orthogonal transformation.  This leads to the

LEMMA. An invariant set of equations linear in a single tensor is equivalent

to a set of equations each of which has the properly that any subscript appears an

odd number of times in every one of its terms, or an even number, perhaps zero.

We prove this by noting that when we perform the transformation

(2) xi = —xx,      x'i = Xi (i =J= 1),

which corresponds to a reflection in the 1-axis, any term containing the

subscript 1 an odd number of times has its sign changed, while any one con-

taining it an even number of times is unaffected. Hence if we apply the

reflection (2) to any one of our equations, we obtain a new equation which is

a consequence of our given set, from the invariant character, and on being

added to and subtracted from the original equation gives rise to two equations

of the type required by the lemma for the subscript 1. By repeating the

process for the remaining subscripts, we reach the desired result.

We turn now to the set of equations linear in the components of Pabcd, the

tensor of the fourth order. Suppose first that some one of our equations con-

tains a term with four distinct subscripts, say 1234 (all the subscripts, if in

four-space, a particular group if in «-space (n > 4); if in a space of less than

four dimensions, there are no such terms, and our argument proceeds at once



1923] INVARIANT  SETS  OF  EQUATIONS 487

to the place below where terms with subscripts not all distinct are discussed).

By applying the lemma, we may then obtain an equation in which every term

contains these four distinct subscripts an odd number of times, and therefore

each once. Let this equation be

(3) APliSt + BPXSii+... = 0.

If we define the new tensor

(4) Qabcd = APabed+BPacdb^i-,

we see that (3) gives

(5) Quu — 0.

Since our set of equations is invariant, (3) and hence (5) holds in all systems

of coordinates. In particular, since we may transform the coordinates by

a permutation of the variables, we see that all'the components of Qabcd with

four distinct subscripts vanish.

We shall obtain the tensor equation which follows from our set by deter-

mining constants A, B, etc. for which the equation

Qabcd =  ÖabiAQiicd + BQiidc + CQicdi+ DQidci + EQicid+ FQidic

-r O Qcdii +HQddi + IQciid + JQdüc + KQcuu + LQdici)

(6) + dac iA'Qiita + B'Quob +•••)+•• •

+ ¿ab ¿cd i UQiüj + VQm+ WQw) + ■■■

+ Sac Sbd i U'Qajj+V'Qvji + WQaa) +.-■

is satisfied.

This equation holds regardless of the values of the constants, provided all

four subscripts are distinct, in virtue of (5) and the similar equations. To see

what conditions must be satisfied when two subscripts become equal, note that

the equations

x[ = xi cos 6 — Xi sine,

(7)
x'i = »isin0-|-a;jcos0,       xl = Xi (t 4: 1,2)

84*
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define an admissible transformation, and therefore our set of equations will

hold after this transformation is applied. On applying it to (5), we obtain an

equation in tan 6 true for all values of 6. Consequently the coefficients must

vanish, giving the new equation

(8) Qim — Qîss4-

On applying the rotation similar to (7), but involving the 1 and 3-axes, to

equation (8), which likewise holds for all systems of coordinates, multiplying

the right side by cos2 6 + sin2 0 to make the equation homogeneous, equating

the coefficients to zero, and using (5), (8) and the similar equations, we find

(9) Qua — Qua + Qsi24 + Q»2u ■

If we now set a 6cd = 1123 in (6), and make use of (8), (9) and the similar

equations, we obtain

Qu2t = Qiut(nA + D+E+I + L) + QMXX(D + F+nG + I + K)

+ Qxlst(nB + C + F+J + K) + Qt2xx(C+E+nH+J+L)

+ Qxiti(B+nC+E+H+K) + Qilxa(A + E+G+nI + K)
(10)

+ QXtii(A + nD + F+G+L) + QSXXi(B + F + H+nJ+L)

+ QxiXt(A + C+nE+H+I) + QiXt1(B+C+G + I + nK)

+ Qai,(B + D+nF+G + J) + Qnn(A + D + H+J+nL).

The equations obtained by making this an identity in the Q's and equating

coefficients have a determinant equal to w8 (n — 2)8(n + 4) (n + 2)8 which

is different from zero (since n > 4, to make this part of the argument neces-

sary). Hence the equations have a solution, and when they are solved and

the result is substituted in (6) it will hold for a6cá = 1123. It will also
hold for any choice of the subscripts making the first two equal, and the

remaining two distinct from these and from each other, as is evident from the

equations determining the constants.

In an entirely analogous way, we may determine the values of A', B', ..., II

so that the equation (6) will hold when a and c are equal, 6 and d being distinct

from these and from each other; and then A", ..., A'", ..., Avi, ... so that

the equation will hold when any pair of subscripts are equal, the remaining



1923] INVARIANT   SETS  OF  EQUATIONS 489

pair being distinct from these and each other. It then follows from (9) and

the similar equations that (6) holds when three of the subscripts are equal

but different from the fourth.

We now define a tensor obtained from Qabcd by subtracting the terms already

determined:

(11) Sabed = Qabcd — ^06 A QaCd —  • • ■   — ¿cd Lyl Qbiai-

From the method we used to determine the constants appearing in this equation,

it follows that all the components of Sabed containing one of the subscripts an

odd number of times vanish. Furthermore, by contracting (11) we may express

the contracted S's in terms of the contracted Q's. Consequently we may find

U, Y, W etc. to satisfy (6) provided we can find constants which satisfy

(12) Sabed  = dab dCd iXStyj + Ïtiijji + ZSijij) + • • •-

We already know that the equations

(13) Sli3i = 0,

(14) SXX23 = 0,

(15) Sou = 0

hold, as well as the similar equations obtained from them by permuting the

subscripts. On applying the rotation similar to (7) involving the 2- and 3-axes

to (14), and noting that we have an identity in 6, we find

(16) SXXSi •=== Sxxil,

and hence

(17) SilM   =   <S8S44.

Again, by applying the rotation involving the 1- and 4-axes, and using the

equations already set down, we find

(18) £1111 == SiXXi + SXXa + SXiXi,

and hence, by (16),

(19) Am = 8m,.
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If we now set a6ca" = 1122 in (12) and utilize the relations just derived,

we find that

ahm = Sxxit(niX + nY+nZ) + Sxttx(nX+n*Y+nZ)

(20)
+ Sxtxt(nX+nY+n*Z).

The equations obtained by considering this equation an identity in S have

a determinant equal to «8 (n + 2) (n — l)2, different from zero (n > 2, since

we have two distinct subscripts). These equations may thus be solved for X,

Y and Z. Similarly we determine X', Y', Z' so that (12) holds for SXMX, and

X", Y", Z" so that it holds for Slixi. It then follows from the way these

coefficients are determined that equation (12) holds for any component whose

subscripts form two pairs of equal elements, all four not being the same. This

last case, however, is covered by recalling (IS) and noticing the form of (12).

Having thus determined the coefficients to satisfy (12), which is now true

for all subscripts, we combine (12), (11) and the equations obtained by con-

tracting (11) so as to get an equation of the form (6) which is true for all

subscripts. On eliminating Qabca from this equation by means of (4) we obtain

a tensor equation in Pabd which is implied by our original set. If there are

any other equations in the set in four distinct subscripts, which are not con-

sequences of the tensor equation just obtained, we may apply the process

again to get an additional tensor equation in Pabcd. We may keep this up

until the tensor equations obtained have as consequences all the equations of

our set with four distinct subscripts. This will have to happen after at most 4!

such tensor equations have been obtained, since from this number we could

solve for all the components Putt,'Put* etc., and eliminate them from our

original set.

When we have obtained these tensor equations, and removed from our

original set of equations all those which are consequences of the tensor equa-

tions, we shall have a second set of equations. This residual set has the

property that no member contains four distinct subscripts. If one of these

equations contains one, and hence two indices (say 2,3) each an odd number

of times, by applying the lemma we may obtain from it an equation in which

every term contains these indices an odd number of times, and hence of the

form

(21) wings -Puis + • • • + »*2S2s -P2S88 + • • • = 0,

where the m's are mere numbers, coefficients of the components indicated by

their subscripts.
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On applying the rotation similar to (7) involving the 1- and 4-axes, to

(21) and equating the coefficient of sin 0 to 0, we find

(22) (m4428 — mnig) Puss + terms in less than 4 subscripts = 0.

If the coefficient of P142S is not zero, the equation

(23) P14M = 0,

and hence (cf. (8))

(24) Pun = Pntt

will be included in the consequences of our tensor equations derived from

those involving four subscripts, and hence in view of (24) we can make

(25) m44l8 = muís

in all cases.
If we next apply (7), involving the 1- and 2-axes, to (21), we find, as the

condition for the coefficient of sin 6 cos* 6 vanishing,

(26) (wi2m — Wuas — wims) Pitts + wi2448 P44« A-= 0.

As this is of type (21), 1 and 3 being the odd subscripts, we obtain the

relation, analogous to (25),

(27) mttts — »Mim — »hua = wi«448>

or, in view of the relations similar to (25),

(28) wM28 = muss + »«su« + WH«»-

In consequence of equations (25), (28) and similar equations, we may write

(21) in the form

(29) win« Pats + mim Pim + • • • = 0,

which shows that the tensor

(30) Tab = Wlllï8 Piiab + Vhtsi Piabi H-
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has all its components in two distinct subscripts zero, and by the method used

above for Qabcd, we may show that Tab satisfies the tensor equation

(31) Tab =—dab Tu.
n

On eliminating Tab from (31) by means of (30) we obtain a tensor equation

in Pabcd- In the same way we obtain all possible tensor equations which result

from the equations of our set with two distinct subscripts. We then reject all

equations from the set which are consequences of any of the tensor equations

so far obtained. The equations which remain, since they involve no subscript

an odd number of times, must be of the form

(32) wz1122 P1122 4-h mim Ptm H-= 0.

On applying the rotation similar to (7) involving the 1- and 3-axes, we find,

as the coefficient of sin 0 cos8 0,

(33) (mn22— m8822)Pis22-r(miiU—wtsns — »hsis—»hiss)Puis+ • • • = 0.

By an argument similar to that used above to establish (25) we may show

that the coefficients here either are zero, or can be made zero, giving

(34) mutt = masa,

(35) whin = »»sus + »tisis + m1Xss •

Consequently we may write (32) in the form

(36) m1122 Piijj + mmi P^ +-Y M = 0,

M being a constant term. This is a tensor equation, and by obtaining all such

equations from our set we will finally have a collection of tensor equations

which is equivalent to our set, in the sense that it implies and is implied by

the set. These equations are either of type (6), (31) using (30), or (36). All

these may be included in a single form,

(37) APabcd-YBdab Pucd-Y Cdai dca Piii}-YdabdcdD = 0.
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The coefficients in this equation are constants at the point under consider-

ation, and the equation holds for normal coordinates at this point. As it is

evidently equivalent to the equation in general coordinates

(38)   APabed ■■■ + Bgab Piua ■•• + Cgabgcd Piw • - ■ + ffabged D = 0,

this may now be considered to hold at all points, if instead of regarding the

coefficients as constants, we regard them as scalar point functions.

As the argument given above for tensors of the fourth order may evidently be

extended to those of any order, the with, the process consisting in first deducing

tensor equations from those in the set in m distinct subscripts, then m — 2,

and so on, we may state as the conclusion of this section

THEOREM I. An invariant set of equations, linear in the components of

a single tensor, is equivalent to a set of tensor equations, obtained by equating

to zero linear combinations of the given tensor, those obtained from it by per-

muting the subscripts, and those obtained by contracting one or more times and

multiplying by the fundamental quadratic tensor so as to bring the order to its

original value. The coefficients in the linear relations are scalar point functions.

3. Extension to the general case

The previous section merely dealt with equations linear in the components

of a single tensor; it is, however, easy to extend the result there obtained to

the case of equations formed from several tensors, differentiation and multi-

plication being admitted. This extension now concerns us.

Consider first the case where the equations are linear in the components of

several tensors, not necessarily of the same order, so that each term involves

only a component of one of the tensors. We confine our attention to one point,

and introduce normal coordinates. The lemma of the preceding section

evidently applies here, and by its use we may reduce our set to one in which

each equation contains any one subscript an odd number of times, or an even

number of times. Hence the tensors appearing in these equations must have

orders differing by an even number, and they may all be brought up to the

same order by introducing d's with equal numerical subscripts, which does not

effect the invariant character of the set. Having done this, we may now select

the equation of the set containing the greatest number of distinct subscripts,

as we did in the preceding paragraph, and proceed to deduce tensor equations

which follow from our set, exactly as before.

Next, if the equations of the set express the vanishing of expressions in-

volving the components of several tensors to a degree higher than the first,

being polynomials in these components, we have merely to regard the product
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of two components of the same, or of two different tensors, as a single com-

ponent of a tensor whose order is the sum of the orders of the two used in

forming it, to reduce this to the case just discussed.

Finally we consider the case where differentiation of the tensor components

is permitted. We notice that we are dealing with normal coordinates in

carrying out our reduction, and in these coordinates the first derivatives may

be replaced by the corresponding covariant derivatives, while the higher

derivatives maybe replaced by polynomials in the higher covariant derivatives,

and the derivatives of the Christoffel symbols in normal coordinates, evaluated

at the origin. But these quantities are all tensors,* and thus the set of equa-

tions implies a set holding in normal coordinates which may be treated by

methods already given.

As an illustration of the reduction of the last three paragraphs, suppose

one of our original equations were

(39) (Wi,)»=l711 + (7li)(8r1/8a!I).

By applying the lemma, we should obtain, after replacing the derivative by

a covariant derivative,

iYXt)(T1it) = 0,

(40)
iWxtY-Uxt = 0,

and on introducing the tensors defined by

Qabcd ~ Yob ïc/d,

(41)
Q'abcdef === Wab Wed Wtf — &„ dd/ Uab,

we should obtain

Qiïiï = 0,
(42)

(¿121212 0,

a form to which the result of the preceding section would apply.

We have thus proved the theorem stated in the introduction:

THEOREM II.  An invariant set of equations, obtained by equating to zero

expressions formed from one or more given tensors and point functions by

* For the expression of the derivatives of the Christoffel symbols at the origin of a system

of normal coordinates in terms of the curvature tensor, see 0. Veblen, Proceedings of

the National Academy of Sciences, vol.8 (1922), p. 196.
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addition, multiplication, and differentiation with respect to the coordinates, is

equivalent to a set of tensor equations.

4. Equations linear in the second derivatives op the
fundamental quadratic tensor

In this section we shall consider the classification of invariant sets of equa-

tions, formed by equating to zero expressions involving the fundamental

quadratic tensor, gy, its first and second derivatives, and these last linearly.

Such equations are of interest, since the equations holding in space free of

matter are of this form, so that on specializing our results to four-space they

will throw light on the choice of equations for the relativistic theory of

gravitation. The question is related to one concerning possible tensors of

this type, which was previously taken up by the author.* The results of that

paper, while related to those here obtained, neither follow from them nor

lead to them.

As our invariant set of equations involve merely the Oy-, and their first and

second derivatives, if we introduce normal coordinates, for which (1) holds,

they will reduce to expressions in the second derivatives, and as these (in

normal coordinates) are expressible in terms of the curvature tensor, we see

that our equations involve this tensor only. Also, on account of the linearity

requirement, they involve its components linearly, so that they are the type

discussed in Section 2. By that section, we see that our equations must all be

of the form

A Bated + B Badbe + G gab Bed + Dged Bab + Egac Bbd + Fgbd Bae

(43) + Hgad Bbc + Igbe Bad + Jçab g* B + Kgae gbd B

+ Lgad gi>cB + Mgab g<œ + Ngac gbd + Pgad gbc — 0.

The terms in (38) omitted in this equation depend on the ones kept, owing to

the symmetry relations of Baud, and we use the customary notation for the

tensors obtained from it by contraction.

As we may be able to factor out the fundamental quadratic tensor from (43),

in case every term contains a gab, say, — i. e., if all the coefficients were zero

except Ü, J, M, — the factoring being accomplished by contracting with respect

to a and 6, the equation may reduce to one of the second order, or to a scalar

relation. We shall treat these simpler cases first. The scalar relation will

evidently reduce to the form

(44) B_ M

M being a scalar, perhaps zero.

* Philosophical Magazine, vol. 45 (1923), p. 998ft. Cf. H.Weyl, Raum, Zeit, Materie,

fourth edition, p. 287.
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If the equation reduces to one of the second order, it will be of the form

(45) CRcd + Jgcd R + Mgcd = 0.

On contracting this with respect to c and d, we obtain

(46) CR + nJR + nM = 0,

n being the dimensionality of the space. If C is zero, this either gives an

equation of type (44), having (45) as a consequence, or all the constants are

zero and (45) is satisfied identically. If Ç ^ 0, on replacing JR + M by

— Cln in (45), and dividing out C, we find

(47) Rcd—j-gcdR = 0

as the standard form for a tensor equation of the second order.

We may show that if, in (43), both A and B are zero, that equation is equi-

valent to one of type (44) or (47). For in that case, on contracting with

respect to a and 6, we would obtain

(nC + E + F+H+DRca
(48)

+ (D + nJ+K+L)gcdR + inM+N+P)gcd = 0.

If the coefficient of Rca in (48) is different from zero, it leads to an equation

of type (47), by means of which we may eliminate all the P's with two sub-

scripts from (43), the resulting equation easily reducing to a relation like (44).

As these two equations of our earlier types would have (43) as a consequence,

nothing new results from this case. If the coefficient of RCd in (48) were zero,

we could contract (43) with respect to a second pair of subscripts and carry

out the argument as before, unless all six coefficients were zero, in which case

we would have C = D = E = F=H=I=0, and (43) would be

essentially a scalar equation like (44).

When A and B are not both zero, by using the relation

(49) Rabcd + Radbc + Racdb = 0

we can obtain a relation involving only one of these. For, since (43) is true

for all coordinates, and hence in particular when we permute the subscripts,

it gives, on interchanging 6 and c,

(50) ARacbd+ BRadcb+ • • • — 0,
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or, using the symmetry properties of Babea,

(51) — ABacdb— BBadbc+ • • •  =  0.

On subtracting this equation from (43), and using (49), we find

(52) (2B — A)Badbc-\-= 0.

If the coefficient is zero, we interchange the rôles of A and B in the argument,

and as they are not both zero, we see that in all cases an equation of form (43)

is obtained containing a single B with four subscripts, with non-vanishing

coefficient. Equation (52) may thus be solved for Badbc, and if we use this

value in the left member of the identity

(53) Bbadc — Bbacd + Babcd —' Babdc =  4 Babcd

which follows from the symmetry properties of Babcd, the resulting equation

takes the form

A Babcd + B(gM Bbd + gbd Bac — gad Bbc — gbc Bad )

(54)
-\-C(gacgbd — gadgbc)B + D(gacgbd—gadgbc) = 0.

Furthermore, (43) can not imply anything more than (54) unless perhaps

equations of our earlier types, since we can eliminate all the terms with B's

of four subscripts from (43) by using (54), coming- back to the case where

A and B in (43) are both zero.

On contracting (54) with respect to a and d, we find

(55) (A + (2-n)B)Bbc + (—B + (l—n)C)gbcB + D(l-n)gbc = 0.

If the first coefficient here is not zero, we may express Bbc in terms of gbcB

and gbc, and consequently modify B at pleasure in (54), provided we make

corresponding changes in C and D. Thus we may assume in all cases

(56) A + (2-n)B = 0.

Similarly, if the second coefficient is not zero, we may, by a second contraction,

express B as a scalar, and hence change C in (49) by making the proper

changes in D, so as to get in all cases

(57) -J? + (l — n)C= 0.
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Finally, when these changes have been made, if necessary, (55) gives by

contraction

(58) 0(1— n) = 0.

Solving (56), (57) and (58) for the constants in terms of A, and then dividing

out by A, which is not zero, we reduce (54) to the form

Robed + n_2 Í9aeRbd + gbdRac — gadRbc—gbc Rod)

(59)
1

~in — 2)in — l)(<9ac9bd~9ad9bc)R m °"

In case any of the transformations of constants were necessary to make the

coefficients of (55) vanish, (54) implies, in addition to (59), equations of type

(44) and (47), but nothing further in any case.

Before considering the possibilities of combining these three types of equa-

tion, we shall prove that an equation of type (47) always leads to a special

case of one of type (44), that in which the right member is a constant.* If (47)

holds, we have

denoting covariant derivatives in the usual way. On the other hand, it is

well known, and easily proved by calculation in geodesic coordinates, that

(61) 7&i*-\iRga),b - o,

identically, which shows that, unless n = 2,

(62) iRg»a)lh=dRldX(t = 0,       R = P0.

When » = 2, (47) holds identically, so that from now on we need only con-

sider the combination of (62) and (47).

In view of the preceding results, we see that all sets of equations of the

kind discussed in this section are equivalent to one of the following five

tensor equations:

*G. Herglotz, Leipziger Berichte, vol, 68 (1916), p. 203; cf. also Q. D. Birkhoff.

loe. cit., p. 220.
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(I) B = M,

w J£ab — —gabMo — °»

1       /-_r>i-T> _r> _r>\
(m) Rabcd + ^T2" ^oc Rbd + SW Äoe — 9ad Bbc ~ 9bc Rad)

1 ,

(63) (w_2)(«_i)(^^M-5,adS,J-B = 0,

(IV) » (IH), (II) RaM + lflJ~^(9ac9bd-9ad9bc)Ro = 0,

(V)    T    (LU),(I)        Ä^-L-Ay^^+^^-^^-^ÄJ

(w_2)(n_l) ^œ ^ — 9ad>9bc) M = °-

Here, as indicated, (IV) is equivalent to (III) and (II); while (V) is equivalent

to (III) and (I). It is evident that (TV) follows from (HI) and (II), and to
deduce these from (IV) we have merely to contract (IV), obtaining (II), which

then enables us to reduce (IV) to (III). We may handle (V) similarly. Since

we have shown that (LI) always implies the special case of (I)

(64) B = Bo,

these are all the combinations that we need consider. It should be particularly

observed in the above that Bo is a numerical constant, while M is a scalar

point function. Thus there is always some value of M for which (I) holds — it

only becomes a condition when the form of M is given.

The equations above given may be interpreted geometrically. (I) states the

value of the total curvature, and evidently only derives special significance

when Jfis specialized. (JI) is the condition that the "principal directions"

become indeterminate at every point of the space.* (HI) is a necessary and

sufficient condition (n >■ 3) that the space be conformally representable on

*L. P. Eisenhart,  Proceedings of the National Academy of Sciences, vol.8

(1922), p. 24.
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a euclidean space.* Its left member occurs in various investigations on con-

formal representation, and has been called the "conform curvature". (IV) is

the condition that the space be " spherical",t

As stated previously, the equations holding in space time which are the

analogues of Laplace's equation in the Newtonian theory of gravitation for

the theory of Einstein must be of the type under discussion. Thus they must

be one of the equations given in (63). Since (I) is not restrictive enough,

and (ELI) is too restrictive, it follows that the only possible equation is (II),

that selected by Einstein.

Recapitulating the work of this section, we have proved

THEOREM III. Every set of invariant equations formed by equating to zero

expressions involving the fundamental quadratic tensor, g„f its first and second

derivatives, and these last linearly, is equivalent to a tensor equation of one of

the five types given in (63) above.

*H. Weyl, Mathematische Zeitschrift, vol. 2 (1918), p. 404; J. A. Schouten,

Mathematische Zeitschrift, vol.11 (1921), pp. 58ff.; cf. also H. W.Brinkmann, Pro-

ceedings of the National Academy of Sciences, vol. 9 (1923), p. 1, p. 172.

t Schouten, loc. cit., p. 75.
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