ALGEBRAS WHICH DO NOT POSSESS A FINITE BASIS*

BY
J. H. M. WEDDERBURN

1. Introduction. The object of this paper is to classify algebras which
do not have a finite basis. The methods used are similar to those employed
in a former paper,t but considerable difficulty was experienced in extending
the results of this paper, as the proofs of many of the principal theorems
depended on the use of induction and were therefore tied up with the
finiteness of the basis; and, in fact, these difficulties have been only par-
tially overcome, as is shown by the postulates assumed in § 5. It is hoped,
however, that, in spite of their incompleteness, the results presented here
will be found of sufficient interest to justify their publication.

It is noteworthy how little place the finiteness of the basis—or indeed
the presence of any basis at all—has in the principal theorems of linear
algebras. The first theorem 0f importance in which it seems to be required
is that in which it is shown that primitive idempotent elements exist in
an algebra which possesses elements of finite rank that are not nilpotent;
and in two other cases it has not been found possible to complete the
argument when a finite basis is not assumed, namely, in the theorems which
state that, if an algebra is not nilpotent, it contains an idempotent element,
and that the maximal nilpotent invariant subalgebra can be separated from
the rest of the algebra.

The proofs of many of the theorems parallel those for the case of algebras
with a finite basis very closely, so closely in fact that it might have been
sufficient to refer the reader to previous treatments of the subject. It has
been thought advisable, however, to repeat most of these proofs, as other-
wise the reader would feel much uncertainty as to the logical completeness
of the treatment. In one or two cases reference has been made to the
paper mentioned above, or to Professor L. E. Dickson’s treatise,I in place
of giving a detailed proof.

It was found inconvenient to give in one section all the postulates used
as in several cases their statement involved some previous discussion. After
a short discussion in § 2 of algebras defined in the manner used by Hamilton,

* Presented to the Society, May 3, 1924.
t+Proceedings of the London Mathematical Society, ser. 2, vol. 6 (1907),
pp. 77-118; this paper is cited hereafter as W,
1 L. E. Dickson, Algebras and their Arithmetics, Chicago, 1928, cited hereafter as D.
395 28
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the postulates common to all associative algebras are given in § 3 while
those peculiar to algebras which do not have a finite basis are given in § 5.

2. The Hamiltonian definition. Hamilton’s definition* of a linear
associative algebra may be modified as follows. Let ¢ be a variable which
runs through a given range or set of values G' (which need not be numerical
although this will generally be the case) and & (¢) a single-valued function
which is defined for every value of ¢ in @ and which has values, for the
present restricted to be finite, which lie in a given fieldt F. Two such
functions, & (¢) and 7 (¢), are said to be equal if, and only if, & (¢) = 5 (¢)
for every value of ¢in G. The sum & + 4 is the ordinary sum in the field F;
the product & (¢)><# (f) may not be the ordinary product but is to be
defined in any particular case subject to the following conditions:

@.1) (=) - (Exp)=L,
(2.2)  Ex(g+L) — Exq4+ 8=, (g-+0) =& = x4 IxE.

We shall also assume that the product of two functions in a given set
belongs to the same set. If this condition does not hold in a given set,
as in Grassmann’s calculus, the set may always be so extended that it has
this property.

If (¢, a) is a function of # and « in G such that

@231) x(t,@) = { 0 «F0
then
(2.32) f(a)a(t ) = { g’(t). Z i ;f

We may therefore set

(2.4) (1) =p(z:)§(a)m(f,a).

Here the exact meaning of the > is best left somewhat indefinite, a special
definition being given in any particular case; the properties required of it
are detailed in the next section and in the meantime it suffices to give two

* See the introduction to his Lectures on Quaternions, Dublin, 1853; also Transactions
of the Royal Irish Academy, vol. 17 (1835), pp. 293-422, vol. 21 (1843), pp. 199-296.

+ This may be generalized considerably by taking in place of F' some linear associative
algebra already defined (so giving the direct product) or even an algebra such as the
algebra of logic.
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examples. If the elements of the range G form an enumerable set, > denotes
G

ordinary summation, of which algebras with a finite basis form a particular
case, other examples being given in § 9. Again, if G is an interval of
the real continuum, 2 &(e)z (¢, @) may be defined as the Stieltjes integral

fd(l’(a)r(t @)) 1f é(a) is properly restricted.

Any set of functions ¢,(e), « in &, are said to form a linearly independent
set in @ if every relation of the form

02 £(a)ea) = 0
()

for every ¢ in G entails § (¢) = 0 in @Q. If, further, every function of
the algebra can be expressed in the form

£(t) = 2 /(@) ea),

the set ¢,(«) is said to form a basis of the algebra, and the cardinal number
of G is called the order of the algebra.

When a basis is used to define an algebra, the functional notation is not
usually convenient. On the analogy of algebras with a finite basis we shall
generally write (2.4) in the form

xr = 2 & () Zer.
G (&)
The values of & () are called the coefficients of = and, if 4 is any constant
mark of the field 7, we shall set

= D 15 (a) 7a.
G (a)
When this point of view is adopted, the product of x, and xs will be denoted
by xr xs.
The condition that the product is associative may be stated in much the
same way as when a finite basis exists. Since we are assuming that z, x,
lies in the given set, we must have

(2.5) arxs = 2 k(r,s, ),
ém

where L (r,s,t) is some function defined for »,s,¢ in G, and, if multi-
plication is associative, we find in the usual manner

(2.61) 2 lrsu]m == 2 Ilwt ]fqﬂa

G(e)
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If the units used are the Hamiltonian ones described above, equation (2.5)

may be written
(2.62) xy (&) < x5 (@) = k(r,s,e),

or, for any functions & and 5 of the set

@71) §(a)><q(a) = 2 E()n(s) zr(a) <asle) = 2 E()()k(r,5,0).

It is then clear that we may take as a particular interpretation of > (or
as our definition of the product of two functions)

@) E@xq@ = [[50) @k, e@ dras
with
@13) [k, 0, 0kt 8, @)t = [k(r,t, @)k(s, 8, )t

as the eondition of associativity.*

Examples of functions %(r, s, ¢) which satisfy (2.73) are easily constructed
by employing orthogonal functions in conjunction with the constants of an
algebra with an enumerable basis. The following illustrations are constructed
from the constants of ordinary complex numbers and quaternions:

2.81) k(r,s,t) = Dkmsinm(r+s—1t);

(2.82) k(r,s,t) = 2 kn{lsin(2m+1)rsin(2m-+1)s
" sin(2m4-2)rsin(2m-2)s]sin(2m+1)¢
+[sin(2m+1)rsin(2m+2)s
4+ sin(2m 4 2)r sin(2m + 1)s] sin(2m + 2) t};

(2.83) k(r,s,t) = Dkn{sin(2m+1)(r+s—t)
" fsin[(@mA1)r 4+ (2m42) (s—1)]
—sin[(2m+2)r—(2m+1)s—(2m+2)¢]
+sin[(2m+2)r—(2m+2)s—(2m -+ 1)¢]}.

* It will often be necessary here to replace ordinary integration by one of its many
generalizations and suitable restrictions must, ‘of course, be placed on the functions involved.
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Here the constants k, are only restricted by considerations of convergence
and integrability, and the range of each of the variables is over a period 2 7.
It is clear that, subject to these conditions, (2.81) represents any odd periodic
function of » +s—¢ with period 2, so that the operation

@9 E@xq@ = [ [ #0f0+s—ayaras

defines an algebra in the range — 1 to 41 when f(¢) is an odd periodic
function with the period 2.

3. Fundamental postulates and definitions. We shall now give a
more abstract definition by means of postulates without attempting, however,
to make these independent, the aim being descriptive rather than analytical.

A linear associative algebra A4 is a set of two or more elements a, b, ¢, - - -
subject to two operations, namely, addition, which will denoted by -+, and
multiplication, which will be denoted simply by juxtaposition of the factors.
These operations are subject to the following conditions.

PostuLaTE 3.11.

Ai: a-tb is an element of A;

Ads: a+b = b+ a;

As: a+(b+c) = (a+b)+¢

Ay There is an element O such that a + 0 = a for every element a of A;
As:  For every element a there exists an element b such that a-+b = 0;
M: ab is an element of A,

My: a-bec = ab-c;

AM: a(b+¢) = ab+ac, (b+c¢)a = ba-+ca.

It is easily seen that O is unique in A4, and that b in 45 is uniquely
determined when « is given; b is denoted by —a and —(—a) = a.

If a is any element, a + a is denoted by 24 and in general a +a+---+a
(m terms) is written ma; evidently (ma)b = a(mb) = m(ab). When
a ¥ 0, it is not difficult to show that the smallest integer for which ma =0,
if such an integer exists, is always a prime; we shall assume that this
prime, if it exists, is the same for all elements since, when this is not the
case, the algebra is reducible. When no such integer exists, we assume
the following postulates.

PostuLATE 3.12. If a is an element of A different from 0 and m s a
positive inleger, there exists an element b such that a = mb.

The element b, which is unique, will be denoted by (1/m)a. This
postulate is sufficient for many purposes, but the following one, which in-
cludes it, will usually be more convenient.



400 J. H. M. WEDDERBURN [October

PostuLATE 3.13. (i) There is associated with A a field F such that to any
non-zero element a of A there is allied a subset Ag of A which is in (1,1)-
correspondence with the elements of F, a and 0 in Aq corresponding respectively
to 1 and O in F; the element corresponding to a mark & of F is denoted
by Ea. The correspondence is preserved under the operation of addition, that
is, Ha+&a = (§+ &) a;

(i) If b3 0 is any element of Ag, then Ay = A4 and, if &b =5 a (& F0),
then a = (5 & ') b;

(iii) & (Sra+&0) = Eha+E&D;

(iv) Sa-0 = a-5b = §(ab).

This composite postulate is broadly equivalent to saying that the elements
of A correspond to an affine geometry in which these elements are the
points of the geometry, or to a projective geometry in which the sets 4,
correspond to points.

The combined postulates 3.11, 12 and 13 will be referred to as Postulate 3.1.
In these postulates we have considered combinations of elements by a finite
number only of applications of the fundamental operations. Later we shall
see that infinite sums are required in certain cases which are introduced
by postulates as required. We have, however, to frame our definitions from
the start so as to admit the possibility of such combinations of an infinite
number of terms and it is therefore necessary to detail the properties
required of the summation sign >. For the present we shall merely say
that, if x; is a set of elements of 4 in (1, 1)-correspondence with a range
or set of values of a variable ¢, then for certain ranges—which depend
on the particular algebra under discussion—there exist elements denoted by
g,& x¢, where & is a function of ¢ in G whose values lie in F, and the

summation sign > has the following properties:
(a) If @ contains only a finite number of elements 1,2, .-, n, §§t xt

denotes &y + Ssae 4 -+ Enan;
(b) Whether G is finite or not, if y, is also a set of elements of 4 defined
for ¢t in G and 2z is any element of A, then

; (Eeaet+meys) = ; & a +; 1t Yt,
zZ_Etxg '———'Zl‘tzwt, Ziftwt-f :;':2&66%,
T G G T

provided always that in each case the summations used have a meaning.
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When ; & a¢ exists in 4, we shall say that it is linearly dependent on

X, tin G.

A complex™ in 4 is any subset of 4 which is closed under the operation
of addition but not necessarily under that of multiplication. If B and C
are complexes such that every element of B is an element of ¢ and vice
versa, we write B = (; if B contains all the elements of (' and also
elements not in C, we write B> C or ¢ < B. If the order of a complex
is 1, that is, if when b is any non-zero element of B all elements of it
have the form &0, & an element of F, we shall write B = (b) or, when
there is no risk of confusion, B = b; thus x < B means that x is an element
of B. The ¢ntersection of two complexes B and C is the complex of all
elements common to both; it is denoted by B ~ C.

If B and C are two complexes, the complex of all elements which can
be derived from the elements of B and (' by means of the operation of
addition is called the sum of B and (' and is written B4 C. Evidently
the addition so defined is commutative and associative. Similarly, if B, ¢
in a range G, is a set of complexes, %Bt is the complex of all elements

derivable from the totality of elements in the B; by means of the operation
of addition. Even if @ is an infinite range, this does not necessarily involve
infinite sums of elements.

If  and y are variable elements of B and (' respectively, the totality
of elements of the form xy together with those elements derivable from
them by the operation of addition is called the product of B into C and
is written BC. The multiplication so defined is associative and distributive.
We may also note here that

4~(B~C) = (4~B)~C,

AB~C)<4B~AC, (B~C)A<BA~CA.

If C is a subcomplex of a complex B, any two elements x;,zs of B
for which (z; —x,) <<C are said to be congruent modulo C and we write
Z; =z, (mod C); all elements congruent to z; modulo C, that is, all elements
of the form z, + y where y < C, are said to form a classt modulo C. The
class corresponding to x; may be written [x;]; it is completely determined
when any one of its elements is given. The class [0] is the complex ('
itself.

* This term was introduced into the theory of finite groups by Frobenius in a similar
sense. Dickson uses the term “linear set”, Scorza, ‘“linear system”.
+ Cf. D, p. 80.
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Two complexes D and £ are said to be congruent modulo C if there is
a (1, 1)-correspondence betweca their elements such that, if  and y are
corresponding elements of C' and D respectively, then x—y < C.

If a complex B has a finite basis, it is clear that, when C is a proper
subcomplex of B, there exists a complex D such that B=C-+ D, C~D =0;
but here, as we do not assume the existence of any basis, it is necessary
to have the following postulate:

PoSTULATE 3.2. If Cis a subcomplex of a complex B, there exists a complex D
which has mo element in common with C' and for which B = C-+ D.

The complex D is called a supplement of C in B.

A few definitions are conveniently given here. Any element different
from O which is equal to its own square is said to be idempotent. If e is
idempotent and x an element of 4, then, if there exists an element y such
that xy = e (yx = e), x is said to have a right (left) inverse with respect
to e; if = has neither a right nor a left inverse with respect to e, it is
said to be singular with respect to e. It may be noticed here that, if xy = e
is idempotent, then yex is also idempotent. If there is an element m such
that mxz = x = am for every element of A, it is called the modulus of A4;
it is evidently unique. If some power of an element is O, it is said to be
nilpotent, and, if z” is the lowest power of « which is 0, n is called the
index of x.

If there exist in a complex B a set of elements a:, ¢ in a range G,
such that (i) every element of B has the form ; & x¢, the &’s being elements

of the field, and (ii) g &y = 0 if, and only if, & = O for every ¢ in @,

then the set x; is called a basis of B. The cardinal number of the set G
is called the order of the basis and, if this number is unique, it is called
the order of the complex. The existence of a basis is not assumed in this
paper, but all the examples constructed so far possess one.

The algebra generated by the elements =z, xs, 25, --- is denoted by
{1, x5, ---}; the order of {z} is called the rank of z.

Integral powers of a complex are defined in the usual manner; thus
B.Bm"~!'= Bm™ = B™—1.B. The condition that a complex is an algebra
then takes the form B* < B. A phenomenon occurs here in the case of
algebras which do not have a finite basis which is not present when the
order is finite. Let 4 be the algebra generated by a, b, ¢ where

ab = ¢, ba = 0, ac = cb = & = 0.
If 4, = {a}, A4y = {b}, then
A=A1+A2+(C), A1A2=(C), ds Ay =Aic=cdy = c4d,=A4;¢ =0,
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and hence
Ar = A4 A4 (¢).

The complex ¢ = (¢) is therefore common to all integral powers of A
and it is clearly the only such complex; we therefore write

A?Y = lim4» = (.

n =00

Since C* = 0, we have 4“2 = 0. Similarly in the algebra defined by

ab =v¢, ba=4d, ac=c¢=1¢b, da=d==0bd,

Ax:{a}, -42:{11}, :{"’d}’

we have A = B and 4“° = B® = 0.

The smallest ordinal number » for which (A4*)* = A” is called the index*
of A. For instance, in the second example given above the index of 4
is w?® and that of B is w. If A” = 0, as in this example, 4 is said to
be nilpotent.

4. Invariant subalgebras. A complex B in an algebra A such that
AB< B, BA< B is itself an algebra, and it is said to be an invariant
subalgebra of 4. The first two theorems regarding such subalgebras are
proved in exactly the same way as when there is a finite basis and hence
they are merely stated here.

THEOREM 4.1. If B is a proper invariant subalgebra of an algebra A,
an algebra can be derived from A by regarding as equivalent those elements
of A which differ only by an element of Bt.

This algebra is called the difference algebra of A and B and is denoted
by A—B. To any algebraic identity in A— B there corresponds a con-
gruence in 4 modulo B.

THEOREM 4.2. If B, and B; are proper invariant subalgebras of A, and
By > Bs, then A— B; has an invariant subalgebra which is simply isomorphic
with By — Bs, and conversely .}

* When v is finite, it is easily shown that this definition is equivalent to saying that v
is the smallest integer for which 4”1 = 4”.

+ Of. W, p. 82; D, p.39.

1CL. D, p.41.
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An algebra which has no proper invariant subalgebra is said to be
simple. 1f B is a maximal invariant subalgebra of A, A— B is simple
and conversely.

An algebra is said to be the direct sum of two proper subalgebras
4,, 4, if
4.1) A=A +4s, didy = 0: 4, 4 ~4s == 0;
and, when such a form for .4 exists, it is said to be reducible. When (4.1)
holds, we shall write A = 4, @ 4, in place of 4, + A: when it is desired
to indicate that A is reducible; the component parts of the sum will be
referred to as reduced parts of A. A reduced part is evidently an invariant
subalgebra.

THEOREM 4.3. If an algebra A has a proper invariant subalgebra B that
possesses @ modulus, A s reducible.

Let C’ be a supplement of B in A so that

A= B+,  B~C = 0;
also let e, be the modulus of B and ¥’ a variable element of 4. If we set
(4.2) y =y —ay—yeateaye,

then, as y' varies in 4, y evidently traces out a complex C in 4. This
complex is congruent to ¢’ modulo B since, B being invariant, ¢, y’, y'e;, e,y e;
are elements of B, and y = 0 if, and only if, y'<< B; hence 4 = B+ C,
B~C=0.

If z is any element of B,

xy = xy —zey' —ay'e+xeye =

since xe, = x; therefore BC = 0, and similarly CB == 0. Since B has
a modulus, this shows that C is an algebra, which also follows from
6,C = 0 = Ce, so that, if y and y, are any elements of C,

Yh = yh—eyyh—yhe +eyyie<C

by (4.2). The theorem then follows from the definition of reducibility.
CoROLLARY. The algebra C is unique.
For, if A = B® D, every element z of D has the form y 4 2, where
y<B, 2<D and 0 = ¢,z = ¢, y+e,2 = y since ¢ B = B. Hence
every element of D belongs to C' and conversely.
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As a converse to the preceding theorem we have the following

THEOREM 4.4. If A = B® C has a modulus, so have also B and C.

For, if ¢ is the modulus of 4, we have e = e, 4 e; where ¢, << I, e; < (/,
and if x < B, then

eqx = (e—e)x == r—eax = x,

since esx < B~ (' = 0.

The following two minor theorems are occasionally useful.

THEOREM 4.5. If A, and A, are algebras such that 4, A; = 0 = 4; 4,
and if either Ay or Ay has a modulus, then A4, —~ Ay = 0.

For, if 4; has a modulus ¢, and B == 4, ~ 4;, then ¢ B == B since
B<A4,, and ¢ B = 0 since B< A4s; hence B - 0.

THEOREM 4.6. If A == A, @ B, == Ay ® By, and if A, and As are irreduc-
tble and each has a modulus, then either A, == Ay, or 4,4, = 0 = A3 A,
= Al - A.g .

Let ¢, be the modulus of 4, and e that of ds;. Since A, and 4; are
invariant and each has a modulus, it follows that

Aids o A~y Ay Ay
Hence ¢, 6, < 4; —~ dp and is consequently its modulus. But by Theorem 4.3,
A4,, being irreducible, cannot have a proper invariant subalgebra with a
modulus; hence either 4, == A, or 4, ~ 4; == 0.

5. Idempotent elements. The theory of idempotent elements is some-
what more elusive in the case of infinite algebras than in that of algebras
with a finite basis; and certain difficulties arise which it has not proved
possible, so far, to overcome except by restricting the class of algebra
considered by further postulates.

If ¢ is an idempotent element of an algebra A, it is the modulus of ede;
and, if ede contains no idempotent element besides e, the latter is said to
be primitive. When ¢ is not primitive, ede then contains at least one
idempotent element e¢’, which is necessarily commutative with e so that
¢" == ¢—¢' is also idempotent and e'¢” = 0 = ¢"¢’. More generally, if
es and e; are commutative idempotent elements, then ese;, es—eser, et —eser
are all idempotent (unless one of them is 0), the product of any two of
them is 0, and the complex formed from them contains both e, and e:.
Further, since ese; is contained in both e;des; and e; Ae;, it follows that
esee = 0 when e; and e; are primitive; hence in a set of primitive idem-
potent elements which are commutative with each other the product of any
two is necessarily zero.
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When an algebra A has a finite basis, it is readily proved that primitive
idempotent elements exist whenever there is some element in A which is not
nilpotent. Our postulates for infinite algebras, however, are not sufficiently
strong to enable us to draw similar conclusions as is seen from example 9.7,
in which it can be shown that no idempotent element exists except when
certain infinite series of elements are admitted as elements of 4. We
therefore assume the following postulate.

PosTuLATE 5.1. An algelra which contains an idempotent element possesses
at least one primitive idempotent element.

Let us suppose that A contains a primitive idempotent element ¢, and
let e, ¢t in a range G, be the set of all primitive idempotent elements which
are commutative with e, and with each other; it then follows as above
that e,e; = 0 when r F 5. Such a set is called a complete primitive com-
plementary set, and e = %et, if it exists, is called a principal idempotent

of A. Any set of idempotent elements e;, primitive or not, for which
eres = 0 (r F 5), will be called a complementary set.
If e is any idempotent element and x a variable element of 4, then

T = 2o+ + 22 25
where

Lo = x—ex—uxe+texe, I = ex—exe, Ly = xe—exe, I3 = exe.

As x runs through the elements of A, the elements x, evidently form a
complex which we shall denote by Aoy = 2 2, and we have similarly
the complexes z

Alo=2x1, Am“—'"Z%: ‘11:'-‘2%: ede.
ps £ X
These complexes are obviously supplementary and

(5-1) A = Aoo+ Aro+ 4oy + Ay

This is called the Peirce decomposition of A relatively to e; Ago + Ayo is
the complex of all elements y of 4 for which ye = 0, Ago -+ 4o, is the
complex of elements for which ey == 0, and Ay the complex for which
ey = 0 = ye.*

Before extending this decomposition to the case where a complete com-
plementary set replaces e, we require the following postulates.

* It is sometimes convenient to note that, if B — 2 (ex—xe), then 4o, — Be and
Alq = eB. r
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PoSTULATE 5.2. If e, t in G, is a complementary set of idempotent elements,
the element e = % et exists in A and, if x is any element of A. then

exr = ;etx, re = ert, exe = ;;egwet.
G

POSTULATE 5.3. If xt, t in G, is a set of elements of A such that x = %: x

exists, then
yr = 2ym,  wy = 2wy

Sor every clement y of A.
Let e, ¢ in G, be a complementary set of idempotent elements, and put
e = %et in (5.1). In view of the postulates just given we may set

= ;(ew—etwe), Xy = %:(wet—cwet), 7y == ;; esxer;
or, if
Ao = Z(etx—etz'e), Aot = Z(xet—exet), Agt = esdey,
xr T

then
4= Aoo-l-;Ato-f-;Aot-{-ZG:;Ast,

where the intersection of any two complexes is zero.

If the set ¢ is a complete primitive complementary set, e is a principal
idempotent element of 4, and 4, then contains no idempotent element,
as otherwise e; would not be a complete set. If 4 has a modulus, it
equals e and A4y, 410 and A4, are O.

Before proceeding further we must consider more closely the nature of
individual elements of 4. When a finite basis exists, either for A itself
or for some subalgebra which is not nilpotent, then 4 contains an idem-
potent element; but, when no such basis exists, the usual proofs break
down. A closely related theorem is that, if ¢ is the only idempotent element
in 4, every element which has no inverse with respect to e is nilpotent,
and that the totality of such elements forms a nilpotent invariant subalgebra.
The proof of this theorem, in one method of attack at least, leads to an
equation of the form

e = r+y,

where neither x nor y has an inverse with respect to the primitive
idempotent element e. If » is a nilpotent element of index n for which
ex = x = xe, then

yletrtai+..) = (e—a)(etata*+...) =,
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which is impossible since we have assumed that » has no inverse. If »
is not nilpotent, or if » is not finite, this method of proof requires the
existence of the infinite series

0+;7'+7'2+...

as an clement of A. But, if we assume that this element does exist,
certain difficulties arise. If z = e—ax, we should naturally expect that
the algebras generated by » and 2 respectively would be simply isomorphie
since the elements of their bases have the same law of combination; but
in spite of this isomorphism we cannot assume the existence of

w=ectzet+224. ..

since then wz = w (e—z) — e, whereas » has no inverse; and, more-
over, the element w, although an element of {e, #}, cannot be expressed
in terms of the basis e, z, 2%, ---, at least with finite coefficients. The

nature of an element a:, therefore, cannot be predicted from the laws of
combination of {a'} alone, but the relation of x to other elements of A
must be known also. Another example of this is given in the algebra
(cf. examples 9.2, 9.8) whose basis is

-

and in which it is assumed that every element of the form angixi exists
for finite values of 7. In this algebra the subalgebra of all elements of
the form & 2% does not seem to be distingnishable from the one dis-
cussed above, although in the complete algebra x has the inverse x—1.

Instead of attempting to resolve these difficulties by a discussion of the
nature of a basis in general, we shall be content for the present to intro-
duce postulates which would most probably appear as theorems if a different
mode of attack on the problem were used.

PostuLATE 5.4, If e is a primitive idempolent clement of A, x an element
of ede which does mot have an imverse with respect to e. and y = e—u,
then either

B el o S R e e o

exists as an element of A.

It follows from this postulate that y has an inverse with respect to e,
namely z = e+ax+ 2>+ --.. For if z exists, evidently yz = e; and,
if z does not exist, by our postulate w = e+ y-+y*+ - .- exists, which
is impossible as it would then be an inverse of s with respect to e.
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An element of an algebra A which does not have an inverse with respect
to any idempotent element of A will be said to be singular* in A. With
reference to such elements we have the following theorems.

THEOREM 5.1. If e is a primitive idempotent element, every element x of
eAe which is singular in eAe is also singular in A.

If z is not singular in A, there is an element y such that e == zy is
idempotent, where, since ¢, = xye¢;, we may assume ye — y. Since
ex = z, it follows that ee; = ¢;; also, if es = ee, ¢, then e, = ¢, ¢ and

2 . L onp p - 2, L,
€, = eece e =T eeie == ee e T 0.

Hence, since ¢;-<eAde and e is primitive, either e = 0 or ¢, = e. If
e, = 0, then ¢, = & = ¢ ee, = ee,ce, = e,e, = 0; if ¢, = ¢, then
zye = e, contrary to the assumption that x is singular in ede. The
theorem is therefore proved.

THEOREM 5.2. If e is an idempotent element of A, any idempotent element
which is primitive in e Ae is also primitive in A.

Let e, be an idempotent element of ede. If ¢ is not primitive in A4,
there is a primitive idempotent element ¢, for which ¢ e = 6 = @&,
from which it follows that

Co == Q1 @ee = eejesee<ede.

If, therefore, ¢, is primitive in eAe, it must also be primitive in 4.

We give now another postulate which includes Postulate 5.4 but is here
stated separately as it is not used till Theorem 7.5 is reached, and even
there it is not strictly speaking necessary.

PoSTULATE 5.5. If x is singular in A, every element of the form X &na"
exists in A.

To prove Postulate 5.4 on this basis we may proceed as follows. If
x<CeAe and if there is an element z such that zz is idempotent, then
e, == xze is idempotent and commutative with e; for, since ez = «,

rzexze = (rz)te - xze.

* Scorza, Rendiconti del Circolo Matematico di Palermo, vol. 45 (1921), p. 41,
uses the term ‘‘exceptional” in much the same sense; but, as his definition implies either
a finite basis or that the element is nilpotent, I have thought it necessary to use a
different term. D, p. 46, calls exceptional elements “‘properly nilpotent”.
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Since e is primitive, this is impossible unless ¢, = ¢ or ¢, = 0 (in which
case it is not strictly speaking idempotent). If ¢, = e, then ze is an in-
verse of 2 with respect to e; if ¢, = 0, then

0 = zzexz = (x2)® = zz,

which is impossible since xz is idempotent. Hence z is either singular or
has an inverse with respect to e, from which Postulate 5.4 follows im-
mediately.

6. Singular invariant subalgebras. A singular subalgebra B of an
algebra 4 is defined as a subalgebra no element of which bas an inverse
with respect to any idempotent element of A. If B = A4, then 4 contains
no idempotent element and is said to be singular in dtself; if, on the other
hand, A4 does contain an idempotent element, we shall say that it is non-
singular. For example, a nilpotent subalgebra is singular in any algebra
in which it is invariant; or again, the algebra whose basis is =, 2%, o3, - - -
is not singular in the algebra - .-, z~% e = 2° x, 2%, - - - while it is singular
in the subalgebra e, z, %, - - -.

A semi-simple algebra is one which is non-singular and which possesses
no singular invariant subalgebra.

We shall now show that singular invariant subalgebras have, in the main,
the properties possessed by nilpotent invariant subalgebras in the case of
algebras that have a finite basis.

THEOREM 6.1. If an element x is singular in an invariant subalgebra B
of A, it is also singular in A.

For, if xy = e were idempotent, then e<C 3 since »<I B and B is
invariant.

THEOREM 6.2. If an invariant subalgebra B of an algebra 4 contains
no idempotent element, it is singular; and if it contains an idempotent
element, it also possesses a primitive idempotent element of A.

The first part of this theorem follows immediately from the proof of
Theorem 6.1. If B contains an idempotent element, then by Postulate 5.1
there is an idempotent element e which is primitive in B. If e is not
primitive in A4, there is a primitive idempotent element ¢, F ¢ in 4 such
that ee, = ¢,. Since e lies in B, which is invariant, it follows that ¢, << B,
which is impossible since e is primitive in B. Hence ¢ must be primitive
in 4 as well as in B.

THEOREM 6.3. If e is an idempotent element of A, any element of eAe
which is singular in eAe is also singular in A.

For, if z<ede and xy = ¢, where ¢ is idempotent, then ee' = exy

"o "2 ooleele = ecele — o

=zxy==c¢ and rye =ce'e =" <eAde; also e
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and ¢” # 0 since e"¢’ = (ee’)® = ¢/, so that ¢” is an idempotent element
of eAe relative to which x has an inverse.

THEOREM 6.4. The totality of elements which are singular in A form a
singular invariant subalgebra S of A which contains every singular invariant
subalgebra of A.

This theorem is proved as follows. If x is singular, so is also yz; for,
if it is not singular, there is an element z for which zyx = ¢ is idempotent,
which contradicts the assumption that a is singular. Hence, if B is the
totality of elements which are singular in 4, Az and x4 are contained
in B, which is therefore closed under the operation of multiplication and
has invariantive properties. We have then only to prove that B is closed
under the operation of addition as it is clear that it will then be a singular
invariant subalgebra.

Let x, and a; be elements of B and suppose, if possible, that x; +
has an inverse y, say x;y + a2y = e where ye = ¢ and e is idempotent;
since xyy<<x A<B, my<axs A< B, we may obviously assume that
T+ xs =e, ex, = x, = X1, exs = Xz = xze. If e is not primitive, there
exists a primitive idempotent element ¢, for which ee, = ¢, = ¢, ¢, so that
z16 -+ 2, = ¢,; we may therefore assume that e is primitive. This is,
however, impossible in view of Postulate 5.4, and hence B is closed under
addition.*

THEOREM 6.5. If S is the maximal singular invariant subalgebra of a
non-singular algebra A, A— 8 is semi-simple.

Let

A = B+8, B~8 =0.

A— 3 is non-singular since we may choose B so as to contain at least one
of the idempotent elements that exist in 4. If, then, A—S has a proper
invariant singular subalgebra 7, there is in B a complex 7 that contains
no element x for which 2* = 2 (mod §) and for which

BT, <T, T,B<T, (mod S).

It follows that 7) + S is, in 4, a proper invariant subalgebra which
contains S. Since S is maximal, 7} + § must contain an idempotent

*In W, p. 91, Theorem 15, the statement that the totality B forms an invariant sub-
algebra was omitted. My attention was called to the need of this addition to the theorem
by Professor L. E. Dickson in 1914 and the proof given here is essentially the one made
at that time. When 4 bas a finite basis, Postulate 5.4 is superfluous since the series
x4+ 22+ 234 ... terminates when = is nilpotent. A different proof is given by Scorza,
loc. cit., p. 42.

29



412 J. H. M. WEDDERBURN {October

element e, which we may take to be primitive in view of Theorem 6.2.
We have therefore e = x -}y, where x<< T, and y<§; and 230, since
e < S. This gives 2z = z (mod S), whereas 7} contains no such element;
the theorem then follows immediately.

THEOREM 6.6. If N is a maximal nilpotent invariant subalgebra of A
every nilpotent invariant subalgebra of A is contained in N.

This theorem is proved in much the same way as when 4 has a finite
basis. Let », be any nilpotent invariant subalgebra of A other than
N; N+ N, is then also invariant. If N, = N~ N,, we have

(N+ Ny < Nn kNP 4N,

for every positive integer ». If the indices of N and &, are finite, it
follows immediately that N+ N; is nilpotent. If either index is trans-
finite, we have

(N+N)* < N*+ N+ N, = N,,
from which we derive in the same way
(N+N)” < N¢ < N+ N+ N, = N,

and so on. If then » is the greater of the indices of &V and &, it follows
that (N4 N,)* < N, which is nilpotent. Since N is maximal it follows
that N, << N.

If N is a nilpotent invariant subalgebra which is maximal with respect
to the property of having a finite index (so that N is possibly contained
in some nilpotent invariant subalgebra whose index is transfinite) the same
proof shows that every nilpotent invariant subalgebra whose index is finite
is contained in N; for if the index of NV is finite, so is also the index of
each of its subalgebras and, in particular, the index of &, in the above
proof is finite.

THEOREM 6.7. Every algebra A which does not have a modulus either has
a singular invariant subalgebra or s itself singular.

Let e be a principal idempotent element of A and let

A= Ay+4,+4,+4,

be the Peirce decomposition of 4 relative to e.



1924] ALGEBRAS WITHOUT A FINITE BASIS 413

Suppose in the first place that 4,40. If some element of 4, is not
singular in 4, 4,z must contain an idempotent element for some x<CA.
But 4,z <Ay 4,; hence we must have an idempotent element of the
form z, -+ x,, where x, <Ay, r, <A,. This gives

Tyt Ty = (Tg + 7)* = @+ Ty Ty«

Now a3y < Ay, 2oy %y < 4,, and 4y, ~ 4, = 0; hence x,, = a2, and, seeing
that 4 contains no idempotent element, it follows that 2, = 0 and there-
fore z);, = xyx,, = 0. The elements of 4, are therefore singular in 4.

If 4y =0, then A4+ Aoy F 0 since 4 has by supposition no modulus.
For any << A4,

(Aro + Ao )z < Aoy + A1 Aoy,

and hence, if 4,, 4 Ay, is not composed entirely of singular elements, there
must be an idempotent element of the form xy, 4 x,; where xy << A4y,
xyy < 410401 and

w51 < Aso Aoy Aro Aoy < Aro Ao Ay = 0, zurn<<zndiwdon<Awdn = 0.

This gives
Xo Fan = (fl‘m +$u)2 =0,

so that there is no idempotent element in 4, + Ay;.

Hence in every case A contains singular elements and by Theorem 6.4
also a singular invariant subalgebra.

7. Simple algebras. The discussion of the structure of a simple algebra
parallels closely the corresponding theory for algebras with a finite basis.

THEOREM T.1. A simple algebra, which is not singular, possesses a modulus.

This theorem is an immediate consequence of Theorem 6.6 but, because
the proof given there depends on Postulate 5.4, it seems worth while to
give an independent demonstration. Since an algebra 4 which is not singular
possesses a principal idempotent element e, we may express A in Peirce’s
form

4 = A00+A10+A01+A11
where
eAlj = A]j, erj =0 .
(.7 = Oyl)
Ajle - Ajl, fljoe — 0.
If we set
Bl - A00+A107 By = Aoo'l-on,

29‘
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then
B]A - B1B2 - AB27

ABlBg - AA.Bg é A.Bg == BlBg,
BIBQA == BIA.A g BIA B .B)_Bg,

and therefore, since 4 is simple, we must have B, B, = 0. This gives

(BI+B2)2 = Bf +B§+B1B2+B2Bl éAoo,
A(-Bl_l_-BS) = AB, + 4B, = AB1§31 §B1+BS,
(B1+B3)A = B1A+B2A - BgAéBgéBl‘i‘Bg.

But A is simple; hence B, 4 B; = 0, that is, 4 = 4,,, which proves the
theorem.

THEOREM 7.2. 'If e is an idempotent element of a simple algebra A, eAe
s simple.

For, if B is a proper invariant subalgebra of eAe,

¢ABe = ede-B-ede < B< A;

therefore ABA<A is a proper invariant* subalgebra of A. This is im-
possible since 4 is simple.
If e is primitive, it follows from Theorem 6.3 that every element of ede
has an inverse relative to e; such an algebra is called a division algebra.
Let e, t in a range G, be a complete primitive complementary set for
the simple algebra 4 ; then e = > ¢ is the modulus of 4 and, if 4,; = e, A4es,

G
the Peirce form of 4 is 2> A,s. Since 4 is simple de;4 = A, as other-
wise it would be an invariant subalgebra of 4; hence, multiplyingt on the
left by e and on the right by e;, we have

(7-1) ArsAst = A,

We shall now show that, if z,s and z« are any elements, different from 0,
of A,s and Ag respectively, then x,sxstF 0. Since A is simple and e is
primitive, As is a division algebra for every ¢. Suppose that zrsaxee = 0;

* Of. Scorza, loc. cit., p. 15.
T Cf. Scorza, loc. cit., p. 76. It is not necessary here that the e, should be primitive.
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then x5t Ats=0. But xg Ass < Ags, which is a division algebra, and hence,
for any ye << Ai such that zgys F 0, there is a yg << Ag for which
Tst Ys Yss = es. Hence, as Tps ¥ 0, xTrsxstdts = 0 entails xgdyy = 0. It
follows for every axi<< Ag that zgae = 0, and therefore ay A = 0 by
a repetition of the same argument. But xt is any element of A4; so that
our supposition that xysxs¢==0 hasled to 4s At = 0, which contradicts (7.1);
hence z,sxst 3 0 unless one of the factors is 0.

Using the same reasoning as above, only multiplying on the right instead
of on the left, we see that there is an element ys << Ag for which ysr s = es;
also, if we set x» = Zysysr, then

2
Lry = Xyrs* Ysr Lrs* Ysr =— LyssYsr =— Tyr,
and therefore x,, = ¢,, seeing that the latter is primitive. Further, since

A5t = ?/srxrsAst é ysrArt é Ast,
it follows that

Ast = ysr Ant
and
Xrs Ast = Lrs Ysr Are = An.

We shall now show that it is possible to find a set of elements
ers (1,8 In @, es << Aps) such that esess = e, eses = 0 (sF ¢), and
e= ex. Set ex = ¢ and let ey be any non-zero element of Ay, p being
a fixed and ¢ a variable eleinent* of G. We have already shown that
there then exist elements ey such that empepr = e and epresp = epp, and,
if we set in general es = espep, it is readily seen that the elements so
defined have the required property. We are now ready to prove the following
fundamental theorem.

THEOREM 7.3. Every simple algebra with a modulus can be expressed as
the direct product of a division algebra and a simple matric algebra.

Since Ast = esp Appept, there is a (1,1)-correspondence between the
elements of each Ay and those of a fixed Ap,, which, as we have seen,
is a division algebra. The theorem then follows exactly as in the case of
algebras with a finite basis.t We have also the converse theorem.

THEOREM 1.4. The direct product A of a simple matric algebra B and a
division algebra C s simple; and any element of A which is commutative
with every element of A is an element of C.

* Cf. Scorza, loc. cit., p. 78.
1 Cf. W, p. 98; D, p. 76.
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The proof is the same as for algebras with a finite basis.*

THEOREM 7.5. If § is the maximal singular invariant subalgebra of an
algebra A which possesses a modulus, and if A—S8 is simple, A can be ex-
pressed as the direct product of a simple matric algebra and an algebra whose
modulus is its only idempotent element.

We shall not in the first instance assume that 4 has a modulus but
only that A—S is simplet and A+S. Let e, ¢ in G, be a complete
primitive complementary set of idempotent elements of A4; the elements
of this set are linearly independent modulo S since, were X &et = 0
(mod 8), we should have

0 = ¢ X kter = &pep (mod §)

whereas e,<_S for any p. It follows from the proof of Theorem 7.3 (taking
into account the second footnote of page 414) that A,s Ax = A4, (mod S).
Now A,sAsy is an invariant subalgebra of A4, which is not singular seeing
that it is not congruent to 0 modulo §; and since e is primitive, it follows
from Theorem 6.4 that any proper invariant subalgebra of A4,, is necessa-
rily singular; hence A4,s 45 = 4,». We have also 4, 4r»s = Ays because
Ay contains e, and, since Ad,s = A, Ass,

Ars Ast = Art AtsAst = Art Att Z Art;

and also Ad;sAs < Ape; hence AysAg = Aut.

We must now prove that xys Ass = A, When z,5 is an element of A,
which does not belong to S. Now zys4s F 0 (mod 8); for, if this were
so, then xsdss = ZpsAsr Ars = 0 (mod §), which is impossible since
Zys = Tyses < Tys Ass LS s0 that a5 4, contains non-singular elements of
A and, by Theorem 6.3, also elements which are not singular in 4,,. Hence
if x is any non-singular element of x,; 4s, there is an element y of A,
such xy = e,, so that

e = XY < Zys Asr Ayr é -’L'rsAsr,

that is, to any x,s < S, there is an element xs < Ag such that z,sZs = e,.
It then follows as in the proof of Theorem 7.3 that xysAs = Ayp, that
there exists a simple matric algebra ey, 7, s in @, and that > > Ay, is

*Cf. W, p. 99; D, p. 79.
1 It then follows from Theorem 7.1 that 4 —S has a modulus.
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the direct product of this simple matric algebra and any 4,,.. If we now
add the condition that 4 has a modulus so that 4 = 3 > 4,5, the proof
of the theorem is complete.

The above discussion renders it probable that an idempotent element
which is primitive in 4 corresponds to a primitive idempotent element in
A—S8; and in fact this can be shown by a somewhat roundabout argument.
If, however, Postulate 5.5 is assumed, the proof is more direct and also
contains some points of intrinsic interest.

Ifa*—2 =y =0 (modS) (x<S) and we set z = f(y)+g(y)=,
we readily find that a formal solution of the equation 22 = z is given by*

2 Zi{:_l_,_+_l,
2V1t+4y 2
= u—2x(y—6+ - H)+y—6y°+ .. = (mod 8),

where Postulate 5.5 is required in order that the series used should exist
as elements of A. If z is primitive in 4 but x does not correspond to a
primitive idempotent element in 4 — S, we may write z = x; + 2, where

e e T 0 O =
B—x = al—x, = ax, = xyx, = 0 (mod S),

and we may, without loss of generality, suppose x;, modified as above so
that 2?2 == x,, since this still leaves 2 =z (mod 8). If x,2, = y,,, 2, = y,,,
we have y,, = x,x, = zjx, = x,y,, and therefore x, (z,—y,,) = 0; we may
therefore suppose y,, = 0 and, since then x, («}—2x,) == 0, we may modify
x, as before so that it is idempotent and still keep x,z, = 0. ;= x,—x,2,
is then idempotent and z x, = 0 = x,2,. We shall therefore assume
2z, = 0 = 2,2, 2> = 2, 2} == », and z = x, + 2, + y where y <ZS. This
gives

z = 2 tx, zuyzoay, er,z = ox, (mod §),

and hence, seeing that z is primitive in 4, there exist elements w, and w,
such that

T W, = 2, X,y = 2 (mod 8).

The first of these congruences gives x,z = 0 (mod §) and the second

*If 2 = 0 in the field, we may set z = c+y+ 2 +y*+ o5+ ---.
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x,z == z; the supposition that the element in 4—.S corresponding to z is
not primitive has therefore led to a contradiction.

The methods which are used in the theory of algebras with a finite basis
to show that a simple algebra cannot be singular except in the trivial case
of the algebra that consists of one unit « for which «* = 0, depend on
induction and therefore cannot be extended directly when a finite basis
is wanting. We can however apply these methods to prove the following
theorem.

THEOREM 7.6. A simple commutative algebra is either a division algebra,
or is the algebra of ome unit x for which x* = 0.

If x is any non-zero element, we must have Ax = A, since otherwise,
if Az 0, it is a proper invariant subalgebra of 4 and, if 4z =0, {z} = (=)
is a proper invariant subalgebra of A4, unless of course 4 = (x). More-
over, if z is any other non-zero element, we cannot have zz = 0 since,
were this so, we should have

A= 4z, A= Ax = Azzx = 0.

But, if Az == A, there must be an element e such that ex = x; this gives
(e2—e)xz = 0 and therefore e®—e = 0 so that ¢ is idempotent. We have
shown that the product of two elements can only vanish if one of them
is zero; hence 4 is a division algebra with e as modulus.

8. Reducibility. The principal theorems regarding the uniqueness of
the expression of an algebra as a direct sum which are true of algebras
with a tinite basis also hold when no finite basis exists. Before showing
this however we must first prove the following theorem, which is trivial
when the basis is finite.

THEOREM 8.1. Every reducible algebra A that has a modulus possesses an
irreducible reduced part.

Let e, ¢t in G, be a complete primitive set of idempotent elements. If
Ays = e, Aes, then no A4,, is 0 since A4,, contains e,. If for some fixed r
every Ays and Ay (sF ) is 0, then evidently A4 is reducible with 4,, as
one reduced part; and 4,,is irreducible since the only idempotent element
it contains is its modulus e¢,, while Theorem 4.4 requires that each part
of a reducible algebra with a modulus shall also have a modulus. We may
suppose therefore that 4,s + A, 3 0 for some s F r; then that Ags, + 4ssF 0
for some s; & s, and so on. We define in this way a subset H of the range G
such that (i) if s is a value of ¢ in H, there are a finite number of values
of tin H, say s, s, -+, Sn, for which Ays 4 Asy, Asis, + Asysyy ++-2 Asps+ Assa
are all different from O, and (ii) all values of s which may be reached in
this manner from r in a finite number of steps are contained in H.
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Let K be the complement of H in G and set
91:26t7 82=26t.
H K

If ¢, Ae; F 0, there must be some p<<H and ¢<<K for which A4pq 3 0;
but p can be reached from » in a finite number of steps and hence ¢ also,
in contradiction to the definition of H and K. Hence ¢, Aes = 0 and
similarly e; Ae, = 0, so that A is reducible. Moreover e, Ae, = A is
irreducible; for if A'' = B @ C, then e¢,, being primitive, must lie in either
B or C, say B, and, if e, is any one of the original set of idempotent
elements which belongs* to C, s cannot be reached from » by a finite number
of the steps used in the definition of H, since, if e, << B, ¢,<<C, then 4y,
and Ay are both zero.t The proof of the theorem is therefore complete.

We are now ready to prove the theorems referred to at the beginning
of the section.

THEOREM 8.2. If an algebra A which has a modulus is expressed in two
ways as the direct sum of irreducible parts, these two expressions differ only
in the order in which the constituent parts occur and both contain every
irreducible reduced part of .A.

By Theorem 8.1 A possesses irreducible reduced parts; let 4;, ¢ in a
range G, denote these parts and set B = gfh; B is then an invariant

subalgebra of A since by Postulate 53 AB = > A4; = > A:= B, and
similarly BA = B. By Theorem 4.4 every A4:; has a modulus e¢; and, by
Theorem 4.6, 4,4; = 0 (r £ 5); also, by Postulate 5.2, ¢ = > e exists,
and it is evidently the modulus of B. Hence, by Theorem 4.3, B is a
reduced part of A, say A = B@® C. But, by Theorem 4.4, C has a modulus
and therefore it is either itself an irreducible reduced part of 4 or it contains
such a part. This is impossible since B~ C == 0, and therefore C = 0,
whence B = A.

If now A = D Bs is any expression of 4 as the direct sum of irreducible
parts, then 4; = e, Ae; == D et Bses. If et Bses § 0, then by Theorem 4.3

8
et Bses = Bs, since it is an invariant subalgebra of Bs; which has a modulus
and B; is irreducible; also, since e: < 4;, which is invariant in 4, it follows
in the same way that e;Bse =— A;. Hence 4; = Bg, that is, every A4;
occurs in the set By, and, since the set 4; contains every irreducible reduced
part of A4, the set B is only a rearrangement of it.

*If e, is a primitive idempotent element, e,e.e; = ¢’ and ese,e; — €" are idempotent if
not zero; but e = e'+4e”, e'¢” = 0 = ¢"¢’ and e is primitive; hence one of €', " is 0.
Any primitive idempotent element therefore belongs to one or other of B and C.

+ For instance, 4pq = e, de; = epe; Aereg, = 0.
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THEOREM 8.3. Every algebra A which has a modulus either has no invariant
subalgebra which has a modulus or can be expressed uniquely as the direct
sum of such an algebra and an algebra which has a modulus.

Let B’ be an invariant subalgebra of 4 which has a modulus; then by
Theorem 4.3, 4 == B’ @ (', and therefore 4 possesses at least ome irre-
ducible reduced part which has a modulus. As in the previous theorem,
the algebra B which is the sum of all the irreducible reduced parts of A
that have a modulus is the direct sum of these parts and has a modulus.
Hence, by Theorem 4.3, A = B@® C. Here C has no modulus, since 4
has none, and it has no irreducible reduced part with a modulus, since
any such part is also an irreducible part of 4 and so belongs to B, whereas
B ~C = 0. By Theorem 4.3 and its corollary, C' has no invariant sub-
algebra with a modulus and is unique. The theorem is therefore proved.

THEOREM 8.4. An algebra which has no modulus and no invariant sub-
algebra with a modulus becomes irreducible if a modulus is added to it.

For if A* denote the algebra obtained by adding a modulus e to 4,
and if 4* — B®@C, then each of B and C has a modulus, say ¢, and es.
Now e, = z+&e, e = y-+ne, where z, y << A and &, 5 are scalars.
But ¢ s = 0 and therefore §9 = 0. If, say, § = 0, then ¢ << 4 and
therefore also B = e, A*e; < A; and this is impossible, as B would then
be a reduced part of 4 with a modulus.

9. Illustrative examples. We shall now give a number of examples
some of which are given to illustrate the theory of the preceding sections
and others because of their intrinsic interest. In most of these examples
we shall denote the basi- of A by x: where the variable ¢ runs through
a range G; x = %7',5, xt, Y = %}m xt, etc., will denote general elements

of 4 and §(t), (t), etc., the corresponding functions of ¢. The elements
x¢ are linearly independent unless otherwise stated.

Ezxample 9.1. Let

w=1x, xr,=0 (s F t).

Then z+y = X (&-+n¢)x: and zy = D & 7¢ 2¢, and, in the notation of
§ 2, §(a)<q(e) = &(a)y(a). The functional product in this case
therefore corresponds to ordinary multiplication.

Example 9.2. Let
(9.201) Xt X == Xtts.

We shall call the corresponding algebra the power algebra since this is
what A becomes when @ is the set of positive integers. Here we have

(9.202) zy = &2«) (;S)Esqt—sxt’
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or
(9.203) E(t)><q(t) = (%5(8)0(t—3).

(9.21) Let G be the set of positive integers; the order of 4 is then .
If @ = x,, then a¢ == a', so that this algebra is the algebra of one
indeterminate, that is, it uses the Grassmann indeterminate or general
product. If 0 is included in @, x, is the modulus and the algebra is then
equal to {:co, a}; {a} is the maximal invariant subalgebra.

In this algebra the summation sign > indicates ordinary algebraic

summation, but no question of convergence is involved so long as the given
basis is used.
(9.22) Let G be the set of positive and negative integers and 0. Here a
distinction must be made between the case in which > refers to sums
with a finite number of terms only and that in which infinite sums are
allowed. In the latter case A is, in some sense at least, equivalent to (9.21);
for, if e = 2, b = e+ a2, = e a, then

@« =-¢e—b, al=-¢e+b+b*+.--,
and so on.
(9.23) Let @ be the interval @ <C ¢ <{ o in the real continuum or, alter-
natively, « < ¢ << . As before we may set 2z = a'; the algebra has
then a modulus only if G includes ¢ = 0. If certain integrability conditions
are satisfied by the functions involved, ; may be interpreted as ordinary

integration. For instance, if « = 0, we may set*

9.231) E(t)><n(t) =J:§(s)ﬂ(t—s)ds = 1 st lt(1—9)]ds.

It is easily shown that this product is associative.
(9.24) We may take for G any aggregate of sets of points such that the
logical sum of any two sets is also a member of G.

Ezxample 9.3. An algebra closely allied to the preceding one is given by

(9.301) o xs = @,
(9.302) wy = 20 2 &t
or
t
(9.303) 5(0)<a(t) = ZE)n(4)-
G S

* This product and the one given in (9.321) below are of course well known, usually
with a somewhat more general range than that given here.
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(9.31) If G is the set of positive integers, 4 is the algebra used by
Professor E.T. Bell* in the theory of numbers and called by him a Dirichlet
algebra because of its connection with Dirichlet series.

(9.32) If G is the real interval « <t < o0, and > is interpreted as

( )%s-, we get, when ¢« = 1,
9.921) s(0)=<a(e) = [ E(o)n (L) 2
which may also be written
log tfs(ts)q(tl—sﬂ‘%‘—.
Examples (9.2) and (9.3) belong to the special type
Ts Xt = Tgep, P(r,9(s,t)) = @(p(r,s),1).

When ¢ is properly restricted, it follows from the theory of one-parameter
continuous groups that any algebra of this type can be reduced to (9.2)
by a change of variable. For instance, if in (9.2) we put a2t = z¢,

s Tt = Tt Tet == T+t == Thtta
The forms (9.231, 321) may be also derived directly from (2.72) by putting

‘ 1, t = g(r,s),
k(r,s,t) = {0’ t £ o(r,s),

and interpreting the corresponding integral as a double Stieltjes integral
with respect to k(r, s, t).
This type of algebra may be generalized as follows. Let
(Pi(s; t) = (pi(sly ceey Sy by ey tn) (Z =1,2,..., n)
be a set of functions having the group property
pi(p(r;8);t) = @i(r; @ (s, 1)).
An associative algebra is then defined by

L3185+ 90 ity -tn = Lo (5;)03(8;8) - nl8;0) *

* Of. these Transactions, vol. 25 (1923), p. 135.
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Example 9.4. An example of a non-commutative algebra is given by

(9-41) Lglt — xs+t+xs—t,
042)  2(Oxq() = [E@at—o)+a(t+9)]ds.
Modifications of this algebra are given by

(9.43) Xs Tt = Tgt—k+ Ts—t+k,

(9.44) Zs Xt = Xst+ Xyt

Example 9.5. Corresponding to the ordinary algebra of matrices we
have the algebra generated by the units xg, where s and ¢ run through
a range G and

(9.51) Tt Xpg = {gsq, : T ﬁ’

This is the simple matric algebra used in § 7. The corresponding functional
product is

9.52) E(s, )>(s, 1) = [ E(s,0)n(s, 1) ar.

This algebra and its subalgebras have been developed to a considerable
extent by writers on the theory of integral equations.

Example 9.6. The Grassmann-Gibbs indeterminate product (the algebra
of tensors) forms another important example. Here the units have the
form a:¢,..., the subscripts belonging to a range* @ which includes 0
while, if #; = 0, all subsequent subscripts are also 0, and the law of com-
bination is

(9.61) xslsz...3"0...xt1t2...t”0... == xslgz...s,‘tltz...t"o... (Sm 4: 0, tn :i: O)-

It is usual to add the restriction that the first subscript is not 0, but, if
this is not done, ... is the modulus of the algebra. The corresponding
functional product is

(9-62) §(tly tﬂ: T tm)xﬂ(tly fay -+ ey tn) = :E(tl) t2; ) tm)ﬂ(tm-i-ly Tty tm+’n)-

* This range is usually the set of positive integers and 0, but it may of course be
taken to be continuous.
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Example 9.7. Let A be the algebra generated by a, b, ¢ where
ab =¢, bc=a, ca=2D.

It we set /' = «° we easily find that fis commutative with every element
of 4 and that

a*—_—b’_—_c”=f, ba:fa‘b’ (}bszC, (,‘{,(::'fca.

When sums with a finite number of terms alone are allowed, this algebra
has no idempotent elements in spite of the fact that A* == 4, which in
the case of algebras with a finite basis always implies the presence of at
least one idempotent element. If, on the other hand, infinite sums are
allowed, 4 has exactly four such elements, namely

1, dakbre—(1+)/2
- A e

where 1/ V14 14f+7% is to be expanded in a series of positive powers
of f, and the numerical term canceled before interpretation, and the signs
are either all 4 or two — and one 4. This algebra may be used to
illustrate the Peirce form of § 5 but as the actunal expressions are some-
what cumbrous they are not given here.

If e stands for any one of the elements in (9.71), eA4e forms a commutative
division algebra.

Example 9.8. Let A be the algebra generated by two elements x and y
for which
(9.81) Yyt = eSSy,

where ¢ is a scalar different from O and 1, », s are positive or negative
integers or 0, and 2° = y® = ¢ is the modulus of the algebra.
Let fr(xz) (r = 0,1, ...) denote series of the form

(9-82) mIn'(“ore’i‘ a2+ “2r$2 + .. ) (aor 1: 0),

where %, is an integer, positive, negative or 0; f,(x) has a unique inverse
of the same type which is obtained by formally inverting the series for f,.
The algebra is then defined as the set of elements of the form

(9.83) gﬂ Sr(z)yrtm,

where n is an integer which may be negative. The sum and product of
two such elements have the same form so that this set does in fact form
an algebra.
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We shall now show that every element of the set except O has an inverse.
We may evidently assume » = 0, and there is also no loss of generality
in taking f,(z) = e. If we form the product

(9.84) (e—giy—gey®—--) (e+fiy+ oy’ +---)

and set /¥ = y"f;y~", the condition that the result equals e is

o =r, g9 =/fitafi. g =rfitefitefl,-

and hence the ¢'s are uniquely determined, each has the form of (9.82)
and the left hand factor of (9.84) has the form (9.83). Every element
therefore has an inverse and hence 4 is a division algebra.

It should be noted that no question of convergence is involved here,
although as a matter of fact the convergence is easily investigated when
le] <1.

In place of (9.81) we may evidently take

yx = 6(x)y

where 6(x) is any function whose iterated powers are known for positive
and negative indices. For example we may set

(9.85) yr = xly

which also gives rise to a division algebra under conditions similar to those
imposed above. In this algebra y*x = x3*, so that every element has
the form fi (z,y*)+ /2 (z,9")y.

Ezxample 9.9. Let A be the algebra generated by an element a which
satisfies the equation
(9.91) p(a) =0,

where @ (&) is an integral function of & and the elements of A consist
of all integral functions of a, that is, of the elements which result from
substituting @ for & in any integral function of §. The modulus of the
algebra then corresponds to the unit 1 of the field and we shall use the
same symbol for both.

The function ¢ (&) must vanish for some value of & in the field of complex
numbers; for, if @(&) = expy (&), (&) integral, then exp(—wy(&))
is also integral so that exp (—wy(a)) = b is an element of A for which
bep(a) = 1, which contradicts (9.91). If f(&) is an integral function
of & which has no zero in common with ¢ (&), the element f(a) of 4 has
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an inverse; for there always exist integral functions* A (&) and B (&) such
that A(5)@(&)+ B(§)f(§) = 1, whence B(a)f(a) = 1.

Let us suppose now that the roots of ¢ (&) are all simple; the Mittag-
Leffler expansion of 1/¢ (&) then has the form

1 . an imn
9 (5) ~ 2 (F—gm) (q) +e()

where a, = 1/¢'(gx) and G (&) is an integral function and, if we set

N S B
(9.92) Un(§) = ——(E_g”)(gn) p (&),
then
(9.93) 1 = 2 va(E) +9(5) G(E).

Since ¥, (&) has the form
14 (§—gn) 60,(%)

where 6, (%) is integral, it follows immediately that
[¥a ()] = Y (8) 4+ 9 (8) 6:(8),

where 6 (£) is integral, and also it is clear from (9.92) that ¥, (&) wm (%)
vanishes for every root of @(§); hence, if

én — '/’n(a),
we have
e e, = 0 (m £ n)

26,,=1.

The algebra is therefore equivalent to (9.1), provided of course that the
field contains the roots of ¢. The converse theorem is obvious.

In conclusion we remark that, if the roots of ¢ (&) are not simple, it
can be shown in much the same way as in algebras of finite rank that 4
then possesses a nilpotent invariant subalgebra; also, even if @ (&) has no
roots in the given field, it easily shown that A possesses at least one
idempotent element.

and from (9.93)

* Of. these Transactions, vol. 16 (1915), p. 829.
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