
ALGEBRAS WHICH DO NOT POSSESS A FINITE BASIS*
BY

J. H. M. WEDDEKBTJRN

1. Introduction. The object of this paper is to classify algebras which

do not have a finite basis. The methods used are similar to those employed

in a former paper,t but considerable difficulty was experienced in extending

the results of this paper, as the proofs of many of the principal theorems

depended on the use of induction and were therefore tied up with the

finiteness of the basis; and, in fact, these difficulties have been only par-

tially overcome, as is shown by the postulates assumed in § 5. It is hoped,

however, that, in spite of their incompleteness, the results presented here

will be found of sufficient interest to justify their publication.

It is noteworthy how little place the finiteness of the basis—or indeed

the presence of any basis at all—has in the principal theorems of linear

algebras. The first theorem of importance in which it seems to be required

is that in which it is shown that primitive idempotent elements exist in

an algebra which possesses elements of finite rank that are not nilpotent;

and in two other cases it has not been found possible to complete the

argument when a finite basis is not assumed, namely, in the theorems which

state that, if an algebra is not nilpotent, it contains an idempotent element,

and that the maximal nilpotent invariant subalgebra can be separated from

the rest of the algebra.

The proofs of many of the theorems parallel those for the case of algebras

with a finite basis very closely, so closely in fact that it might have been

sufficient to refer the reader to previous treatments of the subject. It has

been thought advisable, however, to repeat most of these proofs, as other-

wise the reader would feel much uncertainty as to the logical completeness

of the treatment. In one or two cases reference has been made to the

paper mentioned above, or to Professor L. E. Dickson's treatise^ in place

of giving a detailed proof.

It was found inconvenient to give in one section all the postulates used

as in several cases their statement involved some previous discussion. After

a short discussion in § 2 of algebras defined in the manner used by Hamilton,

* Presented to the Society, May 3, 1924.

fProceedings of the London Mathematical Society, ser. 2, vol. 6 (1907),

pp. 77-118; this paper is cited hereafter as W.

t L. E. Dickson, Algebras and their Arithmetics, Chicago. 1923, cited hereafter as D.
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the postulates common to all associative algebras are given in § 3 while

those peculiar to algebras which do not have a finite basis are given in § 5.

2. The Hamiltonian definition. Hamilton's definition* of a linear

associative algebra may be modified as follows. Let t be a variable which

runs through a given range or set of values G (which need not be numerical

although this will generally be the case) and ï(t) a single-valued function

which is defined for every value of t in G and which has values, for the

present restricted to be finite, which lie in a given fieldt F. Two such

functions, ? (t) and r¡ (t), are said to be equal if, and only if, £ (t) = i¡ (t)

for every value of ¿in G. The sum ?4i¡ is the ordinary sum in the field F;

the product C(t)xi¡(t) may not be the ordinary product but is to be

defined in any particular case subject to the following conditions:

(2.1) íx(,xt) = (Sxc)xt,

(2.2) £x(^4-£) = £x^ + £x£,      (ï4Ï)x?=:îxHC><?.

We shall also assume that the product of two functions in a given set

belongs to the same set. If this condition does not hold in a given set,

as in Grassmann's calculus, the set may always be so extended that it has

this property.

If x(t,a) is a function of t and a in G such that

(2.31) x(t,a)

then

(2.32) §(a)x(t.u)

We may therefore set

(2.4) Ut)

Here the exact meaning of the ^ is Dest left somewhat indefinite, a special

definition being given in any particular case; the properties required of it

are detailed in the next section and in the meantime it suffices to give two

* See the introduction to his Lectures on Quaternions, Dublin, 1853; also Transactions

of the Royal Irish Academy, vol. 17 (1835), pp. 293-422, vol. 21 (1843), pp. 199-296.

f This may be generalized considerably by taking in place of F some linear associative

algebra already defined (so giving the direct product) or even an algebra such as the

algebra of logic.

0, «tí,
1, « = í,

0,        a t t,

É(í), a = t.

=   2?(«)l(í,B).
fíía)
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examples. If the elements of the range G form an enumerable set, _2 denotes
G

ordinary summation, of which algebras with a finite basis form a particular

case, other examples being given in § 9. Again, if G is an interval of

the real continuum, _2 ? (a)x(t, a) may be defined as the Stieltjes integral
J" G (a)

d(%(a)x(t,a)) if ?(«) is properly restricted.

Any set of functions et(a), a in G, are said to form a linearly independent

set in G if every relation of the form

2H°)et(a) = 0
G(u)

for every t in G entails ?(«) = 0 in G. If, further, every function of

the algebra can be expressed in the form

Ht) = 2f(«)et(«),
G(a)

the set et(a) is said to form a basis of the algebra, and the cardinal number

of G is called the order of the algebra.

When a basis is used to define an algebra, the functional notation is not

usually convenient. On the analogy of algebras with a finite basis we shall

generally write (2.4) in the form

x =  2 £(a)Xa.
G (a)

The values of ?(«) are called the coefficients of x and, if X is any constant

mark of the field F, we shall set

Xx = 2 X'S (a) xa.
G (a)

When this point of view is adopted, the product of xr and xs will be denoted

by xrxs.

The condition that the product is associative may be stated in much the

same way as when a finite basis exists. Since we are assuming that xr xs

lies in the given set, we must have

(2.5) xr xs = 2 k (r>8> 0 xt,
G(t)

where k(r,s,t) is some function defined for r,s,t in G, and, if multi-

plication is associative, we find in the usual manner

(2.61) ¿i krsakctM =  ¿¿ kmtksft«.
GW-) <?(<*)

28«
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If the units used are the Hamiltonian ones described above, equation (2.5)

may be written

(2.62) xr(a)xxs(a) = k(r,s, a),

or, for any functions J and r¡ of the set

(2.71) 5(b)x,(«) = 2%(r)Ti(s)xr(a)xxs(a) = £ S(r)r¡(s)k(r,s,a).
r,s r,s

It is then clear that we may take as a particular interpretation of _2 (or

as our definition of the product of two functions)

(2.72) ?(a)x, (a) = JJç (r) r¡ (s) k (r, c, a) drds

with

(2.73) jk(r,s, t)k(t,ft,a)dt = jk(r, t, a)k(s,ft,t)dt

as the condition of associativity.*

Examples of functions k(r,s,t) which satisfy (2.73) are easily constructed

by employing orthogonal functions in conjunction with the constants of an

algebra with an enumerable basis. The following illustrations are constructed

from the constants of ordinary complex numbers and quaternions:

(2.81) k(r, s, t) = 2,km sinm(r4«—t);
m

(2.82) k(r,s,t) = 2>m{[sin(2wi4 1 )rsin(2i»-f 1)*
m

— sin(2m42)rsin(2m42)s]sin(2™4-l)<

4fsin(2m-|-l)r sin(2m42)s

4sin(2m4-2)rsin(2wi41)s]sin(2m42)¿};

(2.83) k(r, s, t) = £km{sm(2m+l)(r-\-s — t)
m

4-sm[(2m4-l)r + (2m-f 2)(s— t)]

— sin[(2wi42)r — (2m41)s- (2»» + 2)<]

4sin[(2w42)r — (2m+ 2)« — (2m4-l)i]}.

* It will  often be necessary here to replace ordinary integration by one of its many

generalizations and suitable restrictions must, 'of course, be placed on the functions involved.
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Here the constants km are only restricted by considerations of convergence

and integrability, and the range of each of the variables is over a period 2n.

It is clear that, subject to these conditions, (2.81) represents any odd periodic

function of r + s— t with period 2n, so that the operation

(2.9) f(o)xf(a) = f_i£iS(r)t!(s)f(r + s-a)drds

defines an algebra in the range — 1 to +1 when f(t) is an odd periodic

function with the period 2.
3. Fundamental postulates and definitions. We shall now give a

more abstract definition by means of postulates without attempting, however,

to make these independent, the aim being descriptive rather than analytical.

A linear associative algebra A is a set of two or more elements a, b, c,

subject to two operations, namely, addition, which will denoted by +, and

multiplication, which will be denoted simply by juxtaposition of the factors.

These operations are subject to the following conditions.

Postulate 3.11.

Ax : a-\-b is an element of A ;

A2: a-\-b = b-\- a;

A3: a+(b + c) = (a + 6) + c;

Ai : TJiere is an element 0 such that a + 0 = a for every element a of A;

As: For every element a there exists an element b such that a+ b = 0;

Mi : ab is an element of A ;

M2: a-be = ab • c;

AM: a(b-\~c) = ab-\-ac,    (b-\-c)a = ba-\-ca.

It is easily seen that 0 is unique in A± and that b in Ab is uniquely

determined when a is given; b is denoted by —a and —(—a) = a.

If a is any element, a + a is denoted by 2 a and in general a-\-a-\-\-a

(m terms) is written ma; evidently (ma)b = a(mb) = m(ab). When

a =£ 0, it is not difficult to show that the smallest integer for which ma = 0,

if such an integer exists, is always a prime; we shall assume that this

prime, if it exists, is the same for all elements since, when this is not the

case, the algebra is reducible. When no such integer exists, we assume

the following postulates.

Postulate 3.12. If a is an element of A different from 0 and m is a

positive integer, there exists an element b such that a = mb.

The element b, which is unique, will be denoted by (l/m)a. This

postulate is sufficient for many purposes, but the following one, which in-

cludes it, will usually be more convenient.
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Postulate 3.13. (i) There -is associated with A a field F such that to any

non-zero element a of A there is allied a subset Aa of A which is in (1,1)-

correspondence with the elements ofF, a and 0 in Aa corresponding respectively

to 1 and 0 in F; the element corresponding to a mark ? of F is denoted

by 4 a. The correspondence is preserved under the operation of addition, that

is, %ia\%ia = (£i + £2)«;

(ii) If b ̂  0 is any element of Aa, then At, = Aa and, if £2 b = ?i a (£2 4= 0),

then a = ( ?i &T ) b ;

(iii) ?s(£ia + l2&) = hha + hhb;

(iv) sa-h = a-'§b = 'ê(ab).

This composite postulate is broadly equivalent to saying that the elements

of A correspond to an affine geometry in which these elements are the

points of the geometry, or to a projective geometry in which the sets Aa

correspond to points.

The combined postulates 3.11, 12 and 13 will be referred to as Postulate 3.1.

In these postulates we have considered combinations of elements by a finite

number only of applications of the fundamental operations. Later we shall

see that infinite sums are required in certain cases which are introduced

by postulates as required. We have, however, to frame our definitions from

the start so as to admit the possibility of such combinations of an infinite

number of terms and it is therefore necessary to detail the properties

required of the summation sign J£. For the present we shall merely say

that, if xt is a set of elements of A in (1,1)-correspondence with a range

or set of values of a variable t, then for certain ranges—which depend

on the particular algebra under discussion—there exist elements denoted by

"2/hxt, where S¿ is a function of t in G whose values lie in F,  and the
G

summation sign ^ has the following properties:

(a) If G contains only a finite number of elements 1, 2, • • -, n, ¿£hxt

denotes ?i a^ + ?2 a*H-\-%nXn;

(b) Whether G is finite or not, if yt is also a set of elements of A defined

for t in G and z is any element of A, then

2 (?t xt 4 nt yt) = 2 h xt 4¿£ nt yt,
G G G

z ¿j tt xt = 2Li%tzxt,       2j ït xt ■ s = ¿j £î xtz,
G G G G

provided always that in each case the summations used have a meaning.
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When yih%t exists in A, we shall say that it is linearly dependent on
G

xt, t in G.

A complex* in A is any subset of A which is closed under the operation

of addition but not necessarily under that of multiplication. If B and C

are complexes such that every element of B is an element of C and vice

versa, we write B — C; ii B contains all the elements of C and also

elements not in C, we write B~>C or C'<iB. If the order of a complex

is 1, that is, if when b is any non-zero element of B all elements of it

have the form '§b,£ an element of F, we shall write B = (b) or, when

there is no risk of confusion, B = b; thus x<B means that x is an element

of B. The intersection of two complexes B and C is the complex of all

elements common to both ; it is denoted by B — C.

If B and C are two complexes, the complex of all elements which can

be derived from the elements of B and C by means of the operation of

addition is called the sum of B and C and is written B-\-C. Evidently

the addition so defined is commutative and associative. Similarly, if Bt, t

in a range G, is a set of complexes, £Bt is the complex of all elements
G

derivable from the totality of elements in the Bt by means of the operation

of addition. Even if G is an infinite range, this does not necessarily involve

infinite sums of elements.

If x and y are variable elements of B and C respectively, the totality

of elements of the form xy together with those elements derivable from

them by the operation of addition is called the product of B into C and

is written BC. The multiplication so defined is associative and distributive.

We may also note here that

A~(B~C) = (A~B)~C,

A(B~C)^AB~AC, (B~C)A<BA~CA.

If C is a subcomplex of a complex B, any two elements xi}x2 of B

for which (xi—x2)<CC are said to be congruent modulo C and we write

Xi =x2 (mod C); all elements congruent to xx modulo C, that is, all elements

of the form xx + y where y<C, are said to form a classi modulo C. The

class corresponding to xx may be written [xt]; it is completely determined

when any one of its elements is given. The class [0] is the complex C

itself.

* This term was introduced into the theory of unite groups by Frobenius in a similar

sense.   Dickson uses the term "linear set", Scorza, "linear system",

t Cf. D, p. 80.
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Two complexes D and E are said to be congruent modulo C if there is

a (1,1)-correspondence betweea their elements such that, if x and y are

corresponding elements of C and D respectively, then x—y<C.

If a complex B has a finite basis, it is clear that, when C is a proper

subcomplex of B, there exists a complex D such that B = C-\- D, C~D = 0;

but here, as we do not assume the existence of any basis, it is necessary

to have the following postulate:

Postulate 3.2. IfCis a subcomplex of a complex B, there exists a complex D

which has no element in common with C and for which B = C-\~D.

The complex D is called a supplement of C in B.

A few definitions are conveniently given here. Any element different

from 0 which is equal to its own square is said to be idempotent. If e is

idempotent and x an element of A, then, if there exists an element y such

that xy = e (yx = e), x is said to have a right (left) inverse with respect

to e; it x has neither a right nor a left inverse with respect to e, it is

said to be singular with respect to e. It may be noticed here that, if xy = e

is idempotent, then y ex is also idempotent. If there is an element m such

that mx = x = xm for every element of A, it is called the modulus of A;

it is evidently unique. If some power of an element is 0, it is said to be

nilpotent, and, if xn is the lowest power of x which is 0, to is called the

index of x.

If there exist in a complex B a set of elements xt, t in a range G,

such that (i) every element of B has the form £ hxt, the £'s being elements
G

of the field, and (ii) £ &xt = 0 if, and only if, h = 0 for every t in G,
G

then the set xt is called a basis of B. The cardinal number of the set G

is called the order of the basis and, if this number is unique, it is called

the order of the complex. The existence of a basis is not assumed in this

paper, but all the examples constructed so far possess one.

The algebra generated by the elements xx, a^, xs, ■ ■ ■ is denoted by

{xi, xs, •••}; the order of {a;} is called the rank of x.

Integral powers of a complex are defined in the usual manner; thus

Jß.JB»»-i= Bm = B™-1 • B. The condition that a complex is an algebra

then takes the form B* <^B. A phenomenon occurs here in the case of

algebras which do not have a finite basis which is not present when the

order is finite.   Let A be the algebra generated by a, b, c where

ab = c,       6a = 0,       ac = c& = c2 = 0.

If Ai = {a}, Ai = {b}, then

A = Ai-\-A2-\-(c),   AiAi = (c),   A¡¡Ai = Aie = cAs = cAi = Atc = 0,
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and hence

A» = 4* + 4» + (c).

The complex C = (c) is  therefore common to all integral powers of A

and it is clearly the only such complex; we therefore write

Am = lim A" = V.
n = oo

Since C2 = 0, we have Am'2 = 0.   Similarly in the algebra defined by

ab = c,     ba = d,     ac = c = <;&,     cía = a" -— fra",

Ax = {a},       ¿. = {6},       J? = {c, d},

we have A* = 5 and .l"2 = iT = 0.

The smallest ordinal number v for which (A*)1 = A" is called the index*

of J.. For instance, in the second example given above the index of A

is co2 and that of 5 is w, If A" = 0, as in this example, A is said to

be nilpotent.

4. Invariant subalgebras. A complex B in an algebra A such that

AB <¡ jB, BA<¡B is itself an algebra, and it is said to be an invariant

subalgebra of A. The first two theorems regarding such subalgebras are

proved in exactly the same way as when there is a finite basis and hence

they are merely stated here.

Theorem 4.1. If B is a proper invariant subalgebra of an algebra A,

an algebra can be derived from A by regarding as equivalent those elements

of A which differ only by an element of Bi.

This algebra is called the difference algebra of A and B and is denoted

by A—B. To any algebraic identity in A — B there corresponds a con-

gruence in A modulo B.

Theorem 4.2. If Bx and B2 are proper invariant subalgebras of A, and

Bx > B2, then A — B2 has an invariant subalgebra which is simply isomorphic

with Bx — B2, and conversely.X

* When v is finite, it is easily shown that this definition is equivalent to saying that v

is the smallest integer for which Ay^~1 = A".

tCf.W,p.82; D, p.S9.
î Cf. D, p. 41.
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An algebra which has no proper invariant subalgebra is said to be

simple. If B is a maximal invariant subalgebra of A, A—B is simple

and conversely.

An algebra is said to be the direct sum of two proper subalgebras

Ai, Ai if

(4.1) A = Ai + A¡,   Ai Ai = 0 - -   Ai Ai,   Ai - As = 0;

and, when such a form for A exists, it is said to be reducible. When (4.1)

holds, we shall write A = 4t © ^42 in place of Ax + As when it is desired

to indicate that A is reducible; the component parts of the sum will be

referred to as reduced parts oî A. A reduced part is evidently an invariant

subalgebra.

Theorem 4.3. If an algebra A has a proper invariant subalgebra B that

possesses a modulus, A is reducible.

Let C" be a supplement of B in A so that

A = #4-6", B~C = 0;

also let ex be the modulus of B and y' a variable element of A.  If we set

(4.2) y = y' — eiij—y' e.y\ du' ex,

then,  as y' varies in A, y evidently traces out a complex C in A.   This

complex is congruent to C" modulo B since, B being invariant, exy', y'e,, eiy'et

are elements of B, and y = 0 if, and only if, y'<B; hence ^1 = # + C,

B~C=0.
If a; is any element of B,

xy = xy'—xexy—xy'ei -\-xeiy'ex = 0

since xet = x; therefore BC' — 0, and similarly Ci? = 0. Since 2? has

a modulus, this shows that C is an algebra, which also follows from

eiC = 0 = Cei, so that, if y and i/i are any elements of C,

yyi = yyi—^\yyi~yy\CiJreiyyxei<v

by (4.2).   The theorem then follows from the definition of reducibility.

Corollary.   The algebra C is unique.

For, if A = B@D, every element x of D has the form y 4 2, where

y<B, z<D and 0 = eix = e^-fe^ = y since eyB = J5. Hence

every element of D belongs to C and conversely.
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As a converse to the preceding theorem we have the following

Theorem 4.4.   If A — B®C has a modulus, so have also B and C.

For, if e is the modulus of A, we have e = ex + e2 where ex < B, e2 < C,

and if x<B, then

CiX = (e — e2) x = x — e2x = x,

since e2x<CB~C = 0.

The following two minor theorems are occasionally useful.

Theorem 4.5. If At and A2 are algebras such that AXA2 — 0 = A2Ai,

and if either Ax or A2 has a modulus, then Ax *-» A2 = 0.

For, if Ai has a modulus ex and B = Ay — A3, then ex B — -B since

JS<^.X, and exi? = 0 since ¿?<4ä; hence B — 0.

Theorem 4.6. i/" .4 = 4X © i?x = 4a © jB2, and if Ax and A2 are irreduc-

ible and each has a modulus, then either Ax -— A2, or AXA2 — 0 = .42v4x

= ^x ~A*.
Let ex be the modulus of Ax and e2 that of A2. Since Ai and At are

invariant and each has a modulus, it follows that

A.i A¿ -:-  .Ij ^ A->        A2 Ai.

Hence ei e2 < ^4X — J2 and is consequently its modulus. But by Theorem 4.3,

At, being irreducible, cannot have a proper invariant subalgebra with a

modulus; hence either At = .-13 or At ~ A2 ----- 0.

5. Idempotent elements. The theory of idempotent elements is some-

what more elusive in the case of infinite algebras than in that of algebras

with a finite basis; and certain difficulties arise which it has not proved

possible, so far, to overcome except by restricting the class of algebra

considered by further postulates.

If e is an idempotent element of an algebra A, it is the modulus of eAe;

and, if eAe contains no idempotent element besides e, the latter is said to

be primitive. When e is not primitive, eAe then contains at least one

idempotent element e', which is necessarily commutative with e so that

e" = e — e is also idempotent and e'e" == 0 = e"e'. More generally, if

es and et are commutative idempotent elements, then eset, es — eaet, et — eset

are all idempotent (unless one of them is 0), the product of any two of

them is 0, and the complex formed from them contains both es and et.

Further, since eset is contained in both esAes and etAet, it follows that

eset = 0 when es and et are primitive; hence in a set of primitive idem-

potent elements which are commutative with each other the product of any

two is necessarily zero.
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When an algebra A has a finite basis, it is readily proved that primitive

idempotent elements exist whenever there is some element in A which is not

nilpotent. Our postulates for infinite algebras, however, are not sufficiently

strong to enable us to draw similar conclusions as is seen from example 9.7,

in which it can be shown that no idempotent element exists except when

certain infinite series of elements are admitted as elements of A. We

therefore assume the following postulate.

Postulate 5.1. An algebra which contains an idempotent element possesses

at least one primitive idempotent element.

Let us suppose that A contains a primitive idempotent element ex, and

let et, t in a range G, be the set of all primitive idempotent elements which

are commutative with ex and with each other; it then follows as above

that eres = 0 when r^s. Such a set is called a complete primitive com-

plementary set, and e — ^et, if it exists, is called a principal idempotent
G

of A. Any set of idempotent elements et, primitive or not, for which

eres = 0 (r ^ s), will be called a complementary set.

If e is any idempotent element and x a variable element of A, then

X = X0 4 Xi 4 £'2 + %s
where

aü = x — ex — xe-\-exe,    Xi = ex — exe,    x2 = xe — exe,    xs = exe.

As x runs through the elements of A, the elements xo evidently form a

complex which we shall denote by A0o = 2xo, and we have similarly

the complexes

Aio = 2j xi,        -4oi = ¿j Xi,        An = ¿j xs = eAe.
X -r x

These complexes are obviously supplementary and

(5.1) A = Aoo 4 A10 + Aoi 4 An.

This is called the Peirce decomposition of A relatively to e ; Aoo + ^io is

the complex of all elements y of A for which ye = 0, ^íoo + Aii is the

complex of elements for which ey — 0, and Aq0 the complex for which

ey = 0 = ye*

Before extending this decomposition to the case where a complete com-

plementary set replaces e, we require the following postulates.

*It is sometimes convenient to note that, if B = 2 (ex — xe), then Aoi = Be and

Alt = eB. x
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Postulate 5.2. If et, t in G, is a complementary set of idempotent elements,

the element e — y^et exists in A and, if x is any element of A, then

ex = 2etx,   xe = 2 xet,   exe = 22 esxet.
G G G    G

Postulate 5.3. Ifxt, t in G, is a set of elements of A such that x = y xt

exists, then

yx=2yxt,       xy=2xty

for every element y of A.

Let et, t in G, be a complementary set of idempotent elements, and put

e = y,et in (5.1).   In view of the postulates just given we may set

Xi = 2 (etx — axe),   Xi = 2 (xet — exet),    xs = 22 Vsxet;
G G G    G

or, if

Ato = 2(e-tx — etxe),    Aot = 2(xet — exet),    Ast = e„Aet,
X .r

then

A = Aoo-\-2AtoJr2AotJr22Ast,
G G G    G

where the intersection of any two complexes is zero.

If the set et is a complete primitive complementary set, e is a principal

idempotent element of A, and A00 then contains no idempotent element,

as otherwise et would not be a complete set. If A has a modulus, it

equals e and Ao0, Al0 and Aox are 0.

Before proceeding further we must consider more closely the nature of

individual elements of A. When a finite basis exists, either for A itself

or for some subalgebra which is not nilpotent, then A contains an idem-

potent element; but, when no such basis exists, the usual proofs break

down. A closely related theorem is that, if e is the only idempotent element

in A, every element which has no inverse with respect to e is nilpotent,

and that the totality of such elements forms a nilpotent invariant subalgebra.

The proof of this theorem, in one method of attack at least, leads to an

equation of the form

e = x + y,

where neither x nor y has an inverse with respect to the primitive

idempotent element e. If x is a nilpotent element of index « for which

ex = x = xe, then

y(e-srx-\-xSJr ■ ■ ■) = (e—x)(e-\-x-\- xs + • • •) = e,
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which is impossible since we have assumed that x has no inverse. If x

is not nilpotent, or if n is not finite, this method of proof requires the

existence of the infinite series

e 4 -r 4 T% ~\~

as an element of A. But, if we assume that this element does exist,

certain difficulties arise. If z = e — x, we should naturally expect that

the algebras generated by x and z respectively would be simply isomorphic

since the elements of their bases have the same law of combination; but

in spite of this isomorphism we cannot assume the existence of

w — e 4 g + z* + • • • •

since then wx = w (e — z) = e, whereas x has no inverse; and, more-

over, the element w, although an element of {e, x}, cannot be expressed

in terms of the basis e, x, x2, ■ ■ -, at least with finite coefficients. The

nature of an element x, therefore, cannot be predicted from the laws of

combination of {a;} alone, but the relation of x to other elements of A

must be known also. Another example of this is given in the algebra

(cf. examples 9.2, 9.8) whose basis is

ryi        £ ,vi        1 /j      -:-        /yjU y. />>- ,    «    ,
*   *   *   f *flv * <* - \s iA-    ■ Ï *™    ?

and in which it is assumed that every element of the form -2^„§ííc< exists

for finite values of n. In this algebra the subalgebra of all elements of

the form 2?%ixi does not seem to be distinguishable from the one dis-

cussed above, although in the complete algebra x has the inverse x~l.

Instead of attempting to resolve these difficulties by a discussion of the

nature of a basis in general, we shall be content for the present to intro-

duce postulates which would most probably appear as theorems if a different,

mode of attack on the problem were used.

Postulate 5.4. If e is a primitive idempotent element of A, x an element

of eAe which does not have an inverse with respect to e, and y = e—x,

then either

x 4 x" + ■7"*14" • • •    w   II ~l" // 4" ys + • • ■

exists as an element of A.

It follows from this postulate that, y has an inverse with respect to e,

namely z = e + x-^x2-{-■■■. For if z exists, evidently yz = e; and,

if z does not exist, by our postulate iv = e 4 y + y* + ■ ■ ■ exists, which

is impossible as it would then be an inverse of x with respect to e.
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An element of an algebra A which does not have an inverse with respect

to any idempotent element of A will be said to be singular* in A. With

reference to such elements we have the following theorems.

Theorem 5.1. If e is a primitive idempotent element, every element x of

eAe which is singular in eAe is also singular in A.

If x is not singular in A, there is an element y such that ex = xy is

idempotent, where, since ex = xyex, we may assume yex = y. Since

ex = x, it follows that eex = ex; also, if e* = eex e, then e2 = px e and

e2 = ee^ee^e ~ ee\e = eexe = e2.

Hence, since e2<eAe and e is primitive, either e2 = 0 or e2 = e. If

e2 = 0, then ej = e\ — e1ee1 — ee1eel = e2el = 0; if e2 = e, then

xi/e = e, contrary to the assumption that x is singular in eAe. The

theorem is therefore proved.

Theorem 5.2. If e is an idempotent element of A. any idempotent element

which is primitive in eAe is also primitive in A.

Let ex be an idempotent element of eAe. If ex is not primitive in A,

there is a primitive idempotent element es for which ex e¡¡ — p2 = ^ ex,

from which it follows that

«2 — ex eg ex = eex es ei e < e A e.

If, therefore, ex is primitive in e4e, it must also be primitive in A.

We give now another postulate which includes Postulate 5.4 but is here

stated separately as it is not used till Theorem 7.5 is reached, and even

there it is not strictly speaking necessary.

Postulate 5.5. If x is singidar in A, every element of the form ^ïnxn

exists in A.

To prove Postulate 5.4 on this basis we may proceed as follows. If

x<eAe and if there is an element z such that zx is idempotent, then

ex = xze is idempotent and commutative with e; for, since ex = x,

xzexze — (xz)re = xze.

* Scorza, Rendiconti del Circolo Matemático di Palermo, vol.45 (1921), p. 41,

uses the term "exceptional" in much the same sense; but, as his definition implies either

a finite basis or that the element is nilpotent, I have thought it necessary to use a

different term.   D, p. 46, calls exceptional elements "properly nilpotent".
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Since e is primitive, this is impossible unless ex = e or ei = 0 (in which

case it is not strictly speaking idempotent). If ex = e, then ze is an in-

verse of x with respect to e; if el = 0, then

0 = xzexz == (xz)2 = a¡2,

which is impossible since xz is idempotent. Hence x is either singular or

has an inverse with respect to e, from which Postulate 5.4 follows im-

mediately.

6. Singular invariant subalgebras. A singular subalgebra B of an

algebra A is defined as a subalgebra no element of which has an inverse

with respect to any idempotent element of A. If B = A, then A contains

no idempotent element and is said to be singular in itself; if, on the other

hand, A does contain an idempotent element, we shall say that it is non-

singular. For example, a nilpotent subalgebra is singular in any algebra

in which it is invariant; or again, the algebra whose basis is x, x2, x3, ■ ■ ■

is not singular in the algebra ■ • -, a;-1, e = x°, x, x2, ■ ■ ■ while it is singular

in the subalgebra e, x, x2, ■ • •.

A semi-simple algebra is one which is non-singular and which possesses

no singular invariant subalgebra.

We shall now show that singular invariant subalgebras have, in the main,

the properties possessed by nilpotent invariant subalgebras in the case of

algebras that have a finite basis.

Theorem 6.1. If an element x is singular in an invariant subalgebra B

of A, it is also singular in A.

For, if xy = e were idempotent, then e<B since x<B and B is

invariant.

Theorem 6.2. If an invariant subalgebra B of an algebra A contains

no idempotent element, it is singular; and if it contains an idempotent

element, it also possesses a primitive idempotent element of A.

The first part of this theorem follows immediately from the proof of

Theorem 6.1. If B contains an idempotent element, then by Postulate 5.1

there is an idempotent element e which is primitive in B. If e is not

primitive in A, there is a primitive idempotent element ex =j= e in A such

that eei = et. Since e lies in B, which is invariant, it follows that ei<.B,

which is impossible since e is primitive in B. Hence e must be primitive

in A as well as in B.

Theorem 6.3. If e is an idempotent element of A, any element of eAe

which is singular in eAe is also singular in A.

For, if a;<e^le and xy = e, where e' is idempotent, then ee = exy

— xy = e' and xye = ee'e = e" <ieAe; also e"2 = ee'ee'e = ee'e = e"
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and e" 41 0 since e"e' = (ee'Y = e', so that e" is an idempotent element

of eAe relative to which x has an inverse.

Theorem 6.4. The totality of elements which are singular in A form a

singular invariant subalgebra S of A which contains every singular invariant

subalgebra of A.

This theorem is proved as follows. If x is singular, so is also yx; for,

if it is not singular, there is an element z for which zyx = e is idempotent,

which contradicts the assumption that x is singular. Hence, if B is the

totality of elements which are singular in A, Ax and xA are contained

in B, which is therefore closed under the operation of multiplication and

has invariantive properties. We have then only to prove that B is closed

under the operation of addition as it is clear that it will then be a singular

invariant subalgebra.

Let xi and x2 be elements of B and suppose, if possible, that xi + a%

has an inverse y, say Xiy-\-x2y = e where ye = e and e is idempotent;

since xxy<xxA<CB, x2y<x2A<B, we may obviously assume that

Xx +íc2 = e, exx = Xx = xxe, ex2 = x^ = x2 e. If e is not primitive, there

exists a primitive idempotent element ex for which eex = ex = exe, so that

xx ex + x2 ex = ex ; we may therefore assume that e is primitive. This is,

however, impossible in view of Postulate 5.4, and hence B is closed under

addition.*

Theorem 6.5. If S is the maximal singular invariant subalgebra of a

non-singular algebra A, A — S is semi-simple.

Let
A = B + S, B~S = 0.

A — 8 is non-singular since we may choose B so as to contain at least one

of the idempotent elements that existing. If, then, A—S has a proper

invariant singular subalgebra T, there is in B a complex Tx that contains

no element x for which x2 = x (mod S) and for which

BTi £ Tx, TB £ Tx (mod 8).

It follows that T + 8 is, in A, a proper invariant subalgebra which

contains S.   Since S is maximal, Tt + 8 must  contain  an idempotent

* In W, p. 91, Theorem 15, the statement that the totality B forms an invariant sub-

algebra was omitted. My attention was called to the need of this addition to the theorem

by Professor L. E. Dickson in 1914 and the proof given here is essentially the one made

at that time.   When A has a finite basis, Postulate 5.4 is superfluous since the series

x + x2 + x3 -\-terminates when x is nilpotent.   A different proof is given by Scorza,

loc. cit., p. 42.

29
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element e, which we may take to be primitive in view of Theorem 6.2.

We have therefore e = x-\-y, where a;<î\ and y<S; anda^O, since

e <£ S. This gives x2 = x (mod S), whereas 2\ contains no such element;

the theorem then follows immediately.

Theorem 6.6. If N is a maximal nilpotent invariant subalgebra of A

every nilpotent invariant subalgebra of A is contained in N.

This theorem is proved in much the same way as when A has a finite

basis. Let JVi be any nilpotent invariant subalgebra of A other than

N; N-\-Ni is then also invariant.   If N¡ = N^-Nt, we have

(N+Ni)n £ Nn + Nn + N2

for every positive integer to. If the indices of N and Ni are finite, it

follows immediately that N-\- Ni is nilpotent. If either index is trans-

finite, we have

(N+Nt)" £ Nv + Nf + Nz = Ns,

from which we derive in the same way

(N+NJ"2 £ N™ £ Nwt+Nf + N2 = N4>

and so on. If then v is the greater of the indices of N and JVi, it follows

that (N-\-NiY <, Ns, which is nilpotent. Since N is maximal it follows

that Nt < N.
If N is a nilpotent invariant subalgebra which is maximal with respect

to the property of having a finite index (so that N is possibly contained

in some nilpotent invariant subalgebra whose index is transfinite) the same

proof shows that every nilpotent invariant subalgebra whose index is finite

is contained in N; for if the index of N is finite, so is also the index of

each of its subalgebras and, in particular, the index of N2 in the above

proof is finite.

Theorem 6.7. Every algebra A which does not have a modulus either has

a singular invariant subalgebra or is itself singular.

Let e be a principal idempotent element of A and let

be the Peirce decomposition of A relative to e.
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Suppose in the first place that A^^O. If some element of 400 is not

singular in A, Aoax must contain an idempotent element for some x<^A.

But A00x<A00 + A01; hence we must have an idempotent element of the

form afo + afo, where x00<A00, x01<A01.   This gives

a'oo~ra;oi = = V-^oo ~r ^W      = a;oo~^a:'ooa::0l•

Now x200<A00, xwx0l < A01 and Aw ~A01 = 0; hence x00 = x^, and, seeing

that Aw contains no idempotent element, it follows that x^ = 0 and there-

fore x0l = xwx01= 0. The elements of ^40O are therefore singular in A.

If ^oo = 0, then A10 + 4>i ^ 0 since A has by supposition no modulus.

For any x<A,

(Ax0-\-A0x)x<A0x+Ai0Aoi,

and hence, if A10 + -4>i is not composed entirely of singular elements, there

must be an idempotent element of the form x0i-\~Xn where a?0i<4>i>

íc11<^X04)X and

zxx<.4Xo4ji41o4oX<.áXo4>o.4>i = 0,      xoiXix<xoiAxoAox<AooAoi = 0.

This gives
a?oi+a?ii = (x0i + Xu )* = 0,

so that there is no idempotent element in Ai0 + Aqx .

Hence in every case A contains singular elements and by Theorem 6.4

also a singular invariant subalgebra.

7. Simple algebras. The discussion of the structure of a simple algebra

parallels closely the corresponding theory for algebras with a finite basis.

Theorem 7.1.   A simple algebra, which is not singular, possesses a modulus.

This theorem is an immediate consequence of Theorem 6.6 but, because

the proof given there depends on Postulate 5.4, it seems worth while to

give an independent demonstration. Since an algebra A which is not singular

possesses a principal idempotent element e, we may express A in Peirce's

form

A = Aw + Aio + Aox + An
where

If we set

eAxj = Axj,   eAoj = 0

Ajie = 4/1,   4/0e = °-

Bi = 4)0 + Aio,    B2 = 4»o + 4)i j

(j « 0,1)

29*
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then

£,i = BiBi  = ABi,

ABiBi = AABi £ AB2 = BiB2,

BiBiA = BiAA£ BiA = BiBt,

and therefore, since A is simple, we must have BlBi= 0. This gives

(Bi4 B2f = BÏ    +B\ + BiB, + B2Bi £ Aoo,

A(Bi-r-Bi) = ABi + AB2 = ABi £Bi£Bi + B2,

(Bi + Bi)A = BiA + BiA = B2A £ B2 £ Bi + Bt.

But A is simple; hence Bi -\-B2 = 0, that is, A = An, which proves the

theorem.

Theorem 7.2. If e is an idempotent element of a simple algebra A, eAe

is simple.

For, if B is a proper invariant subalgebra of eAe,

eABe = eAe-B • eAe^B <A;

therefore ABA<A is a proper invariant* subalgebra of A. This is im-

possible since A is simple.

If e is primitive, it follows from Theorem 6.3 that every element of eAe

has an inverse relative to e ; such an algebra is called a division algebra.

Let et, t in a range ff, be a complete primitive complementary set for

the simple algebra A; then e = ^et is the modulus of A and, if Ars = erAes.
a

the Peirce form of A is ^^ Ars.   Since A is simple AesA — A, as other-

wise it would be an invariant subalgebra of A; hence, multiplyingt on the

left by e,- and on the right by et, we have

(7.1) Ar, A* = Art.

We shall now show that, if xrs and X& are any elements, different from 0,

of An and Ast respectively, then ays x¡t 41 0. Since A is simple and et is

primitive, Att is a division algebra for every t.   Suppose that aysa;st=0;

* Cf. Scorza, loc. cit., p. 15.
f Cf. Scorza, loc. cit., p. 76.   It is not necessary here that the et should he primitive.
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then xrsxstAts = 0. But XstAu <j Ass, which is a division algebra, and hence,

for any yts<Au such that xstyts^F 0, there is a ySs<.AsS for which

Xstytsys9= es. Hence, as xrs^0, xrsXgtAts = 0 entails XstAts = 0. It

follows for every xts<Au that Xstxts — 0, and therefore xtsAst = 0 by

a repetition of the same argument. But xu is any element of Au so that

our supposition that xraxst— 0 has led to AtsA3t = 0, which contradicts (7.1) ;

hence xrsXst^pO unless one of the factors is 0.

Using the same reasoning as above, only multiplying on the right instead

of on the left, we see that there is an element yar < Asr for which ysrXrs = es ;

also, if we set xrr = xrsysr, then

2
Xrr — Xrs ' ysr Xrs ' ysr — Xrs es ysr — Xrr,

and therefore xrr = er, seeing that the latter is primitive.   Further, since

Ast =  ysrXrsAgt ^ ysr Art ^ Agt,

it follows that

Ast = ysr Art

and

Xrs Ast ==  Xrs ysr Art ==  Art •

We shall now show that it is possible to find a set of elements

ers(r,s in G, ers<J.rs) such that ersest = en, eraetu = 0 (s^t), and

e = 2e«. Set e« = et and let ept be any non-zero element of Apt,p being

a fixed and t a variable element* of G. We have already shown that

there then exist elements etp such that etpept = et and eptetp = epv, and,

if we set in general est = espept, it is readily seen that the elements so

defined have the required property. We are now ready to prove the following

fundamental theorem.

Theorem 7.3. Every simple algebra with a modulus can be expressed as

the direct product of a division algebra and a simple matric álgebra.

Since Ast = espAppept, there is a (1,1)-correspondence between the

elements of each Ast and those of a fixed App, which, as we have seen,

is a division algebra. The theorem then follows exactly as in the case of

algebras with a finite basis.t  We have also the converse theorem.

Theorem 7.4. The direct product A of a simple matric algebra B and a

division algebra C is simple; and any element of A which is commutative

with every element of A is an element of C.

* Cf. Scorza, loc. cit., p. 78.

fCf. W, p. 98; D, p. 76.
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The proof is the same as for algebras with a finite basis.*

Theorem 7.5.   If S is the maximal singular invariant subalgebra of an

algebra A which possesses a modulus, and if A — S is simple, A can be ex-

pressed as the direct product of a simple matric algebra and an algebra whose

modulus is its only idempotent element.

We shall not in the first instance assume that A has a modulus but

only that A — S is simplet and A^S. Let et, t in G, be a complete

primitive complementary set of idempotent elements of A; the elements

of this set are linearly independent modulo S since, were ^het = 0

(mod S), we should have

0 = ep^het = ïPep (mod S)

whereas ep-^S for any p. It follows from the proof of Theorem 7.3 (taking

into account the second footnote of page 414) that ArsAst = Ah (mod S).

Now ArsASr is an invariant subalgebra of Arr which is not singular seeing

that it is not congruent to 0 modulo S; and since er is primitive, it follows

from Theorem 6.4 that any proper invariant subalgebra of Arr is necessa-

rily singular; hence ArsASr = Arr- We have also ArrArs ¡> Ars because

Arr contains er and, since Ars 2; Art Au,

ArsAst 22 ArtAtsAst = Art Aa 2= Ah,

and also ArsAst ^ Art; hence ArsAst = Ah-

We must now prove that xrsAsr — An- when xrs is an element of Ars

which does not belong to S. Now aysAsr Í 0 (mod ¿SO; for, if this were

so, then xrsAss = xrsAsrArs = 0 (mod S), which is impossible since

Xrs = Xrses<CXrsAss^S so that XrsAsr contains non-singular elements of

A and, by Theorem 6.3, also elements which are not singular in Arr. Hence

if x is any non-singular element of xrsAsr, there is an element y of Arr

such xy = er, so that

&T — X y «C Xrs -A-sr Arr  ^ Xrs A$r,

that is, to any xrs "3C S, there is an element av < A8r such that Xrsxsr = er.

It then follows as in the proof of Theorem 7.3 that xrsAst = Art, that

there exists a simple matric algebra ers, r, s in G, and that ^^Ara is

*Cf. W, p. 99; D, p. 79.
fit then follows from Theorem 7.1 that A — S has a modulus.
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the direct product of this simple matric algebra and any Arr. If we now

add the condition that A has a modulus so that A = ^^Ars, the proof

of the theorem is complete.

The above discussion renders it probable that an idempotent element

which is primitive in .4 corresponds to a primitive idempotent element in

A—8; and in fact this can be shown by a somewhat roundabout argument.

If, however, Postulate 5.5 is assumed, the proof is more direct and also

contains some points of intrinsic interest.

If x2 — x = y = 0 (modA) (x<£S) and we set z = f(y)-\-g(y)x,

we readily find that a formal solution of the equation z2 = z is given by*

r _      2x — \ 1_

2 ~~~~ 2V\ + ±y^ 2

= x — 2x(y — 6y*-\-) + y — 6//-|-= x        (modS),

where Postulate 5.5 is required in order that the series used should exist

as elements of A. If z is primitive in A but x does not correspond to a

primitive idempotent element in A—8, we may write x = xx-\-x2 where

x\ — xx = x\—x2 = xxx2 =. x.2xx = O (mod 8),

and we may, without loss of generality, suppose xt modified as above so

that x\ = x±, since this still leaves x = z (mod S). If xxx2 = y12, x2xx — y21,

we have yX2 = xxx2 = x\x2 = xxyX2 and therefore xx (x2—y12) = 0; we may

therefore suppose yn = 0 and, since then xl (x\ — x2) = 0, we may modify

x2 as before so that it is idempotent and still keep xxx2 =0. xa = x2 — x2xx

is then idempotent and xxx3 = 0 = xsxv We shall therefore assume

xxx2 = 0 = x2xx, x\ = xlf x\ = x2 and z = xl-\-x2-\-y where y <S. This

gives

¿; = xx-\-x2,   zxxz s^ Xj,   2íc2« = x2 (mod Ä),

and hence, seeing that z is primitive in A, there exist elements wx and i<;2

such that

xxwx = z, x2w2 ^ ¿; (mod S).

The first of these congruences gives x2z hhh 0 (mod 8) and the second

* If 2 = 0 in the field, we may set z — x + y + y1 -)- yi + ys + • • ■ •
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x2¿? = ?; the supposition that the element in A — S corresponding to z is

not primitive has therefore led to a contradiction.

The methods which are used in the theory of algebras with a finite basis

to show that a simple algebra cannot be singular except in the trivial case

of the algebra that consists of one unit x for which x2 = 0, depend on

induction and therefore cannot be extended directly when a finite basis

is wanting. We can however apply these methods to prove the following

theorem.

Theorem 7.6. A simple commutative algebra is either a division algebra,

or is the algebra of one unit x for which x2 = 0.

If x is any non-zero element, we must have Ax = A, since otherwise,

if Ax ^ 0, it is a proper invariant subalgebra of A and, if Ax = 0, {x} = (x)

is a proper invariant subalgebra of A, unless of course A = (x). More-

over, if z is any other non-zero element, we cannot have zx = 0 since,

were this so, we should have

A = Az,     A = Ax = Azx = 0.

But, if Ax = A, there must be an element e such that ex = x; this gives

(e2 — e)x — 0 and therefore e2 — e = 0 so that e is idempotent. We have

shown that the product of two elements can only vanish if one of them

is zero; hence A is a division algebra with e as modulus.

8. Reducibility. The principal theorems regarding the uniqueness of

the expression of an algebra as a direct sum which are true of algebras

with a ttnite basis also hold when no finite basis exists. Before showing

this however we must first prove the following theorem, which is trivial

when the basis is finite.

Theorem 8.1. Every reducible algebra A that has a modulus possesses an

irreducible reduced part.

Let et, t in G, be a complete primitive set of idempotent elements. If

Ars = erAes, then no Arr is 0 since Arr contains er. If for some fixed r

every Ars and Asr(s^r) is 0, then evidently A is reducible with Arr as

one reduced part; and Arr is irreducible since the only idempotent element

it contains is its modulus er, while Theorem 4.4 requires that each part

of a reducible algebra with a modulus shall also have a modulus. We may

suppose therefore that Ars + Asr ̂  0 for some s 4= r ; then that ASSl + As,3 4= 0

for some Si ̂  s, and so on. We define in this way a subset H of the range G

such that (i) if s is a value of t in H, there are a finite number of values

of t in H, say «i, s2, • • •, sn, for which ArSl 4 ASir, ASlS, + AWl, • • •, ASnS + Ass„

are all different from 0, and (ii) all values of s which may be reached in

this manner from r in a finite number of steps are contained in H.
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Let K be the complement of H in G and set

ex = 2 et, <h — 2 a.
h K

If e^Ae^^O, there must be some p<H and q<K for which Apq^fO;

but p can be reached from r in a finite number of steps and hence q also,

in contradiction to the definition of H and K. Hence etAe2 = 0 and

similarly e2Aex = 0, so that A is reducible. Moreover exAex = An is

irreducible; for if An = B © C, then er, being primitive, must lie in either

B or C, say B, and, if ea is any one of the original set of idempotent

elements which belongs* to C, s cannot be reached from r by a finite number

of the steps used in the definition of H, since, if ep<.B, eg<C, then Apq

and Aqp are both zero.t  The proof of the theorem is therefore complete.

We are now ready to prove the theorems referred to at the beginning

of the section.

Theorem 8.2. If an algebra A which has a modulus is expressed in two

ways as the direct sum of irreducible parts, these two expressions differ only

in the order in which the constituent parts occur and both contain every

irreducible reduced part of A.

By Theorem 8.1 A possesses irreducible reduced parts; let At, t in a

range G,  denote these parts and set B = ^At; B is then an invariant
G

subalgebra of A since by Postulate 5.3 AB = ^¡AAt = ^At = B, and

similarly BA = B. By Theorem 4.4 every At has a modulus et and, by

Theorem 4.6, ArAs = 0 (r =(= s); also, by Postulate 5.2, e' = £et exists,

and it is evidently the modulus of B. Hence, by Theorem 4.3, B is a

reduced part of A, say A = B © C. But, by Theorem 4.4, C has a modulus

and therefore it is either itself an irreducible reduced part of A or it contains

such a part. This is impossible since B -» C = 0, and therefore C = 0,

whence B = A.

If now A = ]£ Bs is any expression of A as the direct sum of irreducible

parts, then At = etAet = ^etBset.   If etBset^fO, then by Theorem 4.3
s

etBset = B3, since it is an invariant subalgebra of Bs which has a modulus

and Bs is irreducible; also, since et < At, which is invariant in A, it follows

in the same way that etBset = At. Hence At — Bs, that is, every At

occurs in the set Bs, and, since the set At contains every irreducible reduced

part of A, the set Bs is only a rearrangement of it.

* If e, is a primitive idempotent element, ele.ei = e and e^ce^ = e" are idempotent if

not zero; but e, = e'+e", e'e" = 0 = e"e' and e, is primitive; hence one of e', e" is 0.

Any primitive idempotent element therefore belongs to one or other of B and C.

f For instance, Apq = epAe, = epe,.4e,e, = 0.
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Theorem 8.3. Every algebra A which has a modulus either has no invariant

subalgebra which has a modidus or can be expressed uniquely as the direct

sum of such an algebra and an algebra which has a modidus.

Let B' be an invariant subalgebra of A which has a modulus; then by

Theorem 4.3, A = B' © C, and therefore A possesses at least one irre-

ducible reduced part which has a modulus. As in the previous theorem,

the algebra B which is the sum of all the irreducible reduced parts of A

that have a modulus is the direct sum of these parts and has a modulus.

Hence, by Theorem 4.3, A = B®C. Here C has no modulus, since A

has none, and it has no irreducible reduced part with a modulus, since

any such part is also an irreducible part of A and so belongs to B, whereas

B-^C = 0. By Theorem 4.3 and its corollary, C has no invariant sub-

algebra with a modulus and is unique.   The theorem is therefore proved.

Theorem 8.4. An algebra which has no modulus and no invariant sub-

algebra with a modidus becomes irreducible if a modulus is added to it.

For if A* denote the algebra obtained by adding a modulus e to A,

and if A* = B(&C, then each of B and C has a modulus, say ex and e2.

Now ei = x-\-ïe, e2 = y-\-r¡e, where x, y<A and £, ij are scalars.

But ei6t = 0 and therefore %i¡ = 0. If, say, £ = 0, then et < A and

therefore also B = eLA*ei <A; and this is impossible, as B would then

be a reduced part of A with a modulus.

9. Illustrative examples. We shall now give a number of examples

some of which are given to illustrate the theory of the preceding sections

and others because of their intrinsic interest. In most of these examples

we shall denote the bas' of A by xt where the variable t runs through

a range G; x = 2%txt, y = 2*ytxt, etc., will denote general elements
G G

of A and %(t), y(t), etc., the corresponding functions of t.  The elements

xt are linearly independent unless otherwise stated.

Example 9.1.    Let

Then x-\-y = ^(h + n^xt and xy — 2}hi¡txt, and, in the notation of

§ 2, %(a)xi¡(a) = ?(«)^(a).   The  functional  product in  this  case

therefore corresponds to ordinary multiplication.

Example 9.2.    Let

(9.201) xt Xs = xt+s-

We shall call the corresponding algebra the power algebra since this is

what A becomes when G is the set of positive integers.   Here we have

(9.202) xy = 2 2$.Vt-.xt>
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or

(9.203) $(t)xr¡(t) = 2%(s)n(i — s)-
G (,s)

(9.21) Let G be the set of positive integers; the order of A is then S.

If a = xlt then xt = a', so that this algebra is the algebra of one

indeterminate, that is, it uses the Grassmann indeterminate or general

product. If 0 is included in G, x0 is the modulus and the algebra is then

equal to {x0, a}; {a} is the maximal invariant subalgebra.

In this algebra the summation sign ^ indicates ordinary algebraic

summation, but no question of convergence is involved so long as the given

basis is used.

(9.22) Let G be the set of positive and negative integers and 0. Here a

distinction must be made between the case in which 2 refers to sums

with a finite number of terms only and that in which infinite sums are

allowed. In the latter case A is, in some sense at least, equivalent to (9.21);

for, if e = x0, b = e + a-x = e + a, then

a = e—I,     ar1 = e-\-b-\-b2-\- ■■ -,

and so on.

(9.23) Let G be the interval a < t < oo in the real continuum or, alter-

natively, a <L t < oo. As before we may set xt = a1; the algebra has

then a modulus only if G includes t = 0. If certain integrability conditions

are satisfied by the functions involved, £ may be interpreted as ordinary
G

integration.    For instance, if a = 0, we may set*

(9.231)    S(t)xt¡(t) = Çç(s)ri(t — s)ds = t£ç(ts)y[t(l — s)]ds.

It is easily shown that this product is associative.

(9.24) We may take for G any aggregate of sets of points such that the

logical sum of any two sets is also a member of G.

Example 9.3.    An algebra closely allied to the preceding one is given by

(9.301) xt xs = zu,

(9.302) xy = 22hnt,t*v
t    s

or

(9.303) Ht)xn(t) = 2Hs)v(~)-

* This product and the one given in (9.321) below are of course well known,   usually

with a somewhat more general range than that given here.
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(9.31) If G is the set of positive integers, A is the algebra used by

Professor E. T. Bell* in the theory of numbers and called by him a Dirichlet

algebra because of its connection with Dirichlet series.

(9.32) If G is the real interval a <^ t < <x>,  and £ is interpreted as

I ( ) — ; we get, when a = 1,

(9.321) Í(t)xn(t) =Jj?(s),(l)Í*

which may also be written

lOg tfiUPhit1-')^:

Examples (9.2) and (9.3) belong to the special type

xsxt = x^t),      <P(r, <P(s, ¡0) = <P(<P(r, s), t).

When q> is properly restricted, it follows from the theory of one-parameter

continuous groups that any algebra of this type can be reduced to (9.2)

by a change of variable.   For instance, if in (9.2) we put x\ — ay,

x'sx't = x? ay = ay+< = x's+t'

The forms (9.231, 321) may be also derived directly from (2.72) by putting

^r'S'l>       to, t +  <p(r,s),

and interpreting the corresponding integral as a double Stieltjes integral

with respect to k(r, s, t).

This type of algebra may be generalized as follows.   Let

<Pi(s; t) = cpi(si, •••, sn; k, ■■-, tn) (i = 1, 2, •••, to)

be a set of functions having the group property

<Pi(<P(r;s); t) = q>i(r; (p(s, t)).

An associative algebra is then defined by

XSlSt---SnXt1t2---tn =   XVl (s; t) y,2(S; Í) .. ^„(s-,1) •

* Cf. these Transactions, vol.25 (1923), p. 135.
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Example 9.4.    An example of a non-commutative  algebra is given by

(9.41) xsxt = Xs+t-\-xs-t, '■■>

(9.42) í(t)xr¡(t) = U(s)[r¡(t-s) + y(t + s)]ds.
*'G

Modifications of this algebra are given by

(9.43) xsxt = Xg+t-k + Xs-t+k,

(9.44) xsxt = Xst-\-Xs¡t-

Example 9.5. Corresponding to the ordinary algebra of matrices we

have the algebra generated by the units Xst, where s and t run through

a range G and

(9.51) „„ -{*»¡7j:

This is the simple matric algebra used in § 7. The corresponding functional

product is

(9.52) £(*, t)x.i)(s, t) = J$(s, r)t¡(t, t) dr.

This algebra and its subalgebras have been developed to a considerable

extent by writers on the theory of integral equations.

Example 9.6. The Grassmann-Gibbs indeterminate product (the algebra

of tensors) forms another important example. Here the units have the

form x^tf-, the subscripts belonging to a range* G which includes 0

while, if U = 0, all subsequent subscripts are also 0, and the law of com-

bination is

(9.61) Xs1st...sMO...Xt1t1.-.tK0-= XslS2-..smt1t2---t„0--- (sm + 0,   tn + 0).

It is usual to add the restriction that the first subscript is not 0, but, if

this is not done, xo... is the modulus of the algebra. The corresponding

functional product is

(9.62) %(tx,t2, • • • , tm)xf¡(tx,t2, •• • ,tn) = ?(¿X,¿2, • • •• tm)f¡( tm+i,- ••, tm+n).

* This range is usually the set of positive integers  and 0, but it may  of course be

taken to be continuous.
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Example 9.7.    Let A be the algebra generated by a, b, c where

ab — c,     be = a,     ca = b.

If we set / = a2, we easily find that / is commutative with every element

of A and that

a2 = b2 = c2 = /,      ba = fab,      cb = fbc,      ac = fca.

When sums with a finite number of terms alone are allowed, this algebra

has no idempotent elements in spite of the fact that A2 — A, which in

the case of algebras with a finite basis always implies the presence of at

least one idempotent element. If, on the other hand, infinite sums are

allowed, A has exactly four such elements, namely

where l/ V\ -f-14/4/8 is to be expanded in a series of positive powers

of /, and the numerical term canceled before interpretation, and the signs

are either all + or two — and one +. This algebra may be used to

illustrate the Peirce form of § 5 but as the actual expressions are some-

what cumbrous they are not given here.

If e stands for any one of the elements in (9.71), eAe forms a commutative

division algebra.

Example 9.8. Let A be the algebra generated by two elements x and y

for which
(9.81) yr Xs = ersxsyr,

where f is a scalar different from 0 and 1, r, s are positive or negative

integers or 0, and x° — y° = e is the modulus of the algebra.

Let fr(x) (r = 0, 1, •••) denote series of the form

(9.82) xnr(aore-\- alrx-\- asrx2-\-) (aor ^ 0),

where nr is an integer, positive, negative or 0; fr(x) has a unique inverse

of the same type which is obtained by formally inverting the series for/r.

The algebra is then defined as the set of elements of the form

(9.83) Z Mx)yr+n,
»■ = 0

where to is an integer which may be negative. The sum and product of

two such elements have the same form so that this set does in fact form

an algebra.
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We shall now show that every element of the set except O has an inverse.

We may evidently assume « = 0, and there is also no loss of generality

in taking f0( x ) = e.   If we form the product

(9.84) (e-giy-g2y*-)(e+fiV+f*y* + -• ■)

and set fir) = yrfiy~r, the condition that the result equals e is

9i = A,     9i = /» + 9iñ :     9» = A + gsA + gsfi, • ■ •

and hence the g's are uniquely determined, each has the form of (9.82)

and the left hand factor of (9.84) has the form (9.83). Every element

therefore has an inverse and hence A is a division algebra.

It should be noted that no question of convergence is involved here,

although as a matter of fact the convergence is easily investigated when

In place of (9.81) we may evidently take

yx = 8(x)y

where 0(x) is any function whose iterated powers are known for positive

and negative indices.   For example we may set

(9.85) yx = x~xy

which also gives rise to a division algebra under conditions similar to those

imposed above. In this algebra y2x = xy2, so that every element has

the ioxm fi(x,y2)+f2(x,y2)y.

Example 9.9.   Let A be the algebra generated by an element a which

satisfies the equation

(9.91) <p(a) = 0,

where <p(§) is an integral function of ? and the elements of A consist

of all integral functions of a, that is, of the elements which result from

substituting a for ? in any integral function of jr. The modulus of the

algebra then corresponds to the unit 1 of the field and we shall use the

same symbol for both.

The function ?>(?) must vanish for some value of ? in the field of complex

numbers; for, if ?>(?) = exp*/>(£), V(£) integral, then exp( — VK?))

is also integral so that exp ( — tp(a)) = b is an element of A for which

bcp(a) = 1, which contradicts (9.91). If /(£) is an integral function

of ? which has no zero in common with <p('§), the element/(a) of A has
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an inverse; for there always exist integral functions* A ('i) and B(£) such

that A(?)?>(S) + £(S)/(£) = 1, whence B(a)f(a) = 1.
Let us suppose now that the roots of ?>(£) are all simple; the Mittag-

Leffler expansion of 1 / (p ( § ) then has the form

Ú)=2w^)(Í) "+m)
where an = l/g>'(gn)  and <?(£) is an integral function and, if we set

(9.92) <M§) = (Y~Av-Y'<PW>U—9n)\gnl

then

(9.93) 1 =ZV»(S) + 9>(S) <?(?)•

Since V»(£) nas the form

l + (?-^)di(?)

where 0i(?) is integral, it follows immediately that

[^(f)]" = fl»(f)+ *($)»■(*),

where 02(?) is integral, and also it is clear from (9.92) that V«(?) tf>m,(£)

vanishes for every root of ?>(£); hence, if

we have

and from (9.93)

en = yn(a),

Zen = 1.

The algebra is therefore equivalent to (9.1), provided of course that the

field contains the roots of f.   The converse theorem is obvious.

In conclusion we remark that, if the roots of q>(^) are not simple, it

can be shown in much the same way as in algebras of finite rank that A

then possesses a nilpotent invariant subalgebra; also, even if çd(£) has no

roots in the given field, it easily shown that A possesses at least one

idempotent element.

* Cf. these Transactions, vol. 16 (1915), p. 329.
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