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Introduction

The four types of means, or averages, considered in this paper are the

following : the arithmetic mean (A ) ; the geometric mean (G) ; the harmonic

mean (E); and the root-mean-square (S); the familiar definitions being as

follows :

A

G

H

S

The first three are the classical means, known to the Greeks, while the root-

mean-square is of more modern origin. Of the four types, perhaps the most

important are the arithmetic mean and the root-mean-square. Both of these

averages are in constant use in mechanics (as in the definitions of center of

gravity and radius of gyration), and in the modern theory of statistics (as in

the theory of probability, the theory of least squares, and the definition of

standard deviation). The geometric mean is important chiefly in the construc-

tion of index numbers. The harmonic mean is little used, except in special

investigations.

Each of the four quantities A, G, E, S is a particular type of the general

function of n variables : f(xx, x2, ■ ■ ■ , xn) ; and the purpose of the present

'Presented to the Society, December 29,1925; received by the editors April 5,1926.

editor's note. The typography in this paper and succeeding papers has been altered in various

respects from the form originally proposed by the authors, in an effort to adapt mathematical

composition to the monotype machine.

1

1
=  - (Xl+  X2+   ■  ■  ■ + Xn),

=   (XXX2 •  •  •   Xn)lln,

1

1/11 1    \
-(- + -+•••+-)
»   \XX X2 Xn /

11 V/2
= I  ~(xxt + xi + •■■ + x2)\    .
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paper is to exhibit a number of sets of independent postulates by which each

of these four types may be distinguished.

Unless otherwise stated, the variables xi, x2, • • • , xn are supposed to be

positive real numbers.

The only similar set of postulates for any of these means, as far as is

known to the present writer, is a set of postulates for the arithmetic mean

given by R. Schimmack* in 1909; the "complete independence" of Schim-

mack's postulates was established by R. D. Beetlef in 1915.

Properties common to all four means

It will be convenient to begin by stating the following general postulates,

I-V, which are satisfied by all four of the types of mean here considered.

Each of these postulates is a condition imposed upon the as yet undeter-

mined function/(a: i, x2, ■ ■ •, xn) of the n positive real numbers xi, x2, • • •, x„.

Various selections from these postulates will be made below.

I. f(Xi,   X2,   ■ • ■   ,   Xi,    Xj,   ■ ■  ■  ,   Xn)  = f(xi,   X2,   ■ ■ ■  ,   Xi,    Xi, ■ ■ ■   ,   X„) .

That is, the function "/" is independent of the order in which the n quan-

tities Xi, Xt, ■ • ■ , xn are taken.

II. f(xi, Xt, xz, • • - , x„) = f(m, m, xz, • • • , x„) where m = f(xi, x2).

That is, in computing the "/" of n quantities, we may replace the first

pair, xi, x2, by the "/" of that pair, entered twice.

III. f(kxi,  kx2, ■ ■ ■ , kxn) = kf(xi,  x2, ■ • • , x„)        (k positive).

That is, multiplying each of the n quantities by a positive factor k has

the effect of multiplying the "/" of those quantities by the same factor k. In

other words, the function "/" is independent of the scale in which the quan-

tities xi, x2, ■ ■ ■ , xn are measured.

IV. /(a, a, • • • , a) = a.

That is, if the n quantities are all equal, then their "/" is equal to their

common value.

V. f(xi, xt, • • • , x„) is positive when all the x's are positive.

The postulates III and IV may sometimes be replaced, as we shall see,

by the following weaker forms :

*R. Schimmack, Der Satz vom arithmetischen Mittel in axiomalischer Begründung, Mathematische

Annalen, vol. 68 (1909), pp. 125-132, and p. 304.

fR. D. Beetle, On the complete independence of Schimmack's postulates for the arithmetic mean,

Mathematische Annalen, vol. 76 (1915), pp. 444-446.
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III'. f(kxx,  kx2) = kf(xx,  X2)       (k positive).

IV. f(l, 1, ••• , 1) = 1.

It may be noted that Postulates I, II, III, and III' have the form of

"functional equations," in which the function "/" appears on both sides of

the equality sign; while Postulates IV, V, and IV are analogous to the

"boundary conditions" of a problem in differential equations, since they tell

us something about the actual value of the function in certain cases.

We now turn to properties which are peculiar to the several types of mean.

(It will be observed that in each of the following four groups, the first postu-

late is a "boundary condition," while the other three postulates are "func-

tional equations.") Various selections from these postulates will be made

below.

Postulates peculiar to the arithmetic mean (positive quantities* )

Al. f(a,b) = l(a + b).

A2. f(l - a, 1 - b) = 1 - f(a, b) (a<l,b<l).

A3. f(l  —  XX,   1 —  X2,  • ■ ■  ,   1  —  Xn)  =   1 — f(xX,   X2,   • ■ •  ,   Xn)   (Xi < 1).

Ai.   f(A — xx, A — xi, ■ ■ • , A — xn)   = A — f(xx,  xt, • • ■ ,  xH) for  all

values of A for which A—Xi>0.

Postulates peculiar to the geometric mean

Gl. f(a, b) = (ab)1'2.

G2. f(-,    -\ = —— •
Va      bj     f(a,b)

/ 1        1 1 \ 1
G3. f[—,   —,■■■,—)--•

\ XX       Xi *»/       f(xx, Xi, • • • , x„)

/ A      A A\
G4. /(—,—,•■•,—) =

\ XX        Xi xn / f(xX,   Xi,   • • •   ,   Xn)

where A is positive. Here (ab)112 means +(ab)112 not — (ab)111.

Postulates peculiar to the harmonic mean

,      v       2ab
HI. f(a,b)---•

a + b

*For further postulates j48, A&', A9, intended for use in the domain of all real or all complex

quantities, see Appendix I and Appendix II.
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f(a> *>

\a-l'    b-l)     f(a,b)-l

(    xi x2 xn   \ f(xi, x2, ■ ■ • , x„)
H3. f[-> -, • • • i-) =-(x< > 1).

\Xi —   1      X2 —   1 Xn —  1/        /(Xi,   X2,   • • •   ,   Xn)   —   1

X2 Xn      \ f(Xl,   X2,   ■   ■   ■   ,   Xn)„.        J       Xl Xt Xn      \
224. /(-, -, • • • ,-) =

v4xi—1   Axt—1 Axn—ll Af(xi, xt, ■ - ■ , x„) — 1

for all values of A for which Axt — 1 >0.

Postulates peculiar to the root-mean-square

51. f(a,b) = {(xi2 + xi)/2}1'2.

52. /{(1-a')1'2,  (1-6*)»»}- {l- [/(a, b)]2}1'2     (o < 1, b < 1).

53. f{(l - xi2)1'2, (1 - xi)1'2, • ■ • , (1 - x2)112}

= {l-[/(xi, X2, ••• , xn)]2}1'2(xi<l).

54. f\f(A - x})1'2, (A - xi)112, • • • , (A- xt)1'2}

= {A-   [f(xx,   Xt,---   ,   Xn)]2}1'2,

for all values of A for which A —x(2>0.    Here again, x1'2 means +*1" not

-x1'2.

Sets of independent postulates for each type of mean.

Among these general and special properties there are, of course, many

redundancies. The purpose of the present paper is to select, for each type

of mean, sets of independent postulates; that is, sets of postulates which,

while sufficient to determine uniquely the type of mean in question, shall at

the same time be free from all redundancies. Such sets can be selected in a

variety of ways, as in the following tables. These tables give the postulates

belonging to each set, and also the list of examples which will later be used

to prove the independence of the postulates in that set.

It will be observed that in each group the fifth and sixth sets are obtained

from the second set by replacing either III or IV by the weaker form III' or

IV; while the seventh set is obtained from the first by replacing IV by IV

and then adding III. No further replacements of III or IV by III' or IV are

possible, as we shall see by Examples A III 7, G III 7, H III 7, and S III 7.
Thus, a set of postulates comprising A1, A2, A3,1, II, III', IV', V would

not be sufficient to determine the arithmetic mean; Gl, G2, G3, I, II, III',

IV, V would not be sufficient for the geometric mean; nor 2J1, 222, H3, I,

II, III', IV, V for the harmonic mean ; nor SI, S2, S3,1, II, III', IV, V for
the root-mean-square.



1927] POSTULATES FOR VARIOUS MEANS

For the Arithmetic Mean (positive quantities*)

Set Postulates Examples Used

Ai
Al
A3
A4

Al I II

Al I II
A3 I II
A4 I II

III
III

IV

IV

0 41 il II                il IV

0 ill il II   il III   A IV
0 ill i4 II   il III
0 ill il II

AS
A6

Al      I       II       III'    IV
il 2      I       II       III     IV

0     ill    il II   il III   il IV
0     ill    il II   i4III   il IV

¿7 ill II       III     IV 0     ill    A II   A III 7 il IV

For the Geometric Mean

Set Postulates Examples Used

Gl
G2

G3
G4

Gl I
Gl I
G3 I
G4 I

II
II

II
II

III
III

IV
IV V

V
V

0 Gl Gil GIV
0 CI GII G III   GIV G V
0 Gl GII G III G V
0 Gl Gil GIV GV

G5
G6

G2      I II       III'    IV      V
G2      I II       III     IV     V

0     Gl    GII     GUI    GIV    GV
0    Gl    GII     GUI   GIV    GV

G7 Gl II III     IV 0     Gl    G II     G III7 G IV

For the Harmonie Mean

Set Postulates Examples Used

m
El
E3

E4

HS

fió

El I
El I
E3 I
E4 I

II
II
II
II

III
III

IV
IV V

V

V

0 HI HII ETV
0 SI ffll fi III   fi IV   fi V
0 fil HII fflll               ffV
o si an flv

fi2      I II       III'     IV      V
fi2     I        II       III     IV     V

El
El

fill
fill

fi III   ff IV
ff III   ff IV

ffV
ffV

ff 7 ffl II III     IV 0     fil    fill     ffIII7fiIV

*For further Sets At", AT', A8, A9, intended for use in the real or complex domain, see Appen-

dices I and II.
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51
52
S3
54

55
56

57
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For the Root-Mean-Square

52
52

51

Postulates

51 I II
52 I II
53 I II
54 I II

III

III

IV
IV

II       III'    IV
II       III     IV

II III     IV

Examples Used

[January

0 51 511 5IV
0 51 511    5 III    5IV
0 51 511   5 HI
0 51 5II

0     51     511   5 III    5IV
0     51    511   5 III    5IV

0     51    5 II    5 III 7 5 IV

Examples used in proofs of independence

To establish the independence of the postulates of each set, we exhibit,

in the usual way, a list of examples of functions f(xh x2, • • ■ , xn) which

satisfy some but not all of the postulates. In the following table the postu-

lates satisfied by each example are stated explicitly, opposite the number of

that example. (A dash, —, indicates that the postulate is not satisfied.) The

list of examples is given immediately below the table.*

As an illustration of the use of these examples, consider Postulate III in

Set G3. Example G III satisfies Postulates G3, I, II, and V, but faüs on

Postulate III. Hence III is not a consequence of G3,1, II, V; that is, Postu-

late III is not a redundancy in Set G3. Similarly for each of the other

postulates in this set and in each of the other sets.

Ex. 0. /()   =   {(*l3+*28+   •■•  +   *n8)/»}1/3.

This example satisfies all the general postulates I-V, but none of the special

postulates A1-A4, G1-G4, 221-224, S1-S4. To see that II is satisfied, note
that

m=f(xi, xt) = {(xi*+x¿)/2}1'3,

so that ms+mz=xit+x2s.

xi + xt + 3x3 + 4x4 + • • • + »x„
Ex. AI. f() =

1+1+3+4+ + n

»For further Examples: 0', All', A III", A IV, A IV"; All", A IX, and ¿X, for the arithmetic
mean in the real or complex domain, see Appendices I and II.
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Al    Al    A3    A4 II     III    IV III' IV

Ex.0
Ex. A I

Ex. A II
Al    Al    A3    A4
Al    Al    A3    A4

I II III IV HI' IV
— II III IV III' IV

I       —     III    IV        III'       IV

Ex. il III
Ex. A IV

Ex. A III 7

— Al A3
Al Al —
Al    Al    A3

I       II     —     IV        — IV
I       II     III   — III'       —
I       II     —     — III'        IV

Gl     G2     G3     G4 II     III    IV III' IV

Ex.0

Ex. GI
Ex. G II

Gl     G2     G3     G4
Gl    Gl    G3    G4

I II III IV III' IV
— II III IV III' IV

I       —     III   IV        III'       IV

Ex. G III

Ex. G IV

Ex. G III 7

— Gl G3 —
Gl Gl — —
Gl    G2    G3    —

I       II     —     IV        — IV
I       II     III   — III'       —
I       II     —     — III'       IV

Ex. GV G2     G3     G4 II     III    IV III' IV

ffl    ff2    ff3    ff4 I II     III    IV III' IV

Ex.0

Ex. ffl
Ex. ff II

ffl    ff2    ff3    ff4
ffl    ff2    ff3   'ff4

I       II     III    IV III'        IV
—     II     III    IV III'        IV

I       —     III    IV III'        IV

Ex. E III

Ex. E IV
Ex. fl III 7

— El E3 —

HI El — —
Hl    Hl    H3    —

I       II     —     IV — IV

I       II     III    — III'        —
I       II     —     — III'        IV

Ex. ff V —     ff2    ff3    ff4 II     III    IV III' IV

51     52     S3     54 I II      III    IV III' IV

Ex.0

Ex.51
Ex. 5 II

51     52     53     54
51    52    S3    54

I II III IV III' IV
— II III IV III' IV

I      —     III   IV        III'       IV

Ex. 5 III
Ex. 5 IV

Ex. 5 III 7

— 52 53 —

51 52 — —
51     52     53     —

I       II     —     IV        — IV
I       II     III   — III'       —
I       II     —     — III'        IV
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Ex. A II. /() = the "median" of the quantities Xi, x2, ■ ■ ■ , xn, if n is odd,

or the arithmetic mean of the "median-pair" if n is even.* To see that II

fails note that/(5, 3, 7) =5, while/(4, 4, 7) =4.

Ex. A III.f(x, x, • ■ • ,x)=x when all the x's are equal; otherwise/() = §.

This example fails on III and III', and on A1 and .44; but it satisfies A2 and

A3.

Ex. A IV. /() - (xi + xt + ■ ■ • + x„)/2.

This example fails on IV and IV, and on A3 and .44 ; but it satisfies A1 and
A2.

Ex. A III 7. f(xi, Xt) = (xi +Xt)/2 ; but when n > 2, /() = 1 or \, according

as (xi+xt+ ■ • ■ +xn)/n is equal to 1 or not equal to 1. This example is used

only in Set .47, to prove the independence of Postulate III in that set. It

fails on III and IV, but satisfies III' and IV. To see that it satisfies .42 and

A3, note that if all the x's are less than 1, the value of (xi+xt+ ■ - - +x„)/n

must be less than 1, and hence/() = §.

Ex. G I. /() = (xix2*33*44 • • • x»)1!", where ¿ = 1 + 1 +3+4+ ••■+».

Ex. G II. /() = the median of the n quantities if n is odd, or the geometric

mean of the median-pàir if n is even. To see that II fails, note that/(4, 9, 5)

= 5, while/(6, 6, 5) = 6.

Ex. G III. f(x, x, • • • , x) =x when all the x's are equal ; otherwise/() = 1.

Ex. GIV./() = {(xiX2 • • • Xn)/(n-l)}lln. To see that II holds, note that

m=f(xi, Xt) = (xiXt)1'2, so that mm=XiXt.

Ex. G III 7./(xi, xt) = (xixt)112; but when «>2,/() = l. This example is

used only in Set G7, to prove the independence of Postulate III in that set.

Ex. G V. f(x, x, ■ ■ ■ , x)=x when all the x's are equal; otherwise

f() = — \xiXt ■ ■ ■ Xn |1/n, where the expression of which the «th root is taken

is the absolute value of the product of the x's without regard to sign.

„     „ T                n       1 + 1 + 3 + 4 + ---+»
Ex. 221. /() =-

113        4 n
— + — + — + — + • • • + —
Xi       X2       x3       x4 x„

Here when « = 2,
2xiX2

f(xi, Xt) = -;-
Xi +   X2

Ex. H II. /() = the median of the n quantities if n is odd, or the harmonic

mean of the median-pair if n is even. To see that II fails, note that/(3,6, 2)

= 3, while/(4, 4, 2) = 4.

*Here the median (or median-pair) of n positive quantities is defined by arranging the n quantities

in a series in order of magnitude, and picking out the middle item (or mid-pair) in this series.
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Ex. E III. f(x, x, ■ ■ ■ , x) =x if all the x's are equal ; otherwise/() = 2.

Ex. HIV. /() = 2/Í— + — + ■•• + — ).
\XX        X2 xj

Ex. E III 7./(*i,£2) = 2a;i:E2/(a;i+:K2);butwhen»>2,/() = lor2,accord-

ing as (l/»)[(l/a;i) + (l/*í)+ • • • + (l/xn)] is equal to 1 or not equal to 1.

This example is used only in Set El, to prove the independence of Postulate

III in that set.

Ex. E V.f(x, x, ■ • • , x)=x when all the x's are equal; otherwise/()=0.

n      fxx2 + xi + 3xi + 4x/ + • ■ • + nxi\™
Ex.5 1. /() = I-).

\     1  +   1  +  3+4+--- + « /

To see that this example satisfies II, note that m =f(xx, xi) = {(x? +x¿ )/2}llt,

so that m2+m2=x2 +x22.

Ex. 5 II. /() = the median of the n quantities if n is odd, or the root-mean-

square of the median-pair if n is even. To see that II fails, note that/(6,8, 4)

= 6, while/(501'2, 501'2, 4) = 501'2.

Ex. 5 III. f(x, x, ■ ■ ■ , x)=x when all the x's are equal; otherwise

/()-(l/2)i".
Ex. S IV. /() = {(xx2 +X22 + ■■■ +x2 )/2} »«.

Ex. 5 III 7. f(xx, x,) = {(xx2 +X22 )/2}1/2 ; but when n > 2,f() = 1 or (1/2)1'2,

according as (xx2+X22+ ■ ■ ■ +xn2)/n is equal to 1 or not equal to 1. This

example is used only in Set 57, to prove the independence of Postulate III

in that set.

Proofs of theorems

In the following paragraphs, we give the proof that each of the foregoing

sets of postulates is sufficient to define the type of mean in question.

Theorem A (a).  Proof of A from Al, I, II, and IV.

Let q be any positive quantity which is less than (l/ra)th of the smallest

of the x's. Then by II and Al,

f(xx,xt,x», ■ ■ ■ ,xn)=f(q, [xx+X2-q],x3, • • ■ ,xn),

since each side  equals f(\(xx+x¿),  %(xx+xî),  *»,•••, xn),  and all  the

arguments are positive.

By successive applications of this result, in view of I, we have

f(xx, Xi, ■ ■ ■ , Xn) = f(q, q,  [xx + x2 + x3 — 2q], Xi, ■ ■ ■ , xn)

= f(i> 1, q,  [xi + X2 + x3 + Xi — 3q], xs, ■ ■ • , xn)

= f(q, q, ■ ' • , [ici + *2 +-V Xn- (n- l)q]).
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Now take a = (xi+x2+ • • • +xn)/n. Then, putting each x equal to a,

f(a, a, ■ • • , a)=f(q, q, ■ ■ ■ , [na — (n — l)q))=a, by Postulate IV. But

Xi+Xt+ - - ■ +xn=na, so that

f(xi, xt, • ■ •, xn) = f(q, q, ■ ■ ■ ,[na - (n - 1) q]).

Hence

f(xU Xt, ■ ■  • , Xn)   =   (Xi+ Xt+   ■  ■  ■ + Xn)/n.

Hence any function / which satisfies the postulates of Set A1 must be iden-

tical with the arithmetic mean, A.

Theorem A (b). Proof of Al from .42,1, and III or III'.

/(a, b) = (a+b)f(-^-, ——Y by III or III' ;
\o + b    a+ b)

_(0+})/(1__±r,I__i_)

-(° + Í1-K7h-7+-¡)]-byA2;
= (a + b) - f(b, a), by III or III' ;

= (a + ô)-/(a, b), by I.

Hence/(a, b) = (a+b)/2, which is Al.

This proof shows that any function which satisfies the postulates of Set

A2or Set ^45 will also satisfy the postulates of Set .41, and hence be identical

with the arithmetic mean.

Theorem A (c).  Proof of TV from A3, III.

From A3, putting Sk—\, **—\, • ■ - , x„ = |, we have

/(*,*, •••,«-!-/(♦, *,•••,*),

whence f(\, h, • • • ,h) = i-   Hence by III, f(a, a, • • • , a) -a, which is IV.
This proof shows (since Postulate A2 follows at once from Postulate ^43)

that any function which satisfies Set A3 wiU also satisfy Set ^42.

Theorem A (d). Proof of Al and TV from .44,1.

From A4:, putting A =a+b, Xi = a, x2 = b, and » = 2, we have

f(a+b — a, a+b — b)=a+b—f(a, b);

whence by I, f(a, b)=a+b —f(a, b).  Therefore f(a, b) = (a+b)/2, which is A1.
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Again, from i44, putting each x equal to a, and A =2a, we have

f(a, a, ■ ■ -, a)=2a-f(a, a, • • • , a),

whence f(a, a, ■ • ■ , a) = a, which is IV.

This proof shows that any function which satisfies Set .44 will also satisfy

Seti41.

Theorem A (e). Since IV follows from III and IV', we see that Set .46

implies Set i42, and that Set i47 implies Set i41 ; so that any function which

satisfies Set i46 or Set i47 will be identical with the arithmetic mean.

Theorem G (a). Proof of G from Gl, I, II, IV.

By II and Gl,f(xx, x2, x3, ■ ■ ■ , xn)=f(l, [xxX2], x3, • ■ ■ , xn), since each

side equals/{ (xxX2)112, (xxX2)112, x3, ■ ■ • , xn\.

By successive applications of this result, in view of I, we have

f(xX,   X2,   ■   ■   ■   ,   Xn)   =/(l,   1,    [*1*2X3],   Xit   ■  ■   ■   ,   Xn)

= /(l,   1,   1,    [Z1X2Z3Z4] ,   *6,   •   '   •   ,   Xn)

= f(l,   1,   ■  ■  '   ,    [xiXt •  ■   •  X„]).

Now take a = (xxx2 ■ • ■ xn)lln. Then, putting each x equal to a, we see that

f(a, a, • ■ ■ , a) =/(l, 1, • • ■ , a") =a, by Postulate IV. But xxx2 ■ ■ ■ xn = an,

so that f(xx, X2, ■ ■ ■ , xn) =/(l, 1, • • ■ , an) =a.   Hence

f(xX, X2, •  •  • , Xn) = (XXX2 ■  •  • ^n)1'".

This proof shows that Set Gl determines the geometric mean.

Theorem G (b). Proof of Gl from G2,1, III or III', V.

f(a, b) = «*/("' -), by III or III',

1
= ab-, byG2,

f(b, a)'

1
= ab-> by I.

f(a, b)

Hence [f(a, b)]2 = ab, so that/(a, b) = (aby'2 or -(ab)1'2. But the negative

value is impossible, by V. Hence/(a, b) = (ab)112, which is Gl.

This proof shows that Set G2 and Set G5 reduce to Set Gl, and hence

determine the geometric mean.

Theorem G (c). Proof of IV from G3, III, V.
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From G3, putting xi = l, x2 = l, • • • , xn = l, we have/(l, 1, • • • , 1)

= 1//(1, 1, • • • , 1), whence /(l, 1, • • • , 1) = 1 or -1. Hence by V,

/(l, 1, • • • , 1) = 1.  Then by III,/(a, a, ■ ■ ■ , a) = a, which is IV.

This proof shows (since G2 follows at once from G3) that Set G3 reduces

to Set G2, and hence determines the geometric mean.

Theorem G (d). Proof of Gl and TV from G4,1, V.

From G4, putting a = ab, Xi = a, Xt = b, and » = 2, we have

(ab    ab\ ab

7' 7/ ~ /(a, b) '
Hence by I,

ab
f(c, b) =

f(a, b)

Therefore/(a, b) = (ab)112 or —(ab)1'2.   But the negative value is excluded,

by V.  Hence/(a, b) = (ab)1'2, which is Gl.

Again, from G4, putting x equal to a, and A =a2, we have

a2

/(a, a, • • • , a) = —--,
/(a, a, • • • , a)

whence, by V, /(a, a, ■ - -, a) = a, which is IV.

This proof shows that Set G4 reduces to Set Gl, and hence determines

the geometric mean.

Theorem G (e). Since IV follows at once from III and IV, we see that

Set G6 reduces to Set G2, and that Set G7 reduces to Set Gl ; hence Set G6

and Set G7 determine the geometric mean.

Theorem H (a). Proof of H from HI, I, II, IV.

Let q be any positive quantity which is greater than n times the largest

of the x's.   Then by II and 211,

1
f(xi, x2,---, xn)= f[q,--> Xz, ■ ■ ■ ,

xi      xt      q

since each side is equal to

>  Xn j ,

(2xiX2        2xiX2
-——, —-—, xz, ■
Xi +  Xt     Xi +   X2
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and all the arguments are positive. By successive applications of this result,

using I, we have

f(xx, X2, • ■ ■ , xn) = f(q, q,--

—+ —H
xx      X2      x3      q

—j—2> *«. •• •. A

xn     a I

= //?. ?,••■,
11 1       »-1

—+ —+ •••+-
xx      Xi xn q

Now take

a =
1        1 1

,- + -+•■•+-)
^XX X2 Xn

Then putting each x equal to a,

f(a, a, ■    ■ , a) = (q, q, ■ ■ ■ ,--\ = a
n     « — 1

a q

by Postulate IV.   But

11 1      «
— + — +■■■ + — = -,
XX        X2 xn       a

so that

f(xi, X2, ■ ■ ■ , xn) = f/q, q, ■ ■ ■ ,
n     n — 1

a q

Hence

1
f(Xl,   X2,   • • •   ,   Xn)  =

1/1 1 1  \
-(- + -+••+-)
n \xx      X2 x„/

This proof shows that Set .01 determines the harmonic mean.
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Theorem H (b). Proof of El from E2,1, III or III', V.

ab      (a + b    a + b\
f(a, b) =   -— /(——, ——\,    by III or III' ;

a + b

ab

a + b'

ab

b

a + b a + b

a + b a + b

(a+b    a + b\
f{—' IT)

a + b     /a+b    a + b\

f\~a-'-r)-

byH2.

Now by V, f(a, b) is not zero.  Hence

1 1 1

/(«, *) ab

a+b     a+b

a + b 1

ab      /a + b    a + b\

f\~a~' ~b~)

Hence

ab        f(b, a)

a+b 1

ab        f(a, b)

2ab
f(a, b) =

,    by III or III' ;

,    by I.

a + b

which is El.
This proof shows that Set E2 and Set E5 reduce to Set El, and hence

determine the harmonic mean.

Theorem H (c). Proof of IN from E3, III, V.

From E3, putting xx = 2, x2 = 2, • ■ ■ , xn = 2, we have

/(2, 2, ••• ,2)
f(2, 2, • • • , 2)

/(2, 2, , 2) - 1

Hence }(2, 2, • • • , 2)f/(2, 2, • • • , 2)-2]=0. But by V,/(2, 2, ■• -, 2) is
not zero. Hence f(2, 2, ■ ■ ■ , 2) = 2. Hence by III,/(a, a, ■ ■ ■ , a) = a, which

is IV.
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This proof shows (since 222 follows at once from H3) that Set H3 reduces

to Set 222, and hence determines the harmonic mean.

Theorem H (d). Proof of HI and TV from 274.

From 274, putting A = (a+b)/(ab), xi = a, xt = a, and n = 2, we have

(ab)f(a, 6)
f(b, a) =-,

(a + b)f(a,b) -ab
whence by I,

„     ., (ab)f(a, b)
f(a, o) =-,

(a + b)f(a,b) -ab

where by V,/(a, b) is not zero; hence/(a, b)=2ab/(a+b), which is 271.

Again, from 274, putting each x equal to a, and A = 2/a, we have

af(a, a, • • • , a)
/(a, a, • • • , a) = ■,

2/(a, a, •• -, a) - a

where by V,/(a, a, ■ ■ ■ , a) is not zero; hence/(a, a, ■ ■ • , a)=a, which is IV.

This proof shows that Set 274 reduces to Set 271, and hence determines

the harmonic mean.

Theorem H (e). Since IV follows at once from III and IV, we see that

Set H6 and Set 277 reduce to Set 272 and Set 271 respectively, and hence

determine the harmonic mean.

Theorem S (a). Proof of S from SI, I, II, IV.

Let q be any positive quantity which is smaUer than (l/«)th of the small-

est of the x's.  Then by II and SI,

f(xi, x2, xz, ■ •'• , xn) = f{q, (xi + Xt2 - q2)1'2, x3, • • • , x„},

since each side is equal to/j[(xi2+x22)/2]l/2,[(x12+X2s)/2]1/2,X3, • • •,*„},and

all the arguments are positive. By successive applications of this result, in

view of I, we have

/(xi, xt, ■ ■ ■ xn) = f{q, q, (xx2 + xi + x32 — 2q2)112, x4, • • • x„}

= fU,q,---, (xî +xt2 + ■ ■ ■ + x2 - (n - l)q*yi2}

Now take a- {(xx2 +xi + ■ - ■ +xn2)/n}1/2. Then putting each x equal to a,

f(a,a, ■ --,a)=f{q,q, ■ ■ ■ ,(na2-(n-l)q2Y'2} -a,byIV.

ButXi2 +X22 + ■ • • +x2 =na2, so that

f(xi, xt, ■ ■ ■ , xn) = f{q, q,--- , (na2 - (n - Vq2)1'2} = a.
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Hence /x¿ + x22 -\-+ x„2\«».
f(xX,   Xi,   • • •   ,   Xn)  =  I-J

This proof shows that Set SI determines the root-mean-square.

Theorem S (b).  Proof of 51 from 52, I, III or III'.

f(a, b) = (a2 + b2yi2f(---, -J,    by III or III' ;
J J\(a2 + b2)1'2   (a2 + b2)1'2)

JY        b2  V/2 /       a2 yn

= (a2 + 62)1'2 (1 - \f(-, ---1 ), by52;
\       L   \(a2 + b2)1'2   (a2 + b2)1<2jj

= {(a2 + b2) - [f(b, a)]2}1'2, by III or III' ;

= {(a2+b2)- [f(a, ô)]2j»/2byl.

Hence 2 [f(a, b)]2 = a2+b2, so that

f(a, b) = {(a2 + ¿2)/2}i/2 or - {(a2 + b2)^}1'2.

It remains to exclude the negative value (without using V). By S2,f(a, b)

is positive whenever a<l and ¿><1 ; hence by III,/(a, b) is positive for all

positive values of a and b.  Hence f (a, b) = {(a2+b2)/2\112.

This proof shows that Set 52 and Set 55 reduce to Set 51, and hence

determine the root-mean-square.

Theorem S (c). Proof of IV from S3, III.

From 53, putting xx = \, Xi = %, ■ ■ ■ , xn = i, we have

/{(l/2)i/2, (1/2)*'2, ■■■,(l/2)1'2}   '

= (l-[/i (1/2)"*, (l/2)i/2, • • -AW2}]2)1'2

which by definition of the square root sign, is not negative. Hence

/{(1/2)1'2, (1/2)1'2, • • -, (1/2)"2} =(l/2)i'2.

Hence by III,

f(a, a, ■ • • , a)=a.

This proof shows (since 52 follows at once from S3) that Set S3 reduces

to Set 52, and hence determines the root-mean-square.

Theorem S (d).  Proof of 51 and TV from 54, I.

From 54, putting A =a2+b2, xx = a, Xi = b, and « = 2, we have

f(b, a) = (a2 + b2- [f(a, b)]2)1'2.

Hence, by I, f(a, b) = (a2+b2— [f(a, £>)]2)1/2, which is not negative. Hence

f(a, b) = {(a2+b2)/2}1'2.
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Again, from S4, putting x equal to a, and A = 2a2, we have

/(a, a, ■ ■ ■ , a) = [2a2- [f(a, a, ■ ■ -, a)]2} "2,

which is not negative; hence/(a, a, • - •, a) = a, which is Postulate IV.

This proof shows that Set S4 reduces to Set SI, and hence determines the

root-mean-square.

Theorem S (e). Since IV follows at once from III and IV, we see that

Set S6 and Set S7 reduce to Set S2 and Set SI respectively, and hence de-

termine the root-mean-square.

Appendix I.  The arithmetic mean in the domain of all real numbers

In all the preceding sets of postulates, the x's in the function f(xi, Xt,

• • • , xn) have been assumed to be positive real quantities. In the case of the

geometric mean, the harmonic mean, and the root-mean-square, this restric-

tion is a customary one, in order to insure that the function shall always be

finite and single-valued. In the case of the arithmetic mean, however, the

restriction is not essential.

This appendix, therefore, is devoted to a consideration of sets of postulates

for the arithmetic mean in the domain of all real numbers.

For this purpose, we introduce, in addition to the postulates I-V, III',

IV, A1-A4, given above, the following postulates:

Postulate IV". /(-I, -1, • • • , -1) =-1.

Postulate AH.    /(.4+Xi, ^4+x2, ■ ■ ■ , A+xn)=A+f(xh x2, ■ ■ • , xn).

Postulate ^48'.   f(—xu —x2, • • ■ , —xn) = —f(xh x2, • ■ • , xn).

The results obtained may be summarized as follows :

In the first place, Sets Al, A2, A3, A4, A5, given above tor the case of

positive reals, are valid just as they stand for the case of all reals. (The

necessary modifications in the proofs are given below.)

In the second place, Sets A 6 and A 7 are not valid for the case of all reals

(see Example A TV" below) ; but they can be made so by the addition of

Postulate IV".

In the third place, Postulates I, II, ^48, ̂ 48' form a set (due essentially to

Schimmack*), which is valid for the case of all reals, but cannot be used in

the case of positive reals; this we shall call Set A8.

*Instead of our Postulate II, Schimmack (loc. cit.) uses the following postulate:

f(xi, x¡, ■ • • , Xn-i, Xn)=f(m, m, ■ ■ ■ , m, xn), where m=f(xu xi,---, xn-i);

and instead of our Example A I, the following example:

f() = (x1/2»-*) + (x1/2»-*) + (x3/2"-i) + (xt/2»-')+ ■ ■ ■ -r-(*n->/22)+(*»/2).
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The complete list of sets of independent postulates for the arithmetic

mean, for the case of all reals, is then as follows :

Set Postulates Examples Used

Al

Al
A3
A4

Al I
i!2 I
i!3 I
i!4 I

II
II

II
II

III

III

IV
IV

0 AÏ ATI'                il IV
0 il I il II'    il III   A IV
0 i4 I il II'    il III
0 il il H'

i!5
A6'

Al
Al

II

II

III'
III

IV

IV IV
o ii   iiii'  iini iirv
0   il I     i4 II'    il III" i4 IV   i4 IV"

AT i41      I II III     IV     IV" 0   i4 I     il II'   il III" il IV   il IV

i!8 i!8 II       ¿8' 0   il I     il II'    0'

The new examples in the independence proofs are the following :

Ex. A II'.  The same as Ex. A II, for all reals, understanding "the order

of magnitude" in the algebraic sense.

Ex. A III".  When n = 2,f(xx, z2) = f (*i+*2); when n>2,

}(Xl, X2, • • • ,x„) = l OT —1

according as (xx+X2+ ■ ■ • +xn)/n is equal to 1 or not equal to 1.

Ex. A IV.  When n = 2,f(xx, X2) = %(xx+X2); when n>2,

/0--|(*i+*»+ ••• +*»)/» |,
where the vertical bars mean "the absolute value of."

Ex. A IV". When n = 2,f(xx, x2) = %(xi+X2); when n>2,

/()= |(si+*2 + • • • +xn)/n\.

Ex. 0'. /() = the maximum (in the algebraic sense) of the n real quantities

The following table shows the properties of all the examples used in the

case of the real domain.

ill    i!2    il3    i44        i48    i48' II      III    IV       III'   IV     IV

Ex.0

Ex.0'

—     i48'

i48    —
II     III    IV

II     III    IV
III'  IV

III'  IV
IV
IV

Ex. il I

Ex. A II'
Ex.iHII

Ex. i4 IV

ill i!2 i!3 i!4

i41 i42 i!3 i!4
— Al A3 —
Al Al — —

i48    i48'
i48    A&'

—     A8'

— II III IV

I — III IV
I II — IV
I II III —

III'  IV IV"
III'   IV IV"
—     IV IV"

III' — —

Ex. il III"

Ex. il IV

Ex. i4 IV"

ill i42
ill i42
i41    il2

I II

I II
I     II

III
III

III' IV IV"
III' — IV"

III'  IV     —
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The proofs of the theorems, adapted to the domain of aU reals, are as

follows :

Theorem A (a').  Proof of A from Al, I, II, IV.   (Real domain.)

Since there is now no necessity for keeping the arguments positive, the

proof of Theorem A (a) can be simplified by putting q = 0. Hence Set .41

determines the arithmetic mean.

Theorem A (b'). Proof of Al from A2,1, III or III'.  (Real domain.)

If a and b are positive,/(a, b) = \(a+b), as in the proof of Theorem A (b).

If a and b are any real numbers, let p = l/(\a\+ \b \ + 1) ; then 1 — pa and

1—pb will be positive, so that

f(l-pa, l-pb) = \(l-pa+l-pb) = l-p (a+b)/2.
Bxitf(l-pa, l-pb) = l-f(pa, pb), by A2; =l-pf(a, b), by III or III'.
Therefore/(a, b) = (a+b)/2, for all real values of a and b. Hence Set .42 and

Set A 5 reduce to Set A1.

Theorem A (c').  Proof of TV from A3, I, III.   (Real domain.)

By III,/(0, 0, • • • , 0) = 2/(0, 0, ■ • • , 0); hence/(0, 0, • • • , 0)=0.
From¿3,/(l,l, • • -, 1) = 1-/(0,0, • • -,0) = 1. Hence by III,

f(a,a, ■ ■ ■ ,a) = a,
whenever a is positive.

From A3, f(2, 2, • • • ,2) = l-/(-l, -1, • • •, -1), whence

2 = l-/(-l,-l, - . -, -1),

whence/(-l, -1, • • •, -1) =-1. Hence by III,

/(a,a, ■ • -,a) = a

whenever a is negative.

Since A2 follows immediately from .43, this proof shows that Set .43

reduces to Set A 2.

Theorem A (d').  Proof of Al and TV from A4, I, II.   (Real domain.)

If a and b are positive, put A =a+b, xx = a, x2 = b, and n = 2,in A4; then

f(b, a) = a+b—f(a, b), whence by I, /(a, b) = a+b—f(a, b), whence

/(a, b) = $(a+b),

whenever a and b are positive.

If a and b are any reals, let p = a large positive quantity, so that p+a,

P+b, and p+a+b will certainly be positive. Putting 4 =p+a+b, Xi=>a,

Xt = b, and w = 2, in .44, we have

f(p + b, p + a) = p + a + b -/(a, b),
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wnence (p + b + p + a)/2 = p + a + b - f(a, b),

whence/(a, b) = (a+b)/2, which is Postulate A1 for all real values of a and b.

If a is positive, put xx = a, Xi = a, ■ ■ ■ , xn = a, and A =2a, in .44; then

f(a, a, • • ■ , a) = 2a—f(a, a, ■ ■ ■ , a), whence/(a, a, ■    ■ , a) = a.

Again, if a is positive, put xx = 0, #2=0, • • • , xn = 0, A =a, in .44; then

f(a, a, ■ ■ ■ , a) = a-f(0, 0, • • • , 0), whence/(0, 0, ■ ■ • , 0) =0.
If a is negative, put xx = a, x2 = a, ■ ■ ■ ,xn = a, and .4=0, in .44; then

f( — a,—a,---,—a) = —f(a, a, ■ ■ ■ , a), whence, since —a is positive,

— a = —f(a, a, • • • , a) ; hence f(a, a, ■ ■ • , a)=a.

Therefore /(a, a, ■ ■ ■ , a) = a for all real values of a, which is Postulate IV.

This proof shows that Set i44 reduces to Set Al.

Theorem A (e'). Since IV follows at once from III, IV, IV", we see that

Set i46" and Set .47" reduce to Sets .42 and .41 respectively, in the domain

of all reals.

Theorem A (f'). Proof of A4 from A8, AS'.   (Real domain.)

By i48, f(A—xx, A—X2, ■ ■ • , A—xn)=A+f(—xx, —x2, • • • , -xn),

whence, by AS',f(A —xx, A —X2, ■■ ■ , A -xn)<=A -f(xx, x2, ■ ■ ■ , xn). This

shows that Set A8 reduces to Set .44, and hence determines the arithmetic

mean in the domain of reals. Unlike the other sets, however, this Set AS

cannot be used if the n quantities xx, Xt, • • -, xn are restricted to the domain

of positive values.

Appendix II.  Postulates for the arithmetic mean

in the complex domain

In the domain of complex quantities, Sets .41 and AS are sufficient to

determine the arithmetic mean.   (See proofs below.)   Further, if we form a

new postulate

Postulate A9. f(A—xx, A—X2, ■ ■ ■ , A—Xn)=A—f(xx, xt, • ■ ■ , xn),

then a Set A9, comprising Postulates I, II, A9, will also be sufficient, as

proved below.   (This postulate A9 is the same as .44 without the restriction

*{<1.)
Hence, in the complex domain, we have three sets of independent postu-

lates for the arithmetic mean, as follows :

Set Postulates Examples Used

i41 ill      I II IV 0       ill        i4II"    il IV
il8 i48      I II i48' 0       il I        il II"    0'
il9 i49     I II 0      il I        i4 II"
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The new example here required is

Ex. A TL". f(xi+iyi,xt+iyt, • • ■ ,xn+iyn)=x+iy, where x is the median

of the x's if n is odd (or the arithmetic mean of their median-pair if n is even),

and y is the median of the y's if n is odd (or the arithmetic mean of their

median-pair if n is even).

This example satisfies Postulates A1,AS,A8',A9,I and IV, but fails on

Postulate II.

The properties of all these examples for the complex domain are shown

in the following table :

Ex.0
Ex.0'

Ex.41
Ex.411"

Ex. A IV

Al      A&      AS'     A9

Al
Al

—      A8'

A8      —

Al
Al
Al

A& A8' A9
A8 A8' A9
—       A8'    —

II       IV

II
II

IV
IV

—      II       IV

I        —      IV
I      II     —

On the other hand, it is interesting to note that if the n quantities

Xi, xt, - - - , xn are allowed to take on complex values, then Sets A2, A3, A4,

45, A6,A7,46", AT' are not sufficient to determine the arithmetic mean, as

is shown by the following examples :

Ex. A IX.

f(xi + iy, xt + iy, - ■ ■ , Xn + iy) = (xi + iy + x2 + iy + ■ ■ ■ + x„ + iy)/n

when all the y's are equal ; otherwise,

/(xi + iyi, X2 + iyt, • • ■ , xn + iyn) - (*i + xt + • • • + x„)/n.

This example satisfies Postulates I, II, III, IV, III', IV, IV", V, A2, A3,
A4, but it is not the arithmetic mean. (This example would still satisfy 42

and .43, even if we removed the restrictions o<l, 6<1, and x,<l.)

Ex. A X.  When n = 2,f(xx, x2) = (xi+x2)/2; when n>2,

f() = (xi+x2+ ■ ■ ■ +xn)/nor |(xi+s2+ • ■ ■ +xn)/n\,

according as (xi+x2+ ■ • • +xn)/n is real or imaginary.

This example satisfies Postulates .41, I, II, III, IV, IV", V, but fails on

Postulate IV.

The proofs of the theorems in the complex domain, on account of their

great simplicity, are here given in full, as follows :

Theorem A (a").  Proof of A from Al, I, II, IV.   (Complex domain.)

By II and 41,/(xi, x2, ■ ■ ■ , xn) =/(0, Xi+x2, x3, • • • , xn), since each side

equals f{(xi+x2)/2, (xi+x2)/2, x3, ■ ■ • , xn\.



22 E. V. HUNTINGTON

By successive applications of this result,

f(xx, xt, • ■ ■ , xn) =/(0, 0, ■ ■ ■ ,[xx + xi+ ■ ■ ■ + Xn]).

Now let a — (xx+xi+ • ■ • +xn)/n, and take each x equal to a. Then

f(a, a,---,a) =/(0, 0, • • • , 0, na) = a, by IV.

But also f(xx, Xi, • ■ ■ , xn)=f(0, 0, • ■ • , 0, na).

Hence f(xx, x2, • ■ • , Xn) = (xx+xi+ ■ ■ • +x„)/n.

This proof shows that Set .41 determines the arithmetic mean, for all

complex values of the variables.

Theorem A (f"). Proof of Al and IV from AS, AS', I, II. (Complex

domain.)

Putting each x = 0 in A 8', we have/(0, 0, • • •, 0) =0 ; hence putting each

x = 0 and A—a, in .48, we have/(a, a, • • • , a) = a, which is Postulate IV.

Again, putting A =a+b, xx— — a, xt= — b, and » = 2, in .48, we have

f(b, a) = a+b+f(-a, -b), whence, by I and AS', f(a,b)=a+b-f(a, b),
whence/(a, b) = (a+b)/2, which is Postulate Al.

This proof shows that Set .48 reduces to Set Al, for all complex values.

Theorem A (g). Proof of Al and IV from A9,1, II.  (Complex domain.)

In A9, put each x equal to 0, and A =0; then

/(0,0,.--,0) = -/(0,0,  ..-,0),
whence/(0, 0, •• • ,0)=0.

Hence, putting each * equal to a, and A = a, we have

f(0, 0, •■■ ,0)=a-f(a,a, ■ ■ ■ , a),
whence/(a, a, • ■ • , a) = a, which is Postulate IV for all values of a.

Again, put A =a+b, xx = a, xt = b, and n—2, in A9; then

f(b, a = a)+b-f(a, b),
whence, by I, f(a, b)=a+b—f(a, b), whence f(a, b) = (a+b)/2, which is
Postulate A1 for all values of a.

This proof shows that Set A9 reduces to Set Al, for all complex values.

The sufficiency of each of the Sets Al, AS, A9, is thus established.

In conclusion, it may be noted that of all the known sets of postulates for the

arithmetic mean, the only ones that are equally available in the positive domain,

the real domain, and the complex domain, are Sets A1 and A9. Of these, Set A9

(consisting of Postulates A9,1, II) would appear to be the simplest.
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