SETS OF INDEPENDENT POSTULATES FOR THE
ARITHMETIC MEAN, THE GEOMETRIC
MEAN, THE HARMONIC MEAN, AND
THE ROOT-MEAN-SQUARE*

BY
EDWARD V. HUNTINGTON

INTRODUCTION

The four types of means, or averages, considered in this paper are the
following: the arithmetic mean (4); the geometric mean (G); the harmonic
mean (H); and the root-mean-square (S); the familiar definitions being as
follows:

1
A=;(x1+x2+"'+xn);

G = (x1x2 .« o xn)l/“,
1
T1/1 1 1y
_(._+_+...+_)
n \x1 X2 Zn

1 1/2
S=(—(xf+x22+--~+x3)> :
n

The first three are the classical means, known to the Greeks, while the root-
mean-square is of more modern origin. Of the four types, perhaps the most
important are the arithmetic mean and the root-mean-square. Both of these
averages are in constant use in mechanics (as in the definitions of center of
gravity and radius of gyration), and in the modern theory of statistics (as in
the theory of probability, the theory of least squares, and the definition of
standard deviation). The geomeiric mean is important chiefly in the construc-
tion of index numbers. The harmonic mean is little used, except in special

investigations.
Each of the four quantities 4, G, H, S is a particular type of the general
function of # variables: f(x1, 2, - - - , ,); and the purpose of the present

*Presented to the Society, December 29, 1925; received by the editors April 5, 1926.

EDITOR’S NOTE. The typography in this paper and succeeding papers has been altered in various
respects from the form originally proposed by the authors, in an effort to adapt mathematical
composition to the monotype machine.
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paper is to exhibit a number of sets of independent postulates by which each
of these four types may be distinguished.

Unless otherwise stated, the variables x,, 23, - - - , #, are supposed to be
positive real numbers.

The only similar set of postulates for any of these means, as far as is
known to the present writer, is a set of postulates for the arithmetic mean
given by R. Schimmack* in 1909; the “complete independence” of Schim-
mack’s postulates was established by R. D. Beetlef in 1915.

PROPERTIES COMMON TO ALL FOUR MEANS

It will be convenient to begin by stating the following general postulates,
I-V, which are satisfied by all four of the types of mean here considered.
Each of these postulates is a condition imposed upon the as yet undeter-
mined function f(x1, %, - - -, x.) of the # positive real numbers x4, xs, - - -, %p.
Various selections from these postulates will be made below.

I. f(xl, Xoy 00y Xiy Xjy, * 0, xﬂ) =f(xl’ X2y =ty Xjy Xiy ot 0, xn)'

That is, the function “f” is independent of the order in which the # quan-
tities x1, %, - - - , x, are taken.

II. f(xl) X2, X3, © xn) =f(m: m, X3, * -, xﬂ) where m =f(x1) x‘-’)-

That is, in computing the “f” of » quantities, we may replace the first
pair, x, x2, by the “f” of that pair, entered twice.

III. f(kxy, kxe, - -+, kx,) = kf(x1, 22, -+ -, %n) (k positive).

That is, multiplying each of the » quantities by a positive factor & has
the effect of multiplying the “f” of those quantities by the same factor k.. In
other words, the function “f” is independent of the scale in which the quan-
tities xi, %3, - + -, 2, are measured.

IV. fla, a, ---, a) = a.

That is, if the # quantities are all equal, then their “f” is equal to their
common value.
V. f(x1, 22, - -+, xa) s positive when all the x’s are positive.

The postulates III and IV may sometimes be replaced, as we shall see,
by the following weaker forms:

*R. Schimmack, Der Satz vom arithmetischen Mittel in axiomatischer Begriindung, Mathematische
Annalen, vol. 68 (1909), pp. 125-132, and p. 304.

tR. D. Beetle, On the complete independence of Schimmack’s postulates for the arithmetic mean,
Mathematische Annalen, vol. 76 (1915), pp. 444-446.
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IIr. f(kxy, kxs) = kf(z1, %) (B positive).

Iv'. fa,1,---,1) =1.

It may be noted that Postulates I, I, IIT, and III’ have the form of
“functional equations,” in which the function “f” appears on both sides of
the equality sign; while Postulates IV, V, and IV’ are analogous to the
“boundary conditions” of a problem in differential equations, since they tell
us something about the actual value of the function in certain cases.

We now turn to properties which are peculiar to the several types of mean.
(It will be observed that in each of the following four groups, the first postu-
late is a “boundary condition,” while the other three postulates are “func-
tional equations.”) Various selections from these postulates will be made
below.

POSTULATES PECULIAR TO THE ARITHMETIC MEAN (POSITIVE QUANTITIES* )
Al. fla, b)) =3%(a+ D).

A2. fA—a,1-08)=1— f(a, b) (a<1,b< ).
A3. f(l—xl, l—xg,-o-,l—x,,)=1-f(x1, X2, **°, x,.) (xi<1).

A4, fA— 21, A — x5, -+ A —x) = A — f(x1, %2, -+, %) for all
values of A for which A —x;>0.

POSTULATES PECULIAR TO THE GEOMETRIC MEAN

G1. f(a, b) = (ab)V2,
1 1 1
G2. f(Z’ Z) DR
1 1 1 1
. (o o D)o
A A A _ A
G- f(x—l’ Z""’Z)‘ﬂx,,xz,---,x,)’

where A is positive. Here (ab)'/? means 4 (ab)!/2 not — (ab)/2.
POSTULATES PECULIAR TO THE HARMONIC MEAN
2ab
a+b

H1. f(a, b) =

*For further postulates 48, 48’, A9, intended for use in the domain of all real or all complex
quantities, see Appendix I and Appendix II.
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2. ( @, 0 )= fe, ®
ea—1 b—1/) f,b)—1
X X n ) ) MR n,
H3.f< 2 Lt )= fon o o) Sy,
21 —1 2 —1 % — 1) flx1, %2, -+, %) — 1
H4. f(A = ] e ) xn ) = f(xl’ xz’ B x")
x—1 sz—'l Ax,.—l Af(xl, X2, ***, x,.) -1

for all values of A for which Ax;—1>0.

POSTULATES PECULIAR TO THE ROOT-MEAN-SQUARE

S1. fla, b) = {(z + x3)/2}102.
S2. A —adrz, 1 = )12} = {1 — [f(a, B)]2}12 (a<1,b<1).
S3. A —ad)rr, (1 — a1 — x2)V2}

= {I_U(xl’ X2, * ", xn)]’}”’(xe < 1).
S4.  f{f(4 — ad)2, (4 — xB)2, o (4= 22)12)
={4 = [f(x1, 22, - - -, z) ]2} 112,

for all values of A for which A —x2>0. Here again, 2'/2 means +=x!/? not
_xl/2.

SETS OF INDEPENDENT POSTULATES FOR EACH TYPE OF MEAN.

Among these general and special properties there are, of course, many
redundancies. The purpose of the present paper is to select, for each type
of mean, sets of independent postulates; that is, sets of postulates which,
while sufficient to determine uniquely the type of mean in question, shall at
the same time be free from all redundancies. Such sets can be selected in a
variety of ways, as in the following tables. These tables give the postulates
belonging to each set, and also the list of examples which will later be used
to prove the independence of the postulates in that set.

It will be observed that in each group the fifth and sixth sets are obtained
from the second set by replacing either III or IV by the weaker form III’ or
IV’; while the seventh set is obtained from the first by replacing IV by IV’
and then adding ITI. No further replacements of III or IV by III' or IV’ are
possible, as we shall see by Examples A III 7, GIII 7, H II1 7, and S III 7.

Thus, a set of postulates comprising 41, 42, 43, I, II, III’, IV’, V would
not be sufficient to determine the arithmetic mean; G1, G2, G3, I, II, IIT,
IV’, V would not be sufficient for the geometric mean; nor H1, H2, H3, 1,
II, III’, IV’, V for the harmonic mean; nor S1, §2, 3, I, I, III’, IV’, V for
the root-mean-square.
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For the Arithmetic Mean (positive quantities*)

Set Postulates Examples Used

Al A1 I II v 0 AI A1l AIV
A2 A2 I II 1III 1V 0 AI AII AIII A1V
A3 A3 I II III 0 AI AIl AIII

A4 4 1 1II 0 AI AII

AS A2 1 II I’ 1Iv 0 AI AIl AIII A1V
46 42 1 I a1 Iv 0 AI AIl AIIl AIV
Al A1 I II I v’ 0 AI AII AIII7A41IV

For the Geometric Mean

Set Postulates Examples Used

G1 Gl 1 I v 0 GI GII GIV

G2 G2 1 I m 1v v 0 GI GII GIII GIV GV
G3 G3 1 I III \' 0 GI GII GIII GV
G4 G4 I I A% 0 GI GII GIV GV
G5 G2 1 I Imr iv v 0 GI GII GUI GIV GV
G6 G2 1 I Im v v 0 GI GII GII GIV GV
G7 Gt 1 I mr Iv 0 GI GII GII7GIV

For the Harmonic Mean

Set Postulates Examples Used

H1 H1 1 11 v 0 HI HII HIV

H2 H2 1 I m Iv Vv 0 HI HII HIII HIV HV
H3 H3 1 II 111 A% 0 HI HII HIII HV
H4 H4 1 I A% 0 HI HII HV
HS H2 1 I nr v v 0 HI HII HII HIV HV
H6 H2 1 I 1 v’ v 0 HI HII HIII HIV HV
H7 o 1 I Im Iv 0 HI HII HIII7HIV

*For further Sets 46"", A7, A8, A9, intended for use in the real or complex domain, see Appen-
dices I and II.
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For the Root-Mean-Square

Set Postulates Examples Used

S1 St I 1II v 0 SI SII SIV
S2 S2 I I III IV 0 SI SII SIII SIV
S3 3 I I III 0 SI SII SUI

S4 S4 I II 0 SI SII

S5 S2 I II I 1v 0 SI SII SIII SIV
S6 s2 I I muxr Iv’ 0 SI SII SII SIV
S7 ST I II I Iv 0 SI SII SIII7 SIV

EXAMPLES USED IN PROOFS OF INDEPENDENCE

To establish the independence of the postulates of each set, we exhibit,
in the usual way, a list of examples of functions f(x1, %3, - - - , %) Which
satisfy some but not all of the postulates. In the following table the postu-
lates satisfied by each example are stated explicitly, opposite the number of
that example. (A dash, —, indicates that the postulate is not satisfied.) The
list of examples is given immediately below the table.*

As an illustration of the use of these examples, consider Postulate III in
Set G3. Example G III satisfies Postulates G3, I, II, and V, but fails on
Postulate ITI. Hence III is not a consequence of G3, I, II, V; that is, Postu-
late III is not a redundancy in Set G3. Similarly for each of the other
postulates in this set and in each of the other sets.

Ex. 0. FO = {(28 + 22 + - - - + 23)/n} 108,

This example satisfies all the general postulates I-V, but none of the special
postulates A1-44, G1-G4, H1-H4, S1-S4. To see that II is satisfied, note
that

m=f(x1, x2) = { (&2 +x2)/2}15,
so that m*+-md=x 422,
1+ %2+ 3xs +4xs+ - - -+ nx,

Ex. Al -
* 70 1+14+3+4+--+n

*For further Examples: 0, AII’, A II1"", A IV', A IV"’; AII"”’, A IX, and 4X,, for the arithmetic
mean in the real or complex domain, see Appendices I and II.
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Al A2 43 A4 | 1 1 1 IV | mrr Iv v
Ex. 0 - - - - I I I v | or v \'
Ex. A1 Al A2 A3 A4 | — I W IV | mrr Iv A\
Ex. A II Al A2 A3 A4 |1 — 1 v | o Iv v
Ex. A III — A2 A3 — I I — IV | — v’ v
Ex. A1V Al 42 — — I I I — 45 C— \'
Ex. ATII7 | 41 42 43 — |1 1 — — ur - Iv v

Gl G2 63 G4 |1 1w 1 v | mr v v
" Ex.0 _ - = - I I Ir v | or v \'
Ex.GI Gl G2 G3 G4 | — 1 ImI Iv | mr Iv v
Ex.GII Gl G2 63 G4 |1 — @I Iv | mrr Iv v
Ex. G III — G2 G3 — I I — IV | — v’ v
Ex.GIV Gl 62 — — I I I — 40 — v
Ex.GIII 7 Gl G2 G3 — I I — — ur - Iv \'%
Ex. GV — 6 63 64 |1 1 mowv | mar v —

Hl H2 A3 H4 |1 1w m v | orr 1v v
Ex. 0 _ = = - I o o oIv | o v v
Ex.HI Hl H2 H3 HA | — I 1l IV | mr Iv A\
Ex. HII Hl H2 H3 H4 | 1 — 10 IV | 1 Iv \
Ex. H III — H2 H3 — I I — IV | — v’ \'
Ex. HIV Hl H2 — — I I I — ur — v
ExHIN?7 | Hl H2 H3 — I I - — o Iv v
Ex.HV — H2 H3 H4 | 1 11 I IV | urr Iv -

S1 S2 83 sS4 |1 1 1 v | ur o Iv v
Ex. 0 - - - — I o oI v | mro v A
Ex. SI S1 S2 S3 S4 | — 1 mr v | o Iv A\
Ex. SII S1 S2 S3 S4 | I — 11 v | mr  Iv v
Ex. S III — 52 S3 — I I — IV | — v’ A\
Ex. SIV s1 82 — — I I I — 4 — v
Ex. STII 7 S1 S2 S3 — I I — — ur - Iv’ v
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Ex. A II. f() =the “median” of the quantities %1, %3, - - - , %, if # is odd,
or the arithmetic mean of the “median-pair” if » is even.* To see that II
fails note that f(5, 3, 7) =S5, while f(4, 4, 7) =4.

Ex. A IIL f(x, x, - - - , x) =x when all the 2’s are equal ; otherwise f() = }.
This example fails on IIT and III’, and on 41 and 44; but it satisfies 42 and
A3.

Ex. 4 1IV. fO=(m14+ 22+ -+ 2,)/2.

This example fails on IV and IV’, and on 43 and A4; but it satisfies A1 and
A2.

Ex. A TIL 7. f(x1, x2) = (x1+%2)/2; but when n>2, f()=1 or }, according
as (x1+x2+ - - - +x,)/nis equal to 1 or not equal to 1. This example is used
only in Set A7, to prove the independence of Postulate III in that set. It
fails on IIT and IV, but satisfies III’ and IV’. To see that it satisfies 42 and
A3, note that if all the 2’s are less than 1, the value of (x1+x2+ - - - +x,)/%
must be less than 1, and hence f() =3.

Ex. GI. f()=(xwazs®rs* - - - x2)V?, where p=14+1434+4+ - - - +n.

Ex. G II. f() = the median of the # quantities if # is 0odd, or the geometric
mean of the median-pair if # is even. To see that II fails, note that f(4, 9, 5)
=§, while f(6, 6, 5) =6.

Ex. GIIL f(x, x, - - -, x) =« when all the 2’s are equal ; otherwise f() =1.

Ex. GIV. f)={(xwxz - - - 2,)/(n—1)}1/». To see that II holds, note that
m=f(x1, x2) = (x1%2)1/2, so that mm =zxx,.

Ex. G IIL 7. f(x1, #2) = (x1x2)'/?; but when #>2, f()=1. This example is
used only in Set G7, to prove the independence of Postulate III in that set.

Ex. G V. f(x,2, -, x)=x when all the «’s are equal; otherwise
fQ = — |x1%2 - - - 2, |1/, where the expression of which the nth root is taken
is the absolute value of the product of the x’s without regard to sign.

1+14+3+4+---+n

Ex. HI. =

10 1 1 3 4 n
—t = =4 -
X1 X2 X3 X4 Xn

Here when =2,
S, ) = 22
X1, X2) = -
x1 + %o

Ex. H II. f() =the median of the #» quantities if # is odd, or the harmonic
mean of the median-pair if # is even. To see that II fails, note that f(3, 6, 2)
=3, while (4, 4, 2) =4.

*Here the median (or median-pair) of n positive quantities is defined by arranging the » quantities
in a series in order of magnitude, and picking out the middle item (or mid-pair) in this series.
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Ex. H I1L. f(x, %, - - -, x) =x if all the 2’s are equal; otherwise f() =2.

1 1 1
Ex. HIV. f()=2/(—+_.+...+__).
X1 X2 n
Ex. H II1 7. f(x1, %2) = 2x1%2/ (x1+22) ; but when n>2, f() =1 or 2, accord-
ing as (1/n)[(1/x1)+(1/x2)+ - - - +(1/%,)] is equal to 1 or not equal to 1.
This example is used only in Set H7, to prove the independence of Postulate
III in that set.
Ex. HV.f(x,x, - - -, )=« when all the x’s are equal; otherwise f() =0.

()_(xlz + xf + 3xf + 4xf +--.+nx”!)llz
=T ¥1+s52+ %» :

To see that this example satisfies IT, note that m =f (21, x:) = { (x 2 +x2)/2} 172,
so that m2+-m?=x? +x2.

Ex. S II. f() = the median of the #» quantities if » is odd, or the root-mean-
square of the median-pair if # is even. To see that II fails, note that f(6, 8, 4)
=6, while f(501/2, 501/2, 4) =501/2,

Ex. SIIIL. f(x, x, - - - , x)=x when all the x’s are equal; otherwise

fO=@/2)12

Ex. SIV.fO={(@2+a2+ - - - +az2)/2}12

Ex. SIII 7. f(x1,%2) = { (x +22)/2}/2; but whenn>2, f() =1 or (1/2)1/2,
according as (x#+x#+ - - - +x,2)/n is equal to 1 or not equal to 1. This
example is used only in Set S7, to prove the independence of Postulate III
in that set.

Ex. S I.

PROOFS OF THEOREMS

In the following paragraphs, we give the proof that each of the foregoing
sets of postulates is sufficient to define the type of mean in question.

THEOREM A (A). Proof of A from A1, 1, 11, and 1IV.
Let g be any positive quantity which is less than (1/#)th of the smallest
of the «’s. Then by IT and 41,
f(xl, X2, X3, * *y Xn) =f(q: [x1+x2—9], X3, ¢ * %),
since each side equals f(3(x:1+=%2), 3(x14%2), %5, ---,%,), and all the
arguments are positive.
By successive applications of this result, in view of I, we have
f('xl’ X2, "y xn) = f(q» q, [xl + x2 + % — ZQ]: Xgy, 0, xn)
=f(¢1: g, 9, [x1+ X2+ %3+ 24 — 3‘1]: Xs, * xﬂ)
=flg, 0, -, [+ m+ - 4z~ (n = 1)q)).
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Now take a=(t1+#:+ - - - +.)/n. Then, putting each % equal to g,
f@a,a,---,a)=f(g,q,---,[na—(n—1)q])=a, by Postulate IV. But
x14+224 - - - +x,=na, so that

S, w2y - - * 5 %n) =f(q:q; t ',[”a —(n— I)Q])
Hence
flor, 22y -+ %) = (01 + 22+ - - < xa) /.

Hence any function f which satisfies the postulates of Set 41 must be iden-
tical with the arithmetic mean, 4.

THEOREM A (B). Proof of A1 from A2, 1, and I1I or III'.

a b
= —_— ——— b I ’ .
f(a, b) (a+b)f(a+b a+b), y III or III' ;

=(a+b)f<l—a-1;-b" l—a:-b)

b a
= |1 — fl—> , by 42 ;
@+ )[ 'f(a+b a+b>] y
= (a + b) — f(b, a), by III or IIT' ;

= (¢ + b) — f(a, b), by I.

Hence f(a, b)=(a+b)/2, which is A1.

This proof shows that any function which satisfies the postulates of Set
A2 or Set A5 will also satisfy the postulates of Set 41, and hence be identical
with the arithmetic mean.

THEOREM A (C). Proof of IV from A3, III.

From A3, putting #1=3%, 2:=%, - - -, xa=%, we have

f(%) %; ) %)=1_f(%’%) c ')%):
whence f(%, 3, - - -, 3)=%. Hence by III, f(a, a, - - -, @) =a, which is IV,
This proof shows (since Postulate A2 follows at once from Postulate 43)
that any function which satisfies Set 43 will also satisfy Set 42.

THEOREM A (D). Proof of A1 and IV from A4, 1.
From A4, putting 4 =a+b, x1=a, x:=>0, and n=2, we have
fla+b—a, a+b—b)=a+b—f(a, b);
whenceby I, f(a,b) =a+b—f(a,b). Therefore f(a,b)=(a+Db)/2, whichis 41.
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Again, from A4, putting each x equal to ¢, and 4 =2a, we have
f(a,a,- -+, a)=20—f(g, 0, -, a),
whence f(a, g, - - - , a)=a, which is IV.
This proof shows that any function which satisfies Set 44 will also satisfy
Set A1.

THEOREM A (E). Since IV follows from III and IV’, we see that Set 46
implies Set 42, and that Set A7 implies Set A1; so that any function which
satisfies Set 46 or Set A7 will be identical with the arithmetic mean.

TrEOREM G (o). Proof of G from G1, 1, II, IV.

By II and G, f(x1, %3, %3, * + - , &a) =f(1, [#s%2], %5, - - -, %), since each
side equals f{ (x122)1/2, (£122)V/2, &3, - + * , %}
By successive applications of this result, in view of I, we have

f(xly X2y ** xn) =f(1’ 1, [xlxzxa], Xay ** 7y xﬂ)

= f(1, 1, 1, [mxaxsxs], x5, -+ -, %)

...................

=f1,1, .-, [xlxr .. x,.]).

Now take @ = (x1xz - - - %,)!/». Then, putting each x equal to g, we see that
f@a,a,---,a)=f(1,1, -+, a")=a, by Postulate IV. But xx; - - - x,=a",
so that f(x1, 25, - - -, 2,)=f(1,1, .- -, a”) =a. Hence

f(xly X2, * Xn) = (X122 - - - )M
This proof shows that Set G1 determines the geometric mean.

TreorEM G (B). Proof of Gl from G2, I, III or IIT', V.

11
fla, b) = abf(;; -), by III or IIT,
a,

ab——, by G2,
fd, a)

ab———l—— L by I.
f(a, b)
Hence [f(a, b)]?=ab, so that f(a, b) = (ab)'/* or — (ab)!/%. But the negative
value is impossible, by V. Hence f(a, b) = (ab)'/%, which is G1.
This proof shows that Set G2 and Set G5 reduce to Set G1, and hence
determine the geometric mean.

TreoREM G (C). Proof of IV from G3, III, V.



12 E. V. HUNTINGTON [January

From G3, putting x,=1, x,=1,--- , x,=1, we have f(1, 1,---, 1)
=1/f1, 1,---, 1), whence f(1, 1,---, 1)=1 or —1. Hence by V,
7, 1,...,1)=1. Then by III, f(a, a, - - - , a)=a, which is IV.

This proof shows (since G2 follows at once from G3) that Set G3 reduces
to Set G2, and hence determines the geometric mean.

THEOREM G (D). Proof of G1 and IV from G4, 1, V.

From G4, putting a=ab, x,=a, x,=>0, and n=2, we have
1 (ab ab) ab
e b) fla, b)
ab

Aa, b)

Therefore f{a, b) =(ab)'/? or — (ab)'/2. But the negative value is excluded,
by V. Hence f(a, b) = (ab)!/?, which is G1.
Again, from G4, putting «x equal to a, and 4 =a? we have

Hence by I,

fle, &) =

a2
f(d, @, """, a)’
whence, by V, f(a, a, - - -, a) =a, which is IV.

This proof shows that Set G4 reduces to Set G1, and hence determines
the geometric mean.

f(a)a)"')a)=

TrEOREM G (E). Since IV follows at once from III and IV’, we see that
Set G6 reduces to Set G2, and that Set G7 reduces to Set G1; hence Set G6
and Set G7 determine the geometric mean.

TreoOREM H (A). Proof of H from H1, 1, II, IV.

Let ¢ be any positive quantity which is greater than » times the largest
of the #’s. Then by II and H1,

1
f(xl) X2y "t 7y xn)= f(Q’ I_-ﬁ’ T x”>’

X1 X2 q

since each side is equal to

f( 2x1x2 2x1xg
) 1 X3y "ty Xn ],
21+ 22 %1+ %2
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and all the arguments are positive. By successive applications of this result,
using I, we have

1
f(xl, xz,-o-,x,,)'=f<q, q, 1 1 1 2’x4a"'; )

_+_+___
X1 X2 X3 q

Now take

n

a= .
1 1 1
—— 4 —
X1 X2 x

n

Then putting each x equal to g,

1
f(a;a,"':0)=<q,q,"',—>=a,
n n-—1

a q
by Postulate IV. But

1 1
—+—+- +—=-
X1 n
so that
1
f(xl’x2:""xn)=f<q,9»"‘,——>=a.
n n-—1
e q
Hence
1
f(xl,xﬁy"')x»)=l 1 1 1 .
—(—+—+-~+—)
n\x X Xn

This proof shows that Set H1 determines the harmonic mean.
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TrEOREM H (B). Proof of H1 from H2, 1, III or III’, V.

ab b b

<“+ , 2t ) by III or III' ;
a+b b a

a+b a+b
ab a b

f )
a+bd e+ b 14:z+b 1
a b

f<a+b a-I-b)

ab a ’ b

= +b a+b d+b ) bsz.
T )-

fla, )

)
a

Now by V, f(a, b) is not zero. Hence
1 1 1

f(a,b)= ab ab a+b a+d

e+ b a+bf( e b )

a+b

T [0, 9
a+b 1

aw  fa, b)

» by IIlorII;

by I.

Hence
2ab

a-l-b,

fa, ) =

which is H1.
This proof shows that Set H2 and Set HS5 reduce to Set H1, and hence
determine the harmonic mean.

TueEOREM H (C). Proof of IV from H3, 111, V.
From H3, putting x,=2, x;=2, - - -, £,=2, we have

_ f(2’27"'72)
2,2, ,2) =1
Hence f(2,2, - - -, 2)[f2,2,---,2)—2]=0. Butby V,f(2,2,---,2)is

not zero. Hence f(2, 2, - - -, 2)=2. Hence by III, f(a, a, - - -, @) =a, which
is IV.

f(2;27'°"2)
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This proof shows (since H2 follows at once from H3) that Set H3 reduces
to Set H2, and hence determines the harmonic mean.
THEOREM H (D). Proof of H1 and IV from H4.
From H4, putting A =(a+b)/(ab), x1=a, x2=a, and n=2, we have
b)f(a, b
PP ) L
(a + d)f(a, b) — ab
(ad)f(a, b)
)
(a+b)f(a, b) —ab

where by V, f(a, b) is not zero; hence f(a, b) =2ab/(a+b), which is H1.
Again, from H4, putting each x equal to a, and 4 =2/a, we have

whence by I,

fla, b) =

f(a)a:"';a)= af(a,a’...,a) ’
2f(a,a,---,a)—a
where by V, f(a, a, - - -, a) is not zero; hence f(a, a, - - -, @) =a, which is IV.

This proof shows that Set H4 reduces to Set H1, and hence determines
the harmonic mean.

TrEOREM H (). Since IV follows at once from III and IV’, we see that
Set H6 and Set H7 reduce to Set H2 and Set H1 respectively, and hence
determine the harmonic mean.

THEOREM S (A). Proof of S from S1, 1, II, IV.

Let ¢ be any positive quantity which is smaller than (1/#)th of the small-
est of the «’s. Then by II and S1,
f(xl, X3, X3, * ", Xp) = f{Qr (22 + xf — 92)”2, X3y * 0, xn} ’

since each side is equal to f{[(x2 +x#)/2]'/2, [(x2 +x2)/2]'/%, x5, - - -, 2. },and
all the arguments are positive. By successive applications of this result, in
view of I, we have

f(xl) X2, * xn) = f{q7 q, (xl2 + xf + xf — 292)1/2’ X4y * - xn}

.........

=f{Q; q, " (5"512 +a2 4+ -+ 22 - (n — l)qz)m} .

Now take a= { (x# +x2+ - - - +2)/n}1/2 Then putting each x equal to g,
f(a’ a, -, a’) =f{Q’ gy (”’az_ (”—l)qz)llz} =a, by Iv.
Buta2+x2+ - - - +x,2 =na?, so that

f(xl, X2, ", xn) =f{4» g, ", (”az - (" - 1)q2)1/2} =a.
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Hence ) (x1’+x2’ + -+ x”z)uz.
y Xn) =

f(xl, X2,
n

This proof shows that Set S1 determines the root-mean-square.

THEOREM S (B). Proof of S1 from S2, I, III or III'.

b) = (a2 + p2)1/2 ¢ b
f(a, b) = (a® + 87)'%f (a2+bz)”2’ (a? + b2V

b2 1/2 az 1/2
= (g2 + )12 (1 — s -
(o + ) f[( a2+b2) (1 a2+b=) ]

b a 12
= (az + b2z (1 - [f<(a2 + bz)llz’ (az + 62)1/2]’>’ by §2;
= {(a? + ) — [f(b, a)]2}*'2, by III or IIT’ ;
= {(a? + b — [f(a, b)]2} "2 by I.
Hence 2 [f(a, b)]2=0a2+0?, so that
fa, b) = {(a® + 89)/2} /2 or — {(a? + b9)/2} 2.

It remains to exclude the negative value (without using V). By S2, f(a, b)
is positive whenever ¢<1 and »<1; hence by III, f(a, b) is positive for all
positive values of a and b. Hence f(a, b) = { (a2+b2)/2} /2.

This proof shows that Set S2 and Set S5 reduce to Set S1, and hence
determine the root-mean-square.

THEOREM S (C). Proof of IV from S3, 1I1.

From S3, putting x,=%, x2=%, - - - , ¥,=%, we have

flasave, (/2)me, - - -, (1/2)43
== [F{@/2)vz, (1/2)1, - - -, (1/2)12) ]2)102
which by definition of the square root sign, is not negative. Hence
fla/ave, (1721, - -, (1/2)42) = (1/2)12

Hence by III,

2) , byIIl or IIT’;

f(d, a,: -, d)=(1.
This proof shows (since S2 follows at once from S3) that Set S3 reduces
to Set S2, and hence determines the root-mean-square.

THEOREM S (D). Proof of S1 and IV from S4, 1.
From 54, putting 4 =a?+4b2% x,=a, x:=0, and n=2, we have
f(d, a) = (a® + b2 — [f(a, B) ]2
Hence, by I, f(a, b) = (a?+b2— [f(a, b)]%)'/?, which is not negative. Hence
f(a, b)={(a2+b2)/2} 1.
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Again, from S4, putting x equal to ¢, and 4 =242 we have
f(a) a, -, a’)= {zaz— [f(a’ a,--- ’a)]z}llz’
which is not negative; hence f(a, a, - - -, @) =a, which is Postulate IV.
This proof shows that Set S4 reduces to Set S1, and hence determines the
root-mean-square.

THEOREM S (E). Since IV follows at once from III and IV’, we see that
Set 56 and Set S7 reduce to Set S2 and Set S1 respectively, and hence de-
termine the root-mean-square.

ArPENDIX I. THE ARITHMETIC MEAN IN THE DOMAIN OF ALL REAL NUMBERS

In all the preceding sets of postulates, the «’s in the function f(x1, x,
-+ -, x,) have been assumed to be positive real quantities. In the case of the

geometric mean, the harmonic mean, and the root-mean-square, this restric-
tion is a customary one, in order to insure that the function shall always be
finite and single-valued. In the case of the arithmetic mean, however, the
restriction is not essential.

This appendix, therefore,is devoted to a consideration of sets of postulates
for the arithmetic mean in the domain of all real numbers.

For this purpose, we introduce, in addition to the postulates I-V, III’,
IV’, A1-A4, given above, the following postulates:

Posturate IV, f(—1, =1, -, —1)=—1.
PoSTULATE A8. f(A+x1, A+xs, -+, A+2,)=A+f(x1, %2, - - -, %n).
POSTULATE A8’ f(—%1, —&s, - -+, —%n)=—f(X1, X3, = * * , Xn).

The results obtained may be summarized as follows:

In the first place, Sets A1, A2, A3, A4, AS, given above tfor the case of
positive reals, are valid just as they stand for the case of all reals. (The
necessary modifications in the proofs are given below.)

In the second place, Sets A6 and A7 are not valid for the case of all reals
(see Example 4 IV’’ below); but they can be made so by the addition of
Postulate IV''.

In the third place, Postulates I, II, A8, A8’ form a set (due essentially to
Schimmack*), which is valid for the case of all reals, but cannot be used in
the case of positive reals; this we shall call Set 48.

*Instead of our Postulate II, Schimmack (loc. cit.) uses the following postulate:
f(xl’ X2yt Xn-1y xﬂ)=f(m) My, m, x")) where m=f(xly 2 TR xﬂ—l);
and instead of our Example A1, the following example:

FO=(01/27) 4 (x2/ 20+ (23/ 2772 + (x0/ 2779+ - - - +(#n1/2%) +(2/2).
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The complete list of sets of independent postulates for the arithmetic
mean, for the case of all reals, is then as follows:

Set Postulates Examples Used
Al Al I II v 0 AI AIr AIV
A2 A2 1 II I 1v 0 AI AII' AIIl AIV
A3 A3 I II IIT 0 AI AIl' A1

A4 A4 1 II 0 AT AIU

AS 42 1 I uar v AT AII' AT AIV

AI AII" ATIII” AIV' ATIV”

(==}

46" | A2 I II I Iv Iv”

47" |- A1 I I I Iv Iv” 0 AI AII' ATIII"” AIV' AIV”

A8 A8 1 II A8 0 AT AII' O

The new examples in the independence proofs are the following:

Ex. A II'. The same as Ex. 4 II, for all reals, understanding “the order
of magnitude” in the algebraic sense.

Ex. 4 IITI"". When n=2, f(x1, x2) =3 (x1+x;); when n>2,

f(xy, 22, -+ -, 2)=10r —1

according as (x1+x2+ - - - +2,)/7 is equal to 1 or not equal to 1.

Ex. A IV'. When n=2, f(x1, x3) = 3(x1+2,) ; when #>2,

fO=—|@1+z2 + - - - +2.)/n|,

where the vertical bars mean “the absolute value of.”

Ex. A IV"”. When n=2, f(x:, x2) =3(x1+%.); when n>2,

fO=|@i+a: + - - - +x,)/n|.

Ex.0’. f()=the maximum (in the algebraic sense) of the » real quantities
X1, X2y * * * 5 Xne

The following table shows the properties of all the examples used in the
case of the real domain.

Al A2 A3 A4 48 A8 | I II III IV I v’ Iv”
Ex. 0 - - - - — A8 I II III IV I’ v’ 1v”
Ex. 0’ _— - = - A8 — I II III IV oI Iv’ v~
Ex. A1 Al A2 A3 A4 A8 A8 — II III IV I v’ v~
Ex. AIl' Al A2 A3 A4 A8 A48 I — III IV oI’ v’ Iv”
Ex. A III — A2 A3 — _ - I I — IV — IV’ Iv”
Ex. A IV A1 A2 — — — A48 | I II III — I’ — —
Ex. AIII” | A1 A2 — — —_ - I I - — I v’ v/
Ex. 4 IV’ A1 A2 — — —_ = I II I — ur — v
Ex. AIV"” |41 A2 — — - - I II III — IIr v/ —
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The proofs of the theorems, adapted to the domain of all reals, are as
follows:

THEOREM A (a’). Proof of A from A1, 1,11, IV. (Real domain.)

Since there is now no necessity for keeping the arguments positive, the
proof of Theorem A (aA) can be simplified by putting ¢=0. Hence Set 41
determines the arithmetic mean.

THEOREM A (B'). Proof of A1 from A2, 1, III or III'. (Real domain.)

If a and b are positive, f(a, b) =%(a+Db), as in the proof of Theorem A (B).
If o and b are any real numbers, let p=1/(|a|+ |6|+1); then 1 —pa and
1—pb will be positive, so that
f(1—pa, 1—pb)=3(1 — pa+1—pb)=1—p (a+b)/2.
But f(1—pa, 1—pb)=1—f(pa, pb), by A2; =1—pf(a, d), by III or III’.
Therefore f(a, b) = (a+b)/2, for all real values of @ and . Hence Set 42 and
Set A5 reduce to Set 41.

THEOREM A (c’). Proof of IV from A3, 1, III. (Real domain.)
By III, (0, O, - - -, 0)=2f(0, 0, - - -, 0); hencef(()) 0,---,0)=0.
From A43,f(1,1,---,1)=1—f(0,0, - - -,0)=1. Hence by III,
f(a’a: R a)=a7
whenever a is positive.
From A43,f(2,2, ---,2)=1—f(—-1, —1,. .., —1), whence
2=1—f("'11'"1, SR DN
whencef(—1, —1, .. -, —1)=—1. Hence by III,
f(a)a) <, a)=a
whenever a is negative.
Since A2 follows immediately from A3, this proof shows that Set 43
reduces to Set 42.

THEOREM A (D). Proof of A1 and IV from A4, 1, II. (Real domain.)

If a and b are positive, put A =a+b, x1=a, x2=b, and n=2, in 44, then
f(®, a)=a+b—f(a, b), whence by I, f(a, b)=a+b—f(a, b), whence

f(a, d)=%(a+d),

whenever ¢ and b are positive.

If ¢ and b are any reals, let p = a large positive quantity, so that p+g,
p+b, and p+a+b will certainly be positive. Putting 4 =p-+a+b, x1=a,
x23=>b, and n=2, in 44, we have

fo+bp+a)=p+a+b—flgd),
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whence (p+b+p+a)/2=p+a+b~fa,b),
whence f(a, b) = (a+5)/2, which is Postulate A1 for all real values of a and b.

If a is positive, put x1=a, x2=a, - - - , x,=a, and 4 =2a, in A4; then
f(a,a,---,a)=2a—f(a,q, - -,a), whence f(a, a,- - -, a)=a.

Again, if a is positive, put ,=0, x,=0, - - - , x,=0, A =g, in A4; then
f(a,a,---,a)=a—f(0,0,---,0), whence f(0,0, - - -, 0)=0.

If a is negative, put x;=a, xs=0a, - - - , ,=a, and 4 =0, in A4; then
f(—a, —a,---, —a)=—f(a, a,- - -,a), whence, since —a is positive,
—a=—f(a,a,---,a); hence f(a,q, - -,a)=a.

Therefore f(a, a, - - -, @) =a for all real values of @, which is Postulate IV.

This proof shows that Set 44 reduces to Set A1.

THEOREM A (E’). Since IV follows at once from III, IV’ IV’/, we see that
Set A6’' and Set A7’ reduce to Sets A2 and A1 respectively, in the domain
of all reals.

THEOREM A (¥'). Proof of A4 from A8, A8'. (Real domain.)

By A48, f(A—x1, A—2%s,- -+ , A—x)=A+f(—21, —%2, - -+ , —%n),
whence, by A8, f(A —x1, A —xs, - - - , A—x,)=A —f(%1, %3, - - -, %,). This
shows that Set A8 reduces to Set A4, and hence determines the arithmetic
mean in the domain of reals. Unlike the other sets, however, this Set 48
cannot be used if the # quantities x,, x,, - - -, 2, are restricted to the domain
of positive values.

AprpENDIX II. POSTULATES FOR THE ARITHMETIC MEAN
IN THE COMPLEX DOMAIN
In the domain of complex quantities, Sets A1 and A48 are sufficient to
determine the arithmetic mean. (See proofs below.) Further, if we form a
new postulate

PosTULATE A9. f(A—%x1, A—%s, - -+ , A—2x)=A—f(%1, X3, - -+ , Xn),

then a Set A9, comprising Postulates I, II, 49, will also be sufficient, as
proved below. (This postulate A9 is the same as A4 without the restriction
x;<1.)

Hence, in the complex domain, we have three sets of independent postu-
lates for the arithmetic mean, as follows:

| Set Postulates Examples Used
Al 41 I II v 0 Al AII” AIV
A8 A8 1 II A8’ 0 Al Al 0o
A9 A9 I II 0 Al A 11”7
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The new example here required is

Ex. A II". f(x1+3y1, x2+2ye, - - -, Xa+12Ya) =x+1y, where x is the median
of the #’s if # is odd (or the arithmetic mean of their median-pair if » is even),
and y is the median of the y’s if # is odd (or the arithmetic mean of their
median-pair if # is even).

This example satisfies Postulates A1, 48,48, 49, I and IV, but fails on
Postulate II.

The properties of all these examples for the complex domain are shown
in the following table:

A1 A8 A8’ A9 1 1I v
Ex.0 41 — A8 — I II v
Ex.0’ 41 A8 — — I I v
Ex. A1 Al A8 A8 A9 — II v
Ex. A IT" Al A8 A8 A9 I - IV
Ex. A IV A1 — A8 — 1 I —

On the other hand, it is interesting to note that if the » quantities
%1, %3, + + + , %, are allowed to take on complex values, then Sets 42, 43, 44,
AS5,A46,A7,A6'", AT" are not sufficient to determine the arithmetic mean, as
is shown by the following examples:

Ex. A IX.

fler+ iy, xe+ iy, - -, 2zt iy) = (m+iy+ a2+ iy+ - -+ 20 + iy)/n
when all the y’s are equal; otherwise,
flxr+ iyy, 2+ iye, -, tatiyn) = (B4 22+ - - -+ 20)/n.

This example satisfies Postulates I, IT, III, IV, III’, IV’ IV"’, V, A2, 43,
A4, but it is not the arithmetic mean. (This example would still satisfy 42
and 43, even if we removed the restrictions ¢ <1, b<1, and z;<1.)

Ex. A X. When n=2, f(x1, x3) = (x1+%2:)/2; when n>2,

fO=@1+®a+ - - - +xa)/nor |@itxet - - +x.)/n],
according as (x;+4x2+ - - - +%.)/7 is real or imaginary.

This example satisfies Postulates 41, I, II, ITI, IV’, IV"’, V, but fails on
Postulate IV.

The proofs of the theorems in the complex domain, on account of their
great simplicity, are here given in full, as follows:

THEOREM A (A"'). Proof of A from A1, 1,11, IV. (Complex domain.)

By IT and 41, f(xy, ®2, - - -, %a) =f(0, x14+%2, a3, - - -, x,), since each side
equals f{ (x14+%2)/2, (x1+%2)/2, %5, -+ , %n}.
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By successive applications of this result,
S, 2, - - -, 20) = (0,0, -+, [rat+xs+ - - +xa])

Now let a=(x1+x2+ - - - +x.)/n, and take each x equal to a. Then
f(a,a,---,a)=f0,0,:--,0,ns)=aqa, by IV.

But also f(xy, %3, - - -, 2.) =f(0, 0, - - -, 0, na).

Hence f(x1, X2, - - =, Za) = @1 +22+ - - - +2.)/n.

This proof shows that Set A1 determines the arithmetic mean, for all
complex values of the variables.

THEOREM A (¢'’). Proof of A1 and IV from A8, A8, I, II. (Complex
domain.)

Putting each x =0 in 48’, we have f(0, 0, - - -, 0) =0; hence putting each
=0 and 4 =g, in 48, we have f(a, q, - - - , a) =a, which is Postulate IV.

Again, putting 4 =a+b, x;=—a, x;=—0b, and n=2, in A8, we have
f(b, @) =a+b-+f(—a, —b), whence, by I and A8’, f(a, b)=a+b—f(a, b),
whence f(a, b) = (a+b)/2, which is Postulate 41.

This proof shows that Set 48 reduces to Set A1, for all complex values.

THEOREM A (G). Proof of A1 and IV from A9,1,I1. (Complex domain.)

In A9, put each zx equal to 0, and 4 =0; then
f(O) 0,---, 0)=_f(0: 0, ---,0),
whence (0,0, - - -, 0)=0.
Hence, putting each x equal to @, and 4 =a, we have
f(o: 0,---, 0)=a"'f(a:a) cre,a),
whence f(a, @, - - -, a) =a, which is Postulate IV for all values of a.
Again, put A =a+b, x1=a, x2=0, and n=2, in A9; then
f(ba a =a‘)+b_f(a) b),
whence, by I, f(a, b)=a+b—f(a, b), whence f(a, b)=(a+d)/2, which is
Postulate A1 for all values of a.

This proof shows that Set A9 reduces to Set A1, for all complex values.

The sufficiency of each of the Sets A1, 48, 49, is thus established.

In conclusion, it may be noted that of all the known sets of postulates for the
arithmetic mean, the only ones that are equally available in the positive domain,
the real domain, and the complex domain, are Sets A1 and A9. Of these, Set 49
(consisting of Postulates 49, I, II) would appear to be the simplest.
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