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We have prevously discussed the similarities between the series of

Fourier and of Birkhoff.t Since a series of Birkhoff is defined by a linear

homogeneous differential system of the wth order in which the boundary

conditions are of regular type,î it is natural to attempt an extension of the

methods there employed to some systems with irregular boundary conditions.

We shall discuss here the case n = 2, with the hope of giving a comparatively

exhaustive treatment of the narrowed topic. From our point of view, it is

not essential in this discussion that a series be treated with regard to its

convergence: a sum by appropriate means we consider equally valuable.

A treatment of the convergence of the formal expansions for a function

restricted to have a certain number of derivatives and to satisfy certain

boundary conditions has come to our attention since the completion of

this paper.§ As Professor Jackson has suggested to the writer, the methods

of Wilder in a similar problem could be applied to this end, as is obvious

from a comparison of the formulas of this paper with his.|| It should be

noted, however, that under our discussion of systems of type 1, Case I, the

series for the function 1 can be seen to be divergent, so that such results are

not so useful as it might appear. We note that the series discussed in this

paper are entirely different from those discussed by Jackson and Hopkins in

the case n = 3.%

* Presented to the Society, December 30, 1924; accepted in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy at Harvard University; received by the editors of

these Transactions in October, 1925.

t Stone, these Transactions, vol. 28 (1926), pp. 695-761.

Î Birkhoff, these Transactions, vol. 9 (1908), p. 383.

§ Pollaczek-Geiringer, Mathematische Annalen, vol. 90 (1923), pp. 292-317.

|| C. E. Wilder, these Transactions, vol. 18 (1917), pp. 415-442.

1f Hopkins, these Transactions, vol. 20 (1919), pp. 245-259; Jackson, Proceedings of the Ameri-

can Academy of Arts and Sciences, vol. 51 (1915-1916), pp. 383-417.
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I.  Classification of the boundary conditions

Our first task is clearly that of separating all possible boundary condi-

tions, n = 2, into regular and irregular types. We shall refer to Birkhoff's

memoir, cited above, for the definition of regularity, and for the fact that

in the case where n is even the several conditions of that definition reduce

to one. We then prove

Theorem I.   The only irregular boundary conditions for n = 2 are of the

form

(1)

or of the form

(2)

u'(0) + Au'(l) + Bu(l) = 0,

u(0) - Au(l) = 0,

í4m'(0) - «'(1) + Bu(0) = 0,

í4m(0) + u(l) = 0,

where A, B are real or complex constants* The two differential systems ob-

tained by adjoining to the equation

u" + (X + g)u = 0,    g(x) summable,    0^ ¡cá 1,

the boundary conditions (1) and (2) respectively, are adjoint systems.

The general boundary conditions, n = 2, can be written

axu'(0) + bxu'(l) + cxu(0) + dxu(l) = 0,

a2u'(0) + b2u'(l) + C2u(0) + d2u(l) = 0,

where ax, bx, cx, dx, a2, b2) c2, d2 are any real or complex constants such that

the linear forms of which they are the coefficients remain linearly in-

dependent.   We must consider several cases.

Case I.   a,¿>2 —ú^i^O.   Employing the notation of Birkhoff's definition

of regularity, we write

h + Ois + — s

(ai + bxs)i      — í

(a2 + b2s)i      — I

ax +

a2 -f

-C-)(ai62 — ö26i)

Since öi^^O, the boundary conditions are regular.

* Tamarkin, Rendicoati del Circolo Matemático di Palermo, vol. 34 (1912), pp. 360-361.
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Case II.   aibt —Otf)i = 0 ; ai and ¿>i not both zero.    The boundary condi-

tions can be reduced by linear combination to the form

oi«'(0) + biu'(l) + ciu(0) + diu(l) - 0,

c2u(0) + d2u(l) = 0.
Then

i(ai + bis)   — i(ai + bi/s)
do + dis + e2/s = = 2(aiCt + bidt)

(c2 + d2s) (ct + dt/s)

+ (aidt + hct)(l/s + s).

If aidt+6^2 7^0, the conditions are regular ; on the other hand, if aid2+bic2 = 0,

the conditions are irregular. In this latter case, since c2 and d2 cannot both

vanish, we have left

aiw'(0) + 6i«'(l) + ci«(0) + diu(l) = 0,

ai«(0) - oi«(l) = 0.

If these boundary conditions have a^O they can be reduced to the form (1) ;

if ¿>i=£0, to the form (2).

Case III.   ai = a2 = 6i = 62 = 0.   Since the boundary conditions

ci«(0) + di«(l) = 0,

c2«(0) + a2«(l) - 0

are linearly independent they reduce to w(0) =«(1) =0, a well known regular

case.

It is now a matter of simple computation to show that the two differential

systems defined in the latter part of the theorem are actually adjoint. The

method employed is sufficiently familiar that we omit details*

II. THE IRREGULAR BOUNDARY VALUE PROBLEM

We are now prepared to consider the boundary value problem in the

irregular cases of Theorem I ; that is, to investigate the values of X for which

the differential systems have solutions not identically zero. As is well

known, these characteristic values are the same for a system and its adjoint.

On setting X=p2, the two systems are

u" + (p2 + g)u = 0, u" + (p2 + g)u = 0,

m'(0) + Au'(l) + Bu(l) = 0,        ¿«'(O) - «'(1) + Bu(0) = 0,

«(0) - Au(l) = 0, ¿«(0) + m(1) = 0.

* Bôcher, Leçons sur les Méthodes de Sturm, Paris, 1917, Chapter II.



26 M. H. STONE [January

The characteristic values in p may be found as the roots of the equation

«i'(0) + Aux'(l) + Bux(l) ut'(0) + Aut'(l) + Bu2(l)

«i (0) - Aux (1) «2 (0) - í4m2 (1)

where ux, u2 are any two linearly independent solutions of the differential

equation defined for all values of p. The existence of such solutions has

been demonstrated in our preceding paper.

A number of outstanding facts are revealed at once if we choose ux, «2

as solutions satisfying the boundary conditions

«i(0) = 1, «i'(0) = 0, «,(0) = 0, «,'(0) = 1.

On expanding the determinant and making use of the fact that

«i(l)«2'(l) - «i'(1)m2(1) = mi(0)«2'(0) - «i'(0)«2(0) = 1,

we find the equation

(i42 - 1) + i4(«i(l) - «,'(1)) - But(\) = 0.

If A = B = 0, there can be no characteristic values ; henceforth this possibility

shall be excluded. Again, if A2 — 1 =0, B = 0, the equation is «i(l) — w2'(l) =0,

whence we conclude that a root in this case cannot be a root in the case

A2 — 19¿0, B = 0. If we consider the two differential systems when A2 —1=0,

B = 0, one of these is

u" + (p2 + g)u = 0,

«'(0) + «'(1) = o,

«(0) - «(1) = 0.

If we suppose that the equation g(x) =g(l—x) is satisfied almost everywhere

on (0, 1), the function satisfying the differential system

u" + (p2 + g)u - 0,

«(*) = 1,    u'(\) = 0,

is a solution of the irregular system above for all values of p. Thus it is

evident that under appropriate circumstances all values of p are character-

istic values, while under others there is no characteristic value ; in such cases

there is no expansion problem.

Having thus obtained a view of some of the peculiarities which can arise

in the irregular boundary value problem, we can continue our discussion,

under hypotheses which enable us to make more definite assertions. We

shall require in all our succeeding work that g(x) be continuous together
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with its derivatives of all orders on the interval (0, 1), although we could

in many instances lighten this restriction. Then, as we saw in Theorem III'

of our previous paper, there exist on the first quadrant of the p-plane solu-

tions «i, u2 of u"+(p2+g)u = 0 with the asymptotic forms

./ ^4,o(x)     Eio(x,p)\

•'" <"V+£w+^-)'

\       «-i (-P*)'      pm+1  /

.     ./ í=-¿u(*)  ,   Eti(x,p)\
ut' = - pie-P"l 1 + Z -- + __--),

\ í-i (-pt)¡ pm+1   /

the functions E being uniformly bounded, O^xgl, for p on the first quad-

rant. In particular, 4i0(x)=4n(x). Similarly, on the fourth quadrant

there exist solutions ux, u2 whose asymptotic forms are given by replacing

p by — p in the exponential terms and sums appearing in the forms given

above for the first quadrant; the functions E are, of course, not necessarily

the same.

Theorem II. If ux, u2 are the functions defined above for the first quadrant,

then for any positive integral m

D=.
mi'(0) + Aui'(l) + Bui(T)      ut'(0) + Aut'(l) + Bu2(l)

Ml (0) - Aui(T) ut (0) - Aut(i)

= 2(1 - A2)pi[l +-^)

+A(e,*rf^+^-)+e->*( 'r("1),+lg'+^)
V   V ¡_i pl     Pm )       \  ¡_i      pl Pm //

+ ^,(1+2- + —) + e-,(l+Z-V- + —)>

ai, • • • , am-U ßi, ■ ■ •, ßm being constants, and the functions E being bounded

and analytic on the first quadrant. On the fourth quadrant the substitution of the

corresponding functions ux, m2 gives an analogous formula involving the same

numbers a, ß.
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We shall carry through the computations for the first quadrant; by

replacing p by —p in the exponential terms and sums appearing in the ex-

pression thus obtained we find the asymptotic form for the fourth quadrant.

On expanding the determinant and recalling that

«i'(0)m(0) - «i(0)«2'(0) = Mi'(1)m2(1) - Mi(1)m2'(1),

we find as the result

(1 - i42)(«,'(0)«2(0) - «i(0)«2'(0)) + ii{((«i'(l)«,(0) + m,(1)m2'(0))

- (ui'(l)ux(0) + ui(l)ux'(0))}

+ B(ux(l)ui(0) - ux(0)u2(l)).

By direct substitution of the asymptotic forms for ux, «2, in which i410(:t) =

A n (x), as we noted above, we find

/        Ex(p)\
ui'(0)ui(0) - ux(0)ui'(0) = 2pil 1 + ——J ,

('-jr-1«*!    E2(p)\

E- +-).
i-i p1     pm /

/        lz? ßi     Ei(p)\
Ul(l)U2(0) =e^1+g^+_i)

If we neglect the E terms in ux, u2, the replacement of p by —p interchanges

«i, m2. Hence by replacing p by —p in the second and third of the asymptotic

forms just obtained, we show that

/i-m-i( _ xya      Es(p)\

«2'(l)«i(0) + ms(1)«,'(0) = e-4   £-f— + -— ),
\   ¡-i        Pl Pm   /

/ l=?(-l)lßi     E6(p)\
«2 (D«i(0) = e-4 1 + E-T— + —IT ) •

\ j-i       p' Pm+l /

When the five asymptotic forms are substituted in the expanded determi-

nant, the theorem is obtained.

As a consequence of Theorem II, we lay down

Definition I.   The irregular differential system

u" + (\ + g)u = 0,\ = p2,

u'(0) -Mm'(1) +Bu(1) = 0,

w(0) - í4m(1) = 0,
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where g(x) is continuous together with its derivatives of all orders, Ogx^l,

shall be termed of type 1 if Bj^O; and a system of type M, Mè2, if 5=0

and atf-i is the first of the a's different from zero. 7/5 = 0, <*i = 0, a2 = 0,

a3 = 0, • • • , the system shall be termed of type Q.

We have found no means of investigating systems of type £2 ; that they

exist is shown by the examples given above.

In the case of systems of type M, M = 1, 2, • ■ ■ , we can give a com-

plete discussion of the distribution of characteristic values.

Theorem III. The irregular differential systems of the second order of

finite type M have infinitely many characteristic values in p when A2 — 1 =0.

They are distributed asymptotically near the roots of e"*+( — l)Me~<'* = 0; for

large \p\ there is one simple characteristic value near each root of this equation.

We recall that the asymptotic forms of ux, u2 on a given quadrant are

valid also in a sector including the quadrant and bounded by rays parallel

to the two axes. Hence this is also true of the asymptotic forms derived

from those for uu u2. Thus the characteristic values of p on the first quadrant

and within a specified distance of it are found as roots of the equation

B(e'*[l] - e-'*[l]) = 0,    Jf-1,

A*u-i(e>*[l\ + ( - l)"e-'<[l])/y-1 = 0,    M è 2,

or of

«"'[I] + ( - l)Me-"*[l] = 0 (M = 1,2, • • • ).

Similarly the characteristic values on the fourth quadrant and within a

specified distance of it are found as the roots of

e>*[l] + ( - l)Me-»*[l] = 0 (M = 1,2, • • • ).

The characteristic values on the left half-plane are the negatives of those on

the right. Now by methods employed in the discussion of the regular bound-

ary value problem, » = 2, the roots of the equations e*"[l]+[ — l]ue~''* = 0

on the two quadrants respectively have the asymptotic distribution de-

scribed.*

* Birkhoff, these Transactions, vol. 9 (1908), pp. 386-387; Tamarkin, Rendiconti del Circolo

Matemático di Palermo, vol. 34 (1912), pp. 353-358; Birkhoff, Rendiconti del Circolo Matemático

di Palermo, vol. 36 (1913), pp. 116-118.
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Theorem IV. The irregular differential systems of the second order of finite

type M have infinitely many characteristic values in p when A2 —1=^0. If we

write p. = 2(A2 — l)i/B, M = l, and p = 2(A2 — l)i/AaM-i, M*t2, the asymptotic

distribution of these roots on the right half-plane is as follows :

(1) for \p\ sufficiently large on the first quadrant, there is one simple

characteristic value near each of the points p = r+is,

(-1)*»W .     (-1)^2
r = arc cos — - = arc sin — -,

Vf1!2 + M22 VW + P22

s = log (vV + ßirM),   p = px + ip2 ;

(2) for \p\ sufficiently large on the fourth quadrant, there is one simple

characteristic value near each of the points

— Pi . — P2

r = arc cos-= arc sin -

VW + M22 vVi2 + M2S

s = — log (vW + P22rM),   p = Mi + ip2.

The characteristic values on the left half-plane are the negatives of those on

the right.

We shall limit our discussion to the characteristic values on the first

quadrant; the treatment of those on the fourth quadrant is entirely ana-

logous.

By Theorem II the characteristic values on the first quadrant are found

as the roots of

N1      «»'[1] + ( - I)"e-><[1]
»'M +--¿Ti-°'

or, after multiplication by ( — l)1^*-1, of

(epi[l]\

This last equation takes the form

e-p<= (- l^+V^l]

on the first quadrant.

If there are infinitely many roots p = r+is on the first quadrant, then

lim{„\^a)(s/r) = 0.  To prove this statement it is sufficient to show that there
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exists no positive e for which infinitely many roots satisfy s/r^e. If such

an e exists, 5—»00 as \p\—><x> ; and for the roots in question

e'(cos r - i sin r) = ( - l)M+1p(r + is)M[l],

whence

1 = I m I I [1 ] I I re~"M + ise-''M \M = \p \ \ [l] \ \ (s/e) e~"M + ise~'lM \M-^ 0

as |p|—»00.   The contradiction shows that e does not exist.   Hence

lim  (s/r) = 0.
IpI-»»

Now we find

-^—= \l + i(s/r)\»\[l]\,
\ß\rM

whence

s - log Wut + ßfiM) = M log I 1 + i(s/r) I + log I [1] I = e ,,,^ 0

as \p\ —>co.    Using this relation we obtain

vV + Pt2(cos r - i sin r) = ( - 1)M+V(1 + i(s/r))M[l]e-'le\ -> ( - 1)M+V

as \p\—x» ; thus

(-ir+Vi ,    ,
r = arc cos — - + e|„|,

\/pi2 + pt2

.      ( - DMM2     ,       ,
r = arc sin — - + €|p|,

Vßi2 + M22

where e'i„|—>0 as |p|—»°o. In short, if there exist infinitely many character-

istic values on the first quadrant, they necessarily lie asymptotically near

the points described in (1).

We shall now let p' be one of the points described under (1). In the

function e~pl+ ( — l)uppM[i], analytic in p on the first quadrant, we re-

place p by p'+£; we restrict £ to the circle \%\?¿e'<2w. There results a

function analytic in £,

e-"'*e-*i + ( - l)Mp(p' + t)M[l] = ( - l)*+V«-<i + ( - l)Mp(P' + £)M[l].

If we divide by ( — T)Mpr'u^0 we obtain a new function,

l_^<î+ «({/,*'),

where e(£, r', s') is analytic in £, |ê|ae', for all r', s', and lim|p-|^ooe = 0

uniformly, |¿r|íse'. If £ describes the circle \%\=e" = e' the argument of

l-e~i{ changes by 2ir, while |l —c—i*| è»?'>0.   If we choose \p'\ so large
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that |e(£, r', s')\ =:r¡'/2, the argument of the function 1 — e~i(+e(£, r', s')

also changes by 27r when £ describes the circle |£|=e". In other words,

1 —e~i(+e has a simple zero in the circle |(-| =e" for all p' such that \p'\ =^R'.

Thus for large \p\, there exists one and only one simple characteristic value

near each of the points described in (1).

III. The irregular expansion problems

We shall now make a comparative study of the differential systems

m" + (X + g)u = 0, m" + Xm = 0,

m'(0) + Au'(l) + Bu(l) = 0, m'(0) - m'(1) = 0,

m(0) - í4m(1) = 0, m(0) - m(1) = 0.

The other irregular differential system, adjoint to the first system given

here, can be reduced to the form of the first by the substitution x = l—x and

therefore does not require separate consideration. We assume that the

irregular differential system is of finite type. Then there exists for it a

Green's function G(x, y;X); the second differential system has a Green's

function G(x, y; X) and gives rise to the expansion problem of Fourier.

We let 2' denote the right half-plane for the complex variable p, X=p2,

from which the characteristic values of the irregular differential system and

of the Fourier system have been removed, the interior of a small circle a

of radius e described about each such value as center being deleted. We

denote by S{, 5/v the parts of 2' on the first and fourth quadrants re-

spectively. We denote by T any circular arc with center at p = 0 and central

angle w, lying on 2'. The image of T in the X-plane will be a circle C; the

totality of such circles C forms an infinite set of concentric annular regions

none of which contains a characteristic value of either differential system.

From the behavior of the characteristic values for large |X|, the circles C0,

Ci, C2, • • • , as described in § II of our previous paper, can be selected from

among the circles C; this is true simultaneously for the two differential

systems we are discussing. Finally, we let 71, 7iv be the portions of V on the

first and fourth quadrants respectively, while their common radius is R.

We shall study the behavior of

1    dk   r1     r /      x4\*+i

where f(x) is summable on (0, 1), l^M, ¿ = 0, 1, 2, • ■ -, as ?—><». The

meaning of this integral is discussed at length in our preceding paper, §§ III

and IV.
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For this discussion we use Lemmas III, V, VI' of that paper, as well

as Theorem IV.   In addition we need two other lemmas.

Lemma I.    If A2 —1=0 in an irregular differential system of order two

and type M,

1 p^-1

~D ~      Cu(e"i[l] + ( - l)Me~^[l])

on 5/ and 5/v respectively, where Cx=B^0 and Cm=Aolm-ití0, M~¿2.

Furthermore,

1
^ K ,    pon Sx,

e2pi[l] + (- 1)M[1]|

1

[l] + (-i)»er'K[lJ\
^ K ,    pon 5iv.

The first part of the lemma is virtually a restatement of Theorem II.

The second part is proved in exactly the same way as the corresponding

facts in the case of regular differential systems.*

Lemma II. If A2 —1^0 in an irregular differential system of order two

and type M,

1 ± p^-1

~D "cVtVfl] + «"[1] + ( - l)Me-^[l])'

where p = 2(A2 — 1)í/Cm, on S{ and Sxv respectively.  Furthermore,

1
¿ K,     pon Si,

¿ K,    p on 5iv.

«»''[l] + ppMe'i[\] + ( - 1)^[1] 1

1

e-2pi( _   \)M[l] +ßpMe-pi[x]  +   [1]

The first part of the lemma is a restatement of Theorem II.

In order to prove that   \e2"i[l]+ppMe"i[l] + (-l)M[l]\^l/K>0 on S{

we show that the equality e2"i[l]+/xpAie',i[l]-f-( — l)M[l] = »?,   where  |j;| is

small, requires that p lie near one of the characteristic values on the first

quadrant.  We let p' be a value of p satisfying this equation, which we can

write

(-!)*[!]-,[1]
e" H---= 0.

pp'u

1 Birkhoff, Rendiconti del Circolo Matemático di Palermo, vol. 36 (1913), p. 120.
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In the fonction e2"*[l]+ppue',i[í] + (-l)iI[l]=ppMe>li[l] + (-l)M[l], analytic

in p on the first quadrant, we write p=p'+^, |£ | ̂ e, where e is the radius of

the circles a described above.   We obtain the function

(- T)u[i\ -i,[l]
--     ,i (p' + Ö^*«[l] + ( - D'il],

P*

analytic in £. On multiplying it by e_i{( — 1)M+1/[1]^0, |¿| ^e, the term

[l] being the last such term in the preceding expression, we find a function

1- (- l)M+1v-e-*i + ï(t,p',v),

where f is analytic in £ for each pair of values p', 77, and where also

lim\p'\.Kt;(£, p', r¡)=0 uniformly, |£|^e, [ij|âH. For all H^V where n'

is sufficiently small

I 1 - ( - l)M+1t) - e-*l I   ^ Í > 0,     11\ » c ;

and arg (1 — ( — l)M+1r¡—e~*i) changes by 2tt when £ describes the circle

|£|=e.  We determine R' so that

If« ,p',iù I úS-,    |í|-«,    \v\¿v',    \p'\ = R'.

Then arg (1 — ( — l)M+lr¡ — e_i{+D changes by 2t when £ describes the circle

|£| =e; and the function itself vanishes in the circle. In other words, there

is a characteristic value within distance e of p=p' if \r¡\ =17', \p'\ ^R'; and

p' then lies in a circle a.  Hence, for \p\ ^R' on Sí we have

| e*"[l] + «•*«'*[!] + ( - l)*[l] | > v',

as we were to show.   The statement of the lemma follows at once.   Similar

reasoning applies on S/y.

We now demonstrate

Theorem V.   For an irregular differential system of the second order of

type M

afaí 0 - if HS; SI - {*■ ■ *■>})<*> - ••
tJCW,.(' -ä)"HS;S} - {"'"■-;A''})*dy - •■
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uniformly, 0<a^x = b <1, where * = 0, 1, 2, • ■ • , l^M,f(x) is summable

on (0, 1), and

o *~*
Fi,k(x,y,p)= +  £ i'+ip'e^x-y)  £   Aak(x)Bß(y),

<—0 a+/S—*—t

Fi,k(x,y,p)= - X ( - i)'+ye->«*-*>     £   A.h(x)B,(y),
i-0 a+0-*—>

irv,*(*,y,p) = -   E ( - »■J'+ip.er»«-»)     £    Aak(x)Bß(y),
«-0 a+(3=A-,

1 *~
fiv,*(*,y,p)= +   S   i'+ye"^1-"»     2    Aak(x)Bß(y).

The functions A(x), B(y) are those defined in our preceding paper in Theorem

III' and Lemma XIV.   The expression

Qk      pi p    , X4   ^ t+J

¿ = 0, 1, 2, • • -, l^M, is therefore equivalent on any interval (a, b) to a

linear combination with coefficients Aak(x) of means of order k+l, formed

rom the Fourier series and their derived series up to order k for the functions

f(x)Bo(x)=f(x), f(x)Bx(x), ■ ■ ■ ,f(x)Bk(x). On any interval (a, b) the ex-

pansion problems associated with an irregular differential system of the second

order of type M are thus phrased as problems in the theory of Fourier series.

In particular

lim Jf(y)Jc ( 1 - £-4) (G(x,y ; X) - G(x,y ; \))d\dy = 0,  l = M,

uniformly, 0 <a^x^b <1.

On putting
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Wi(u) =: «'(O) + Au'(l) + Bu(l),

Wt(u) m u(0) - Au(l),

|«i (y)    «2 (y)

we can write

TiVi(y) + T2v2(y)
Tl T2

«i (y)      u2 (y)

ui'(y)     ut'(y)

+ 2P

2p\--> —h>=2P{u¿»(x)vi(y) ; - uP\x)v2(y)}
\dxk    dx")

«!<«(*)     uik\x) 0

TFi(«i)      Wi(u»)       + 4«i'(l)»i(y) + 23«i(l)oi(y) - w2'(0>2(y)

W2(ui)     W2(u2)       - Aui (l)»i(y) - w2(0)»2(y)

tFi(«i)    ÏFi(«i)

W,(ui)    W2(u2)

Employing a familiar notation, we have on 5/

2p{«i<«(*)«'i(y) ; - »ék)(x)vt(y)} m {F¡,k;Fi,k}

+ {e^x-^mi(x,y,P)/p;    er^-^nti(x,y,p)/p},

Wi(ui) m pi[l] + Apie>*[l] + Be"*[l] a pm(p),

Wi(ut) = - pi[l] - Apie-<-*[l] + Be-"*[l]= Pm(p)e-"i,

W*(ui)m [1] -Ae"*[l]^m(p),

Wt(ut) = [1] - Ae-"*[1] = m(p)e-<'i,

Aui'(l)vi(y) + Bui(l)vi(y) - ut'(0)vt(y) = — e"*^-^[l]--ep«i-»>[lj
2 2p

-\e'*y[l]=.m(y,p),

- Aui (l)vi(y) - ut(0)vt(y) = m(y,p)/p,

Aui'(l)  |   vi(y)dy + Bui(l) I   r>i(y)dy - «j'(0) I   v2(y)dy

- Aui(l) I    vx(y)dy — us(0) I  v2(y)dy
Ja J et

= m(x,p)/p, 0 — a — 1,

m(x,p)
= -,      0 < a= 1.
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The last two results are consequent upon the fact that

— i   gP'O—*)   —   gpi(l-a)

efi\    vx(y)dy =- I   e"^1'^ [l]dy
Ja 2p   Ja2p Ja 2p — pi

— i Cx

H-I   e'4«1-»'[0]¿y = m(x,p)/p2,
2p Ja

px I     px

I    V2(y)dy = — i   e(>i»[l]¿y = m(x,p)/p2.
Ja 2p Ja

Finally

1 pM-1efi
-= -= Ja~1m(p)efi

Wx(ux) Wx(uí)        CM(e2"i[l] + ppMe^i[l] + (- l)"[l])

W2(ux) W2(U2)

by Lemmas I and II.  Hence on S{ we find

2f\—-L > —,( - iFl'k ;Fi.k} = {e"i^-^m1(x,y,p)/p ;e-'i(I-"W*,y,p)/p}
\dxk    dxk)

+ pM+ke<'ixm3(x,y,p) + pM+ke"^1-x)mi(x,y ,p),

Cx{    (dkG   d"G) o        i A

Cx(   .,       mx(x,y,p)                  .mt(x,y,p)\
=   I   ^e"l(x~v)-;   e~f"(-x~'/)->dy

+ pM+k~1e',ixmz(x,p) + pM+k-1e"i(1-x)mi(x,p).

By Lemmas III, V of our antecedent paper,

is uniformly bounded, 0 <a = x=^b <1, O^ygl, for all 71 on5i'. Lemmas V

and VI' show that

and also

n/        pV+i/    (dkG   dkG)       .  o        i   A
.('"F.)   (^^Wi,!)«,-»,,**,
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uniformly, 0 <a = x^b <1.    An application of the theorem of Lebesgue*

quoted as Theorem IV in our previous paper shows that

r1    r (     pV+! /   (dkG dkG)    , o     i a

uniformly, 0 <a = x^b <1.

Since «i and w2 on 5/ are changed formally into ux and u2 on Sív when p

is replaced by —p, it is possible to obtain the asymptotic form for

ld*G   rm

Pti** ' ~dx~k)

on Si' by replacing p by —p in that established for Sív.   Thus we see almost

immediately that

a— Jo        J,„ \       R>J      \    W    dxk)

- {F¡v.k ; Flv.k})dPdy = 0,    l = M,

uniformly, 0<a^xgo<l.

By Lemma XIII of our preceding paper we have

r1     r /     xv+I (dkG d*G)

and it is easy to complete the present theorem in a manner analogous to

that used for Theorems XXXII and XXXII' of that paper.   For k = 0,

Fi.o = — &»'<"-*>, Fi.o = — U->i(-*-rt,

Fiv.o = + *«-"'<*-»>,     Fiv.o = + ie'***-»*.

We know that

lim \ f(y) (   il--J(G-{- feP<(»-») ; _ ie-Pi(*-v)})¿p¿y « 0, J fc 0,

lim f/(y) f  ( 1 - — J (G - {&-»«•-»> ; ie'4«*-"'})a*pdy = 0,    f £ 0,

* Lebesgue, Annales de la Faculté des Sciences de Toulouse, (3), vol. 1 (1909), pp. 52-55.
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uniformly, 0 <a^x¿b <1, as the evaluation of these limits occurs in the

proof sketched for Theorem IX' in our paper on the regular expansion

problems.  It is immediately evident that

lim f f(y) f ( 1-) (G - G)d\dy = 0,    ¡|¥,
»->» Jo JCy \        A„V

uniformly, 0 <a^x^b <1.   This completes the proof of the theorem.

From various known properties of Fourier series and the term-by-term

derivative series of Fourier series, we deduce the theorems which follow.

The details of proof are strictly analogous to those given under the cor-

responding theorems of § VI of the paper on Birkhoff series.

Theorem VI.   The expansions

i   dk p1     c (     x4\*+I

üi^íMcy-zO e{'-yi«**" '*"■
associated with an irregular differential system of the second order of type M

are such that their behavior at x = x0 interior to (0, 1) is independent of the

nature of the summable function f(x) outside an arbitrarily small neighbor-

hood of x0.

Theorem VII.   If f(x) is summable, Ogxgl,

1 r1    r I     x4\*+l
lim —    f(y) |(l--)     G(x,y; \)d\dy = /(*)
>—" 2viJo        Jc,\       A,4/

almost everywhere, 0<x<l, if l=^M; if f(x) is continuous the convergence

is uniform, 0 <a^x^b <1.

Theorem VIII. If <p (x) is a k-fold integral in the sense of Lebesgue,

0 = x ?g 1, then

1    dk r1      r /      xv+!
lim— —    <p(y)      ( 1 - -)     G(x,y;\)d\dy = *<»(*), I = M,
*—«>2Tn ox*Jo       Jc,\       A„v

almost everywhere, 0<#<1; and if ^(x) is continuous the convergence is

uniform, 0 <a^x^b < 1.

IV.  The irregular expansion problems of type 1

If in our differential system we take g(x)=0, there results a special

system which is of type 1 or of type ß. Hence it is only in the case of systems

of type 1, Bj¿0, that we can compare the systems
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U" + (\ + g)u = 0, w" + Xw = 0,

m'(0) + Au'(l) + Bu(l) = 0,       «'(0) + Au'(l) + Bu(l) = 0,

w(0) - Au(l) = 0, u(0) - Au(l) = 0.

If we denote by G, G the Green's functions for these two differential sys-

tems respectively, it is our purpose to study the integral

—.(   ( f(y)(G(x,y ; X) - G(x,y ; \))d\dy.
2iriJo Jc„

It will be seen to have the limit zero uniformly, 0 <a = x-b <1, as i>—>°o.

We then make a special study of the second system, with interesting results.

The notations p, 2', 5/, S/v, T, yi, 7iV, R, C, have meanings entirely

analogous to those in § III.   We do not go into details.

We first prove

Lemma III. On S{, (e2"i+pPe"i + (-l))/(e2"i[l]+ppe"i[l] + (-l)[l]) =

[1], and on S{Y, (-e-^+ppe^i + l)/(-e-^i[l}+ppe-<'i[l} + [i\) = [1].

If p = 0 the lemma is Lemma VIII' of our preceding paper. If p^0 we

recall that in the term ppepi[i], [l] = l+Ei(p)/p2.   Consequently

¿loi + upe'i + ( - 1) e2»*[0] + ppe"*(i -■ [l]) + [O]

e2"[l] + ppe»*[l] + ( - 1)[1] 6^[l]+ppe"'[l] + ( - l)[l]

[0]

^[1] +ppe'i[l] + (- 1)[1]
= [1],

by Lemma II, for all p on 5/.   Similar reasoning applies to the expression

on Siv.

We can now obtain

Theorem IX.  If f(x) is summable on (0, 1),

lim ff(y) f ( 1 - -) (G(x,y ; X) - G(x,y ; X))d\dy = 0,    / = 0,
■—«Jo       Jc,\       A„V

uniformly, 0 <a^x^,b < 1.

We first show that

Urn ff(y)f (l - Q(G - G)2Pdpdy = 0,    l = 0,

uniformly, 0 <a = x^b <l; the result holds if 71 is replaced by yiv, by

reasoning whose details are now familiar ; the theorem follows immediately.
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We find by expanding the formula of Theorem V

2PG(x,y ; p2) s 2P[ux(x)vx(y) ; - U2(x)v2(y)}

2pe"i Bxxux(x)vx(y) + 5X2Ux(x)v2(y) + 82Xu2(x)vx(y) + Ô22U2(x)v2(y)

B e*'*[l] +ppe"i[l] - [1]

where

on = ¿2(mi'(1)m2(1) - Mi(1)m2'(1)) - A(ui(l)ut'(0) + m/(1)m2(0)) - Bux(l)u2(0)

= 2i42iP[l] - Ae'^c] - J?e<"[l] = 2ip[A2],

SX2 = - A(ut(l)ui'(0) + «,(0)«,'(1)) - 511,(0)11,(1)

= - 2i4ipe-"i[l] - ^-"'[l] = - 2ipe-"i[A],

Ô2X = A(ui(l)ui'(0) + ui'(l)ui(0)) + Bux(0)ux(l)

= 2i4ipe"i[l] + Be'^l] = 2ipe"i[A],

6» = («,(0)«i'(0) - «,'(0)«i(0))+ A(ui'(1)uí(0) + Mi(1)m,'(0)) + Bux(l)u2(0)

= 2iP[l] +Ae"i[c] + 5e'i[l] = 2*p[l],

for p on 5/.   Using the asymptotic forms for «1} m2, vx, v2 and the result of

Lemma III we find

2pG(x,y ;p2) = { - ¿e»«"--»>[l] ; - **-'«■-»> [l]}

1   eiivi(i-»)[Au] + «'"«^»[Au] + e'i(1-*)e"io-i'>[A2i] + e"'(1-a!>ev»[A22]'

B e2"4 + ppe»' - 1

where the terms [A] in the numerator are of the forms

a,     ,/.   ,   ¿i(y)   ,  E2(y,p)\ /        Bx(y)      &(y,p)   \
A(x,p)(  1+-— +-—- ),     A(x,p)(  1-— +-J

\ pi p2      / \ pi p2      /

and where
A„(x,p) -      2P[i42],

Ai,(x,p) = - 2p[A] ,

Aîi(:r,p) =      2p[i4] ,

A22(x,p) = - 2p[l]   .
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In particular we have

2pG(x,y ; p2) = { — ie"*^-^ ; — ie-"*<-x-^'\

-I-(-) (Âii(x,p)e"<*e'i(1-'') +Ài2(x,p)e"*xe"*<'
B\e2"* + ppe"* - 1/

+ Ä2i(x,p)e'i(1-:c)e''i(1-'') + Ä22(a:,p)e',i(I"I)e',<,')

for p on 5/.

We see immediately that for p on S{

2p(G(x,y;p2)-G(x,y;p2)) = {e>*(x-»>mi(x,y,P)/p ;«-'«*-»>»*,(*, y ; p)/p}

+ e"*xmz(x,y,p) + epiil-x)mt,(x,y,p).

Thus, by Lemmas III and V of our preceding paper,

Jy\      RV
2p(G - G)dp,    I = 0,

is uniformly bounded, 0 <a~x = b <1, O^ygl, for all yi on S{.

To discuss the integral

'a   »"I

we observe that

I"X.(i-3'2p(G-G",'ip^ ,i0'

Bi(y)      Ei\ ep *(i-«> — cp«i-*)C"        (     My)    Ei\Í. «""-"('+^f+vh-
+

pi
Bi(x)e"*^-x) - Bi(a)e"*<-1~^

P1"

rx Ei-Bi'(y)
_|_      I      gpi(l-v)   --- ¿y

Ja P2

epi(i-a) _ ep<(i-i)     m(x,a,p)

-:-H-\—>
pi p2

Bi(y)      E2\ e"*x — e"*"     m(x,a,p)rx      /        5i(y)      E2\            e'*x — e"*"
|  enu ( l-Í- + — ) dy = -:-+

Ja \ P* P2/ /»
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Thus we have

j   2p(G-G)dy=   f   {e"^x-^mx(x,y,p)/p; e-"i<-x-"'>mi(x,y,p)/p}dy

+ —(-J ( e'*' f (e""«1-»' [An].
BXe^ + ppe"- l/\       Ja

- Äxx(x,p)e^1-"'>)dy+-\- g'id-x) f (^»[A,,]

- àu(x,p)e"i")dy j ,

where the coefficients of e",x, c*<l_*> are of the form m3(x, a, p)/p, mt(x, a, p)/p

respectively; we compute, for instance,

J-x                                                                                                                                                      gp«(l—o) _ gpi(l—l)
(«'*U-»>[An] -Älx(x,p)e^1-"'>)dy = (An(x,p) - Äxx(x,p))-

I*

äxx(x,p)mx(x,a,p)      Äii(x,p)w2(x,Q!,p)
H-:-1-;- m(x,a,p)/p.

P2 P2

Hence we find

\   2p(G - G)dy =   I  {e"^x-")mx(x,y,p)/p ; e-"i(-'-"'>m2(x,y,p)/p\dy

+ et'ixm3(x,a,p)/p + epi(-x~x)mi(x,a,p).

Lemmas V and VI' of our antecedent paper show that

US1-*)'1«*'-';p2)-G(x,y;p2))dpdy^0,    1^0,

as R—»°°, uniformly, 0<a^x = b<l.

The reasoning then follows the usual channels until we have

lim ff(y) f (l - Q 2p(G(x,y ; p2) - G(x,y ; p2))dpdy = 0,    1^0,
r-Wo    Jyi \    Ry

uniformly, 0<a^x=b<l; and

lim ff(y) f ( 1 - -) (G(x,y ; X) - G(x,y ; \))d\dy = 0,    i fc 0,
,-.» J0       Jc, \       A„V

uniformly, 0<a^x^b<l.   The proof is thus completed.
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Because of the result just obtained, it is of interest to study the dif-

ferential system

u" + \u = 0, X = p2, 0 = x = 1,

«'(0) + Au'(l) + Bu(l) = 0, B ¿¿0,

w(0) - Au(l) = 0.

We find that there are three cases to consider according as4 = —1,4 = +1,

A2 —1^0; we shall call them Cases I, II, III, and take them up in order.

In Case I the differential system and its adjoint are respectively

u" + p2u = 0, v" + p2v = 0,

«'(0) - «'(1) + Bu(l) = 0,        »'(0) + v'(l) - Bv(0) = 0,

m(0) + w(l) = 0, v(0) - v(l) = 0.

The characteristic values of p are found from the equation epi — e-pi = 0;

in fact, they are all simple and are given by p = kir, k= ±1, ±2, • ■ • .

We need consider only positive values of k. The corresponding solutions

of the differential system are then

-  . V2
«i = \/2 sin 7TX H-ir cos îtx, z>i = \/2 sin irx,,

B

-  . V2
«2 = y/2 sin 2-KX, v2 = \/2 sin 2xx +    -2ir cos 27rx,

B

W2
u2m = \/2 sin 2mirx, v2m = \/2 sin 2mirx -\-2mtr cos 2mirx,

B

2v/2
«2m+i = y/2 sin (2m + l)wx -\-(2m + l)x cos (2m + 1)tx,

B

V2m+i = -\/2 sin (2m + l)xx,

as can be verified by direct substitution.   For these solutions we find

f1 A i0'   Í9£k\
|    UiVkdx = <       .        > •

Jo (1,  i = k)

The  expansion problem is  therefore  that of representing  an  arbitrary

summable function in terms of the infinite series

Jfc=°o*-«= r.1

Yi akUk,   ak =   I fvkdx.
¡t-i Jo
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The sum of the first N terms of this series can be written

k=N k-N 4     k=N    ¿

23 akuk =   2\L ak'\J2 sin kirx H-2~2 — (a*" cos kirx + bk" sin kirx),
*-i t-i B   k=x dx

where

ak = y/2 j f(y) sin kirydy,
Jo

aim = —   I f(y) cos 2mirydy,
Jo

" A

ö2m+i = U,

¿2m =  0,

bi'm+i =   I f(y) sin (2w + l)iry¿y.
Jo

If Fx(x) is defined for the interval (0, 2) by the equations

Fx(x) = 0,    0 ^ x á 1,

/(x - 1) + /(2 - x)
F!(*)=--—^--,      i = x^2,

2

its expansion in terms of Fourier series on the interval (0, 2) is given by

*-»

-4o +  2~1 (Ak cos kirx + Bk sin kirx),
k=i

where

1 r2
Ao = -\ Fx(y)dy,

2Jo

a      fPM     t.   ^      f'/W+/(i-y)     . ,   ....Ak =   I x*i(y) cos kirydy =   I   - cos kir(y + l)dy = ak",
Jo Jo 2

J%i                        c f(y) + f(i - y)
Fx(y) sin kirydy =   j-sin kit(y + l)dy = bk",

o                                    Jo                2

by a series of obvious manipulations.   In other words, the expression

Ç» ¿
0+2-, — (ak" cos kirx + bk" sin kirx)

k-i dx

is the sum of the first 2ÍV+1 terms of the term-by-term derived series of

the Fourier series for Fx(x), a function identically zero, 0gx<l. We recall

at this point some of the theorems concerning the derived series of Fourier
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series. In particular the Cesàro mean of order l>0 for the present series

converges uniformly to zero, 0<a^x = b<l.* The term SaiV2 sin krx is

the ordinary sine series on (0, 1).

Thus from Theorem VI of our preceding paper and Theorem IX of the

present one we have

Theorem X. If G(x, y; X) is the Green's function for an irregular dif-

ferential system of the second order of type 1, Case I, and iff (x) is summable

on (0, 1), then the expression

hí/rfS1-£)'«*■>:x)Mi'-,io-
is equivalent on any interval (a, b) completely interior to (0, 1) to a sum of

means of order I formed from the sine series on (0, 1) for f(x) and from the

derived series of the Fourier series on (0, 2) for Fi(x), where Fi(x) is the function

defined above.   In consequence,

lim — ff(y) f (l - —) G(x,y ; \)dXdy = f(x),    I > 0,
*-°°2ti./o        Jcv\       A„V

almost everywhere, 0<x<l; the convergence is uniform on (a, b) if f(x) is

continuous on (0, 1).

This theorem is stronger in the case M = 1, A = — 1, than Theorem V;

it has also the advantage of revealing clearly the precise nature of the ir-

regularity in the expansion problem.

In Case II, A = +1, we obtain entirely similar results. The differential

system can be solved and the formal series set up as before. It is found that

the expansion of an arbitrary summable function f(x) is representable as

the sum of the sine series on (0, 1) for/(x) and the term-by-term derived

series of the Fourier series on (0, 2) for F2(x), where

F2(x) = 0, 0 g x g 1,

/(2 - x) - f(x - 1)
F2(x)=---,      lá*£2.

it

It is therefore possible to state the following theorem.

* W. H. Young, Proceedings of the London Mathematical Society, (2), vol. 13 (1914), pp.

13-28; also § VI of our preceding paper.
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Theorem XL  // G(x,y;\)  is the Green's function for an irregular

differential system of the second order of type 1, Case II, then the expression

— ff(y)f(l--l)G(x,y;\)ikdy,    / £ 0,
2in Jo        Jcy \ A4/

formed for any summable function f(x), is equivalent on any interval (a, b)

completely interior to (0, 1) to a sum of means of order I formed from the sine

series for f(x) on (0, 1) and from the derived series of the Fourier series for Ft(x)

on (0, 2), where F2(x;) is the function defined above.   In consequence

lim-- ff(y) f (l- —\ G(x,y ; \)d\dy - /(*),    I > 0,
>—M27rîJo        Je A        A„4/

almost everywhere, 0<x<l; the convergence is uniform on (a, b) if f(x) is

continuous on (0, 1).

To discuss Case III, A2 —1^0, we first prove

Lemma IV.   If p = r+is, 0<C< \p\, then

1

'>< + ppepi — 1

for \p\ sufficiently large; and

1

úKe'/r, 0 g s g log Cr,    r^O,

^Ke-'/r, - log Cr g s g 0,    r è 0,
1 + ppe-?' - e-2fi

for \p\ sufficiently large.

We take up the first inequality only, the other being treated similarly.

We have

»' + ppe"{ — 1 = ppepi[l] — 1.

Hence

| e2pi + ppe"' — 11 = l/ipe'^l] - 11

= re~' p
(-7)

(cosr + tsinr)[l]   —

|m||1+ —|| [1] I-Cj> —    ,0ès = logCr,r £ 0,

for |p| sufficiently large, since the term in the last parenthesis has the

positive limit |ju|— C as |p|—>w, uniformly for the range of s considered.
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We can now prove

Theorem XII. If G(x,y;\) is the Green's function for an irregular

differential system of the second order of type 1, Case III; G(x, y; X) is the

Green's function for the Fourier differential system of the second order

u" + Xw = 0,

w'(0) - m'(I) = 0,

«(0) - «(1) = 0 ;

and <p(x) is of bounded variation on (0, 1) ; then

lim— f v(y) f ( 1 - -\ (G(x,y ; X) - G(x,y ; X))d\dy = 0,    I £ 0,
"-x» 2-iriJo Je, \       A,4/

uniformly, 0<agxgo<l.   Thus

<p(x + 0) + <p(x - 0)
lim —- f p(y) f (l - — )G(x,y ;\)d\dy =
•^x>2tviJo Jc,\       A„V

/ è o,

0<x<l; the convergence is uniform on (a, b)   if <p(x)   is  continuous   on

(0, 1).

It suffices to prove the theorem for a monotone function <p(x) and, by

Theorem IX, the Green's function for the system

u" + \u = 0,

m'(O) + Au'(l) + Bu(T) = 0,

«(0) - Au(l) = 0, B(l -A2) ?i 0.

We apply the second law of the mean for integrals to the expressions

m(p)

P

m(p)

/•i /»fi c1
I ^(yV'^-^áy = <p( + 0) J e"*^-^dy + <p(l - 0) 1  e'^-^dy

Jo Jo J(l

ni nlï M

I   <p(y)e"*"dy = <p( + 0)       e"*«dy + <p(l - 0) I    e'*Hy  =
Jo Jo Jit

On substituting these results in the expression for G given in Theorem IX,

we find

f <p(y)2P (l - |J G(x, y ; p2)a> = J *(y) { - i*«-»> ;

./       p8V e'ií[í»i(p) + e"i(1_x)OTi(p)

'\       R?) e2"* + ppe»* - 1
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We now show that

J" e"ixmx(p) + e"<(1-l)OT2(p)
-dp = 0,

.  n        e2»* + ppe"> - 1

uniformly, 0<a^x^b<l. To do this we write p=ReiS, O^d^ir/2, on yx,

and then investigate the integrals for 0^0^01, 0i^0gir/4, 7r/4^0^7r/2,

where 0i satisfies the equation R sin 0i = log CR sin 0i. That 0i exists

and is unique is seen very readily; it is the argument of the point of inter-

section of 7i and the curve Cr = e\ Then we have, if ô>0 is the lesser of a,

i—b, and if \mx\^M/2, |»î2|gM/2, because of Lemma IV,

/.ft  epixm     i    epi(l-xW i /.ft  eR(l-5)sin9

h      e2pi + ppepi — 1 Jo      cos Odd

MK    rei . MK   e*«1-*» - 1
eB(l-S)sm9 COS Odd =-fh Jocos^i Jo cos2»!   R(l - 8)

MK (cr cos exy-s - 1

cos^i R(l - Ô)

as R—> oo. Again, by Lemma II,

.W4   epixmi _|_ eP»(l-x)W2

■-»0,    0i->O,

-Reied6   = MK e-SRsineRdd
I J9l       e2"* + ppe"' - 1 J(l

M2T       z»''4 MK

r/4) J9lcos (r/4) J6l 8cos(ir/4)

MK
(e-BJsm(W4) _ (Ci? cos öl)-5) _» 0

5cos(ir/4)

as R-+CO.   Finally

I   p*'2 epixmx + e"i(1_l)W2 rTli
I       -Reied8    £ MK I       Re'^^^^dd-^0

\JrU     e2'< + ppe"' - 1 JT/4

as J?—>».  We have established the desired result.

It follows at once that

lim  f <p(y) ( ( 1 - — ) (2pG - { - ie'i(*-"> ; - ie-'^*~^\)dpdy = 0,l = 0,
A—» Jo Jt, \       Rv



50 M. H. STONE [January

uniformly, 0<a = x^b<l. We know that we can replace G by G, the

Green's function for the differential system

«" + X« = 0,

«'(0) - «'(1) = 0,

w(0) - w(l) = 0,

in this expression.   Thus

lim  f\(y) ( (l - £\ 2p(G - G)dpdy = 0,        i^O,
«-.»Jo       Jyi \     R/

and

lim   [\(y) f (l - M (G(x,y ;X) - G(x,y ; \))d\dy = 0, Í fc 0,
,-.«> Jo JCy \ A,4/

uniformly, 0<a = x = b<l.   The remainder of the theorem follows at once.

The differential system

u" + \u = 0, 0 = x= 1,

u'(0) +^«'(1) + Bu(l) = 0,

«(0) - Au(l) = 0, B ^ 0,

was so considered in Cases I and II that knowledge concerning the behavior

at x = 0 and at x = l of the expansions associated with them was contained

in the theorems proved ; these two points are obviously points at which the

irregularity of the differential system renders the expansions especially

peculiar. In Case III we must study the expansions at these points sep-

arately. We take the characteristic equation in the form sin p = p.p instead

of e"*+pp—e-p* = 0. For large \p\ the characteristic values corresponding

to roots of this equation are all simple. We denote them by px, px+i,

PK+t, ■ ■ ■ , where |p*+i|^|p*|, k=K, K+l, • • • . Since 42 —1^0, the

functions

Uk = ún pkX+A sinpjt(l— x)

and

Vk = A sinpfcX — sin p*(l— x) (k = K, K + l, • • •),

satisfy the differential system and its adjoint for p=pk-
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f UiVkdy = 0,        i*k,        i,k^K,
Jo

I   UkVkdy = Al  (sin2pky — sin2pk(l — y))dy
Jo Jo

+ (A2 — 1) I sinpky sinpk(l — y)dy
Jo

J(cospk(2y — 1) — cos pk)dy
o

A2- 1

2      •/„

l-^2 / sinpA      I-A1
I  cosp*-1= —-— (cosp* — p).

2    \ Pk  f 2

The expansion of an arbitrary summable function thus takes the form

*-x  r1 k~"     2        Uk(x)      r1
S       f(y)Rk(x,y)dy+ £- -—z  I fVkdy.
k-l  Jo k-K  1 — A1  COS pi — p Jo

In the case that ^4=0, the boundary condition w(0)=0 shows us that for

x = 0 this expansion converges to zero ; hence we consider the case x = 0 only

when A^O. We shall discuss the convergence at x = 0, x = l of the above

series for a function/(x) continuous with its first three derivatives on (0, 1).

It is unnecessary to treat the first K — l terms for our purpose. We have

at once

Jo
fVkdy = - f(y)(A cos pky + cos p*(l - y))/pk

+ f'(y)(A sin pky - sinpt(l - y))/pk2

+ f"(y)(A cos phy + cos p*(l - y))/pk3

1    r1
-. I i'"(y)(A cos p*y + cospel - y))dy.

P k* Jo^

»-i

y-0

lf-1

v-o

The first two terms combine as (a cos pk+ß)/pk where a, ß are constants;

a, in particular, is the expression/(0) — 4/(1).  Since we have
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cos Pif

Pk Pk\

1

Pk\

( cosh25i| cos2/-*! + sinh2s*£ sin2rt|)1/2

- (cosh2Sfc£ — sinV*£)1/2 ^ cosh skÇ/ \pk\

á cosh sk/ | pk |   |Q

for Og£gl, pk = rk+isk, k = K, K + l, • • • , by the results of Theorem IV,

we can write the sum of the last two terms as mk/ o\ where mk is bounded,

k—K, K+l, ■ ■ ■ .   We have, then, to consider the series

fc=0O

z 2       Uk(x) (acos pk + ß

k=K 1-A2 pk

/a cos pa + ß mkpk       \

\ cos pk — p        pk2(cospk—ß)J

at x=0, x = l. Since sin pk = ppk these series are

2i4p    *^  /acospk + ß mkpk

1 — i42 k=K \ cos pk — p      pk2(cospk—p)

2p       ^  /a cos pi + ß mkpk

*)•

l-i4! k=K   \ COS pk pk2(cospk- »)■

Since cos p* ± V 1 —sin2pi = ± vl-ji2pi2 we have

COS pi
lim inf

£-00

>o,
I COS Pi — p |

and the series X cos Pk/(cos pk—ß) is divergent.   Similarly, we find

mkpk

Pi2(C0S pi — p)

M

Pk\

(k = K,K + l, •■•)

Since  by  Theorem   IV   2^1/|pi|2  is   comparable  to   2~l^/k2,   the   series

2^2mkpk/p\ (cos pi — p.) is convergent.   Lastly we show that 23l/(cos Pi—m)

converges.  If C¡ is a simple closed contour on 2' surrounding pk, ■ ■ ■ , pk+i,

then
k^+l        1 1     r dp

— p      2iri Jc¡k-K COS pi iCi   sin p — pp

by the theory of residues. We shall take C¡ as being the contour made up

of two concentric semi-circles on 2', namely To and 7i+7iv, joined by

segments of the imaginary axis which we shall call 71 and 74 respectively.

We find
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by replacing p by —p in either integral.  By work like that of Theorem XII

we have

C        dp c 2iepidp r dp
I   -— =  I-»O, -—-> 0,

Jyi sin p — pp     Jti e2pi + ßpepl — 1 Jtiv sin p — pp

as R—> ».  By the use of these facts we find

*=£í'      1 1      r       dp
lim  £-— = ̂ -   r
¡->»  i=K- cos pt —a       2xi    Jr¡-"tt  i=x cospi —p.       2xi    Jr0sinp-pp

and the desired result is proved.

In short, if a=/(0)—^4/(1) is different from zero, the expansions for

/(*), continuous together with its first three derivatives on (0, 1), in Case III

diverge at x = 0 and * —1, except when A=0, x = 0;ifa = 0 they converge,

In Case III, therefore, the expansions present special irregularities at the

end points of the interval of definition.

Columbia University,

New York, N.Y.


