
INTEGERS AND BASIS OF A NUMBER FIELD*

BY

N. R. WILSON

I.   Introduction

The existence theorems of the standard theory of algebraic numbers do

not always lead to very practicable methods of computation in individual

cases. Such methods of computation form the main subject of this paper.

The basis set up appears at the same time to have some advantage of sim-

plicity for theoretical purposes. The numbers of the field are first expressed

in terms of a special set of integers, from which the basis is obtained in the

third section. In the remaining sections, methods of computing this special

set are discussed, illustrated by the general cubic.

Let ^4Bz" + An-iZ"-1 + • ■ • + Ao = 0 be the equation defining the field,

aU A's being rational integers and^4„ ¿¿ 0. Let d be the greatest rational

integer such that dT/An-^A'n~^ \ior all of r = 1,2, ■ • • ,n. Then the sub-

stitution xd = zAn reduces this equation to xn + Bn-iX"'1 + ■ ■ ■ + B0 = 0,

the B's being rational integers. This form of the equation we call the normal

form. Its defining features are (i) the coefficient of xn is 1 and all 2?'s are

rational integers; (ii) there exists no rational prime p such that pr/Bn-r

for all of r = 1, 2, • ■ • , n. We may, if we please, make Bn-i = 0. These

transformations, being rational, do not affect the field.

To minimize the verbiage, we use the following notation and terms, the

the latter mostly self-descriptive. The integers l,x,x2, ■ ■ ■ , xn~1 we call

ordinary integers; also the sums and differences of such. These letters and

y, z, Y, Z denote algebraic integers. The remaining letters, a,b, ■ • ■ ,w, and

the corresponding capitals, denote rational integers, p being reserved for

primes and pi, p2, ■ ■ • denoting distinct primes. Greek letters denote ra-

tional numbers. If an algebraic integer is of the form a0+«ix+ • • • +amxm,

m = n — 1, am 9^ 0, and each a in its lowest terms, we say that it is of

degree m in x, abbreviated (aQ,ai, • • • , am). If also — \ < a — \ for each

a and am = l+Dm where Dm > 0, we call it a reduced integer. If y is a

reduced integer and the denominators of the a's are powers of one and the

same prime, we call y a single-prime reduced integer. If y is a single-prime

reduced integer and am = 1 + p* where t is the greatest possible, we say

that y is a maximal reduced integer in p of degree m.

* Presented to the Society, December 29, 1925; received by the editors in February, 1926.

t The symbol / throughout denotes "is a factor of."

Ill
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Theorem I. // pk is the highest power of p occurring in the denominator of

any a of the single-prime reduced integer a0 +axx + ■ ■ ■ +amxm, then p2k is

a factor of the discriminant of the field equation*

1    x     x2   ■ ■ ■ xn

1       X2       X22    •   ■   '  Xin

1       Xn       Xn     *   '   *   Xn

Let y = «o + ctxx + ■ ■ ■ + «r._i #n_1 be the in-

teger and y2 = «o + ai*2 + • • • + «n-i^-1, • • • ,

y„ = «o + axxn + ■ ■ ■ + an-xi„~l be its conjugates.

The determinant D on the left, when squared, gives

the discriminant, A. Let «r, r = m, be any coefficient

which contains pk in its denominator. Multiplying

the equations above by the co-factors of xr, x2T, ■ ■ ■ , xnT in D and adding,

we obtain on the right ct,D, and on the left a determinant D' which is not

affected, except for a change of sign, if we interchange a pair of conjugate

roots. Hence D'2 also is a symmetric function of the roots; rational and,

since the coefficient of x" is 1, integral in the remaining coefficients B. Since

A = D2 and A ^ 0, a2 = D'2 + D2 or p2k/A.

Corollary 1. If there exists a single-prime reduced integer inpof degree

m in x, there exists a maximal reduced integer in p of degree m in x.

For, since p2k/A, k for am is bounded and is a rational integer. Hence k

must have a rational integral maximum, t.

Corollary 2. The maximal reduced integers in a given field are finite

in number.

For m is restricted to the range 0, 1,2, ■ ■ ■ ,n — 1; p to the primes such

that p2/&. For each m and p there can be only one maximum t of the last

corollary. The coefficients « are limited by the relation — § < « = \.

The number of each is finite, and therefore also the number of maximal

reduced integers.

II. Exprfssion by ordinary and max¡mal reduced integers

We prove first that any integer can be expressed in terms off ordinary

and maximal reduced integers, using not more than one of the latter for

* The discriminant A of the field equation throughout this paper denotes the product of the

squared differences of the roots, without the additional numerical factor of some current definitions.

We suppose always that A^O.

t For simplicity, when ambiguity is not likely to arise, "expressed in terms of" is used to ab-

breviate "expressed as a rational linear homogeneous function, with rational integral coefficients,

of" except in enunciating theorems.
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each m and p. If M = pi" pt2 • • • is the L. C. M. of the denominators of the

coordinates in y = (a0, oti, • • •, am) ; and if «i, u2, • • • are non-zero solutions

of
/ «1 «2 \

M(—+ —+ ■••  ) = 1

(the notation implying that they are rational integers) ; then y = «i yi + «2 y2

+   ■ ■ • ,   where
M

Prr

Each yr contains in its denominators the same powers of pr as in the cor-

responding denominators of y, and powers of pT only. It will be sufficient

therefore to prove the result for an integer y, all of whose denominators are

powers of one prime p.

If y is such an integer of degree k in x, then y — (ai, a2, • • -, ak) is also an

integer.  Hence y is the sum of ordinary integers and an integer of the form

/bo    »i bm
y = [ — > —, ■ • ■ > —

\p'°   p'1 ptm

where — \ < (b -e- pl) = J, bm ^ 0 and prime to p. If ubm + vp'm = 1, uy'

+ vxm, apart from ordinary integers, is a single-prime reduced integer,

(ßo, ßi, ■ • •, 1 + p'm). Hence a maximal reduced integer in p of degree m

in x exists (Theorem I, Corollary l);viz. Ym = (70,Yi, • • • , 1 ■*■ p'),l ^ tm.

Consider the integer y — bmp'-^Y'm. The coefficient of xm is 0, so that it

is of degree <m in x. If this difference is not expressible in terms of ordinary

integers, we obtain in a similar manner a single-prime reduced integer,

(ßo',ßi', - - • , b,' -s- pUs), and a corresponding maximal reduced integer, Ys

= (To,7i, • • • , 1 -5- pu) of degree sinx,s < m and u = um, and consider the

difference (y — bmp'~'mYm) — bsptt-"»Ys. Continuing this process so long as

the difference is not expressible in terms of ordinary integers, we must, after

m steps if not before, obtain a difference which is integral and of degree 0 in

x; i.e., a rational integer. Hence y is expressible in terms of Ym,Ys, ■ ■ ■ and

ordinary integers. As all maximal reduced integers in p of degree m in x

have the same highest coefficient, any one with the same m and p may be

used in making these reductions.

Theorem Ha. All integers of the field can be expressed as rational linear

homogeneous functions with rational integral coefficients of ordinary integers and

maximal reduced integers, the latter consisting of one selected arbitrarily from

those in each prime and for each degree in xfor which such exist.

■
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Corollary.  The difference between two integers in p,

(a0    ax am\

pto      ptl '    pv)

and
(bo     bi am\
I-,-, • • -, — ),
\ pu°   pui p"l

of the same degree in x and with the same highest coefficient, is expressible in

terms of ordinary integers and maximal reduced integers in p, both of lower

degree m x.

Theorem lib. // p is a prime occurring in the denominator of some co-

ordinate of an integer, then (i) there exists exactly one maximal reduced integer

Yr, in p of lowest degree r in x, r > 0; (ii) if r < n — 1, there exist maximal

reduced integers in p of degrees r + 1, r + 2, • • • , n — 1 in x ; and (iii) for

each u, 0 < u < t, there is one and but one single-prime reduced integer, (ßo, ßx,

• • •, 1 + pu) of degree r inx differing from p'-"Y by ordinary integers, where

Yr = (7o,7i, ■••,!+ P').

As in Theorem la, there exists a single-prime reduced integer and there-

fore a maximal reduced integer in p of some degree m in x. Since m has 0

for a lower bound and is a rational integer, there exists at least one of some

lowest degree r. We must have r > 0; for any rational number which is also an

integer must be a rational integer. If there were two of this lowest degree

in x, since their highest coefficients are the same, their difference leads to a

single-prime reduced integer of lower degree, since - 1 < a á i From

Corollary 1, Theorem la, we should then have a maximal reduced integer of

degree r', r' < r, the least degree in x.

If Yr is this one and r < n — 1, then xYT, x2YT, ■ • • , xn~T+1Yr are single-

prime reduced integers in p of degrees r + 1, r + 2, ■ ■ ■ , n — 1, in x, hence,

by the same corollary, there are maximal reduced integers of these degrees

in x. The integer given in (iii) shows that there is at least one integer for

each u; that there cannot be more than one follows exactly as in (i).

Corollary. The maximal reduced integers of degree r + 1 in x are of the

form Y,+x + mYr, where m = 0, 1, 2, • • • , (p* — 1) and Yr+X is any one of

them; those of degree r + 2 in x of the form Fr+2 + nYT+i + mYT, Where also

n = 0,1,2, •■ -, (pu — 1), 1 +pu being the highest coefficient in Fr+2, any one

of them, and so on.

Theorem He. If (a0 ■+ P'°, ax + p'¡, ■ ■ ■ , 1 + ptm) is a maximal reduced

integer in p of degree minx then t, = tmfor s < m.



1927] BASIS OF A NUMBER FIELD 115

For the lowest degree r of the preceding theorem, let

/a0    ai 1 \
Yr = ( —» —>--•> —).

\p<°   p'1 ptr/

If possible, let any ts, s < r, he the last index exceeding tT. Then the integer

PtrYr leads to the single-prime reduced integer  (ß0, ßi, • - ■ , 1+ pu), of

degree s in x, where u — t, — tT. There is therefore a maximal reduced integer

of degree s in x, s < r, contrary to hypothesis with respect to r.

For degree r + 1 in x if r < n — 1, we have

ao ai 1
xYr = — x H-x2 + • • • H-xr+l.

/>'» pti ptr

If

00 01 Or 1
Fr+i = — + — x + • • • + — x' + —— xr+i

p"°        p"l pu' p'r+v

is a maximal reduced integer of degree r + 1 in x, the difference p"YT+i — xFr

is of degree < r + 1, and therefore of the form cFr. Examining the coef-

ficient of xk, the degree of p in (£>* -î- puk~') — (ai_i -f- ̂ 't-1) cannot exceed

tT. Since <i_i ^ ir, we have «i — v — tT or Uk < tT + a, the index of the

highest coefficient in Fr+1. Replacing r by r + 1, the same result foUows in

similar fashion for Fr+2, the sole change being that the difference is of the

form cFr+i + dYr instead of cYT. Similarly for all degrees in x up to n — 1.

(This property obviously does not hold for single-prime reduced integers in

general unless all maximal reduced integers of degrees < m in x are of degree

1 in p.)

Corollary.   If tr, tT+i, ■ ■ -, tn-i denote the degrees of p in the highest coef-

ficients for a series of maximal reduced integers in p, YT, Yr+i, ■ ■ ■ ,F„_i, of the

degrees in x indicated by the subscripts, then tT ^ tr+i Ú   • • • â tn-i,if (n — 1)

■+■ r = 2, then ktr útmfor m ^ kr, where k is any integer > (n — 1) -5- r.

For the degree of p in the highest coefficient of Fm+i must be at least the

degree in xYm and therefore not less than the degree in Ym. Also if m è kr,

the degree of p in the highest coefficient of Ym must be at least that in Fr*.

Theorem lid. Ifr,r < n — 1, be the lowest degree in xfor which a maximal

reduced integer in p exists, then there exist single-prime reduced integers of every

degree minx,r < m = n — 1, such that aT = aT+i = • • • = am_i = 0.
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For, let

Ym= (ao, • ■ -, ——> —) and Fm_i = («o, • • -, ——)

be maximal reduced integers of degrees m and m — 1 in x. Then p'Ym —

bpwYm-X, where v = tm — lr and w = tm — tm-i + um-X — tr, has «m_i = 0

and is an integer, since by the preceding theorem and corollary the indices

v and w are not negative. Similarly, by subtracting proper multiples of

Ym-2, ■ ■ ■ ,YT, we may reduce the coefficients «m_2, • • • ,«r toO. (The coef-

ficients can obviously be given any arbitrary values, those obtained being

most convenient for use with § IV.)

III. Constructing a basis

Since the number of different primes which can occur in the denominator

of an integer is finite (Theorem I), and for each there is a maximal reduced

integer of lowest degree r' in x,r' > 0, there will be a lowest degree r, r > 0,

for which any such occurs.    For any k, r = k = n — 1, let

*».»-(«*•■•,—), y»..- («o, •••>-,:)>•••

be any selection of maximal reduced integers of degree k in x, one for each

distinct prime for which such occur. Let Pk = px^p2'2 ■ ■ ■ and let vx, Vt, • ■ ■

be non-zero solutions of

/   VX D2
Pk  (-- + --

\pltl Pih

Let Zk be the reduced integer derived from vxyktX + V2yk,2 + • • • by remov-

ing ordinary integers as in §11. Then Zk is of the form (j30, ßi, • • • , 1 +Pk).

The coefficient of xk in PkZk is 1, and, by Theorem He, lower powers of x

reduce to ordinary integers. Hence xk is expressible in terms of Zk and

ordinary integers of degrees <k. Also (Pk + p,h)Zk is of the form (ßo , • • • ,

1 + />«'')• The corresponding reduced integer,

y,. - (*.», ■ ■ •, ¿).

is therefore a maximal reduced integer in p.. Hence Yk,, is expressible in

terms of Zk and ordinary integers of degrees < kinx.

For the basis, ax, w2, • • • , wr, cor+i, •••,«„, we take l,x, ■ ■ ■ , xT~l, ZT,

Zr+i, • • • , Zn-i- These are linearly independent since each contains a

power of x higher than the preceding.   By Theorem Ha, every integer can

-'■
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be expressed in terms of ordinary integers and the maximal reduced integers,

Fi.i, Ft,2, ■ • ■ ior r = k = n — 1. Ordinary integers of degrees < r in x

are exactly wi, co2, • ■ ■ , cur. We have proved in the preceding paragraph

that x' and Fr,i, Fr,2, • • ■ can be expressed in terms of ZT and ordinary

integers of degrees < r in x; i.e. in terms of wr+i, and wr, • ■ • , «i. Also

that xr+1 and Fr+i,i,Fr+2,i, • • • can be expressed in terms of ZT+i and ordi-

nary integers of degree < r + 1 in x; i.e. in terms of wr+2 and ur+i, wr, • • • ,

«i. And so on. Hence the given set actually form a basis. An integer of

degree m in x can in fact be expressed in terms of on, • • -, si„+l.

The usual theorems follow at once. If a¡ = £*-iCí/»/, 1 á i á n, are

linearly independent, the c's being rational integers, we can express each <*>,

rationally and integrally in terms of the set w', provided |cj¡|2 = 1. Hence

with this condition the set w' also form a basis. The discriminant

Ai(wi, •••,»») — |c,j| Ai(<a{, • • -,«„'), and since |c,-,| is rational, integral

and j* 0, \cij\ = 1. Hence Ai(o>i, • ■ • , wn) is a minimum, and, if any

Ai(wi, •••,««')— Ai(wi, • • • , (x)n), \cij\ = 1 and the set «' form a basis.

Finally, since we have seen that the minimum degree for which maximal

reduced integers exist is greater than 0, 1 is always a member of a basis con-

structed as above.

We may deduce a relation between the discriminant of the field and of

the defining  equation.     In  the  field  discriminant  below,  Wi(1> — 1, w8

= x, • • ■ , wr( 1} = xr

• - . + (1 -*• Pr)x',

+ • • • + (1 •*■ P„_i)xB_l. The columns,

w»(<), • • • , w„(i), 1 < i = n, are obtained

by replacing x by its conjugates x¿. Keep-

ing the first row unaltered, by subtracting

proper   multiples   of  preceding  rows,   we

r_1, cor+! = a0 + aix +

«„< » = 6o + Six
1

2

,(1)

2

.(2)

,(2)

1
,(n)

3

,(n)

= A,

1 1

xf

F
XT

1

PT

X2r

Pn-l

n-1

X2

PT

Pn-l

i obtain the second determinant,

on the left. (Thus, for the sth

row, 5 > r, on subtracting the

proper multiple of the (s — l)th

row, we eliminate the terms

= Ai #»*~l) from the difference, the

proper multiple of the (s — 2)th

row, we eliminate Xi'~2; and

so on.) The latter determi-

nant on inspection is seen to be

A + P#+1. •  Pl-i, where A

denotes the discriminant of the equation defining the field.
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Theorem III. // Ai, A denote the discriminants of the field and of the

equation defining the field, and PT, PT+i, ■ ■ ■ , Pn-i are the denominators of

the highest coefficients of the elements of the basis as above determined, other than

those which are ordinary integers, then A = Pr2P2r+l ■ ■   P2. XAX.

Since Ai must be a rational integer,

Corollary. // PT, PT+i, • • • , Pn-i are the denominators of the highest

coefficients of elements of the basis as above determined, other than those which

are ordinary integers,   (PrPT+x ■ ■ -P„-x)2 is a factor of A.

IV. Relations among the coordinates of an integer ; first method

If y = ao + «i* + • • • + an-iJC-1 is an integer, consider the product-

equation

n{y - (a0 + axx+-h otn-i*»-1)} = 0,

where x runs through the complete set of n conjugates, the field being given

by the equation x" — Bn-ix"'1 + ■ ■ ■ + B0 = 0. The coefficients of this

equation, arranged in powers of y, are symmetric functions of the x's. Since

the coefficient of #" is 1, they are rational integral functions of the B's. Since

the «'s are rational, they are rational numbers. They are also integers, being

the sums and products of integers. Hence they are rational integers.

The absolute term of this equation is the éliminant of «0 + axx + • • •

+ «„-i*"-1 andx" + Bn-iX"-1 + • ■ ■ +BQ, obtained by symmetric functions.

Since the coefficients of a0" in the éliminant thus obtained and in the élim-

inant obtained in the more convenient Sylvester form below are the same,

the éliminants are identical. We denote this éliminant by E(cco,ax, ■ • • ,

a„_i). The left side of the above equation in y is £(a0 — y, ax, ■ ■ • , a„-i).

Theorem IVa.  If y = «0 + axx + • • • + ctn-ix"-1 is an integer, then

all of
1    ñ^R

(m = 0,1,2, ••• , n- 1)

(r= 1,2, ... ,n-l),

and all of
m\ ÓW

1 d^E

2l(n- 2)! daon-2daT

are rational integers; conversely, if all of

1   dmE

ml dato™
(m = 0,1,2, • • • , n - 1)

are rational integers, then y is an integer.
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E =

ao ai at    a3    0      0      0

0 ao ai    at    az    0      0

0 0 ao    ai    a2    az    0

0 0 0

Bo Bi B

0     P0   Pi

0     0     Po

«o «i a2 a3

B3 1 0 0

B2 B3 1 0

Pi P2 P3 1

On inspection of the sample

determinant on the left, we have

that the coefficient of a0n is 1 and all

partial differential coefficients with

respect to the a's of order higher

than n vanish. Also
1 dnE

.(1 á r á » - 1)
2!(» - 2)! da0n~2da2

is a rational integer. For the terms of E which do not vanish from the

differentiation are those involving aon~2xxr2. The factors arising from the

indices on differentiating such terms will cancel 2\(n — 2)\. The remaining

factors are minors from the lowest (n — 1) rpws and therefore rational

integers.

The equation for y is E(a0 — y, au ■ ■ ■ , an_i) = 0, or

1 dn-1P

(»-!)!   dao"-1
+

1 dn~2E
j"-2   —   .   .

(n - 2) ! da0n

dE
±--y + E = 0,

dao

on expanding by Taylor's Theorem. If the coefficients of the powers of y

are rational integers, y is an integer, proving the converse part of the theorem.

For the reasons stated in the first paragraph, these coefficients are rational

integers if y is an integer, proving the first part of the necessary conditions.

Hence in particular,

1 2£

(n - 2) ! da0n~2

is a rational integer. But if (a0,ai, ■ ■ ■ , ar, ■ ■ ■ , a„-i) is an integer, so also

is (a0,ai, ■ ■ • , ar + 1, • • • , an-i). Hence we have the rational integer

1 in  — 1

(»-2)1  dao"-2

1

E(a0,ai, • ■ • , ar + 1, • • • , a„_i)

(n - 2) ! da0n~2
E(ao,ax, «r,

+

an-i) +

1

1 lE

(n-2)\ daon-2dctr

dn~2E

21 (»-2)1 daon~2da2

Since the first and last expressions on the right are rational integers, so

also is the middle expression.
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In applying this result, it will be found simplest to obtain E by form-

ing yx,yx2, ■ ■ ■ , yxn~x, reducing to degree (n — 1) by the field equation.*

Thus for the cubic field, x3 + Qx + R = 0, we have y = a0 + axx + a2x2,

yx = — Ra2 + («o — a2<2)# + axx2, yx2 = — Rax — (axQ + a2R)x +

(«o — ci2Q)x2, and obtain the rational integers from Theorem IVa : a03 —

2«o2«2Q + «o«i2<3 + 3«o«i«2i? + «o«22Q2 - ax3R - axa22QR + «23i22; 3«02

- 4«o«2<3 + «i2<2 + 3axa2R + a22Q2;3«0 - 2a2Q; 2axQ + 3a2R; a0Q - 3axR;

all but the last are obtained by direct differentiation, the last being sim-

plified by the second preceding.

Corollary.  The Taylor expansion of

1    d'

ml  da0T
■ E(ao, • ■ ■ , «7-1,ar + h,ar+x, • • • , a„_i)

in powers of h, less the first and last terms, is a rational integer for all rational

integral values of h.

The rational integers obtained by the corollary can be simplified by the

linear equations obtained from the theorem as in the last case above for

the cubic, or by the following theorem.

Theorem IVb. If Axh + A2h2 + ■ ■ ■ + Amhm is a rational integer for

m unequal rational integral non-zero values of h, then every Ak is rational, its

denominator being a factor of the product of the values of h and their differences;

in particular, if this expression is a rational integer for h = 1, 2, ■ ■ ■ , m,

these denominators are factors of m (m — l)2 (m —If • ■ ■ 2n_1.

Ai hi hi Ä!4

A2 A22 A23 A24

A3 A32 A33 A34

A4 A42 hi hi

Substituting the given values, hx, • • ■ , hm, in

Axh + Ath2 + ■ ■ ■ + Amhm, and solving for the

= D    A's, the numerators are rational integers and the

denominator is D on the left. By inspection, Ai,A2,

• ■ ■ ,hm and all differences are seen to be factors

of D, accounting for all literal factors.   From the principal diagonal, the

remaining numerical factor is ± 1.   Hence the denominators of the .4's are

factors of their product.   In the particular case, these give the product

stated. Applied to E for the cubic x3 + Qx + R = 0, we obtain the rational

integer
dE      A2 d2E

h-+-,
dax       2 !   da?

* This is equivalent to expanding the éliminant given above by Chiô's pivotal method, applied

to the l's in the principal diagonal.
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so that, by Theorem IV b, dE/dai is a rational integer or one half such. As we

are concerned only with maximal reduced integers, we have that, unless

P = 2,
dE
-= 2a0aiQ + 3a0a2R - 3ai2R - a22QR
dai

for such is a rational integer; if p = 2, it is a rational integer divided by 2.

We have seen that there is no maximal reduced integer of degree 0 in x

(§111). If

a0       1
Y i = — + —x

p'«       p'l

is a maximal reduced integer of degree 1 in x, then F2 is of degree at least

2/i in p,Yz at least 3ti, • • ■ , F„_i at least (n — l)h (Corollary, Theorem

He).   Hence p»t»-»<i/A (Theorem III). By Theorem IVa,

1       a»-1^ 1 d»-»£
-and-
(»-1)1 dao"-1 2 !(» - 2) ! daon~2dai

are rational integers. If P„_i = 0, from E as given at the beginning of this

section these reduce to na0 and P„_2ai respectively.  Hence

Theorem IVc. For the field x" + B„-2x"-2 + ■ ■ ■ + B0 = 0, the max-

imal reduced integer (ao -=- p*", «i -5- p'1) can exist only if (i) />n(n_1)ii/A, (ii)

p'i/Bn-2 and (iii) ao = 0 or p'°/n.

Corollary. If Y = (a0, • ■ • , 1 -*■ ptn) of degree m in x is a maximal

reduced integer and n — 1 = qm + R, 0 = R < m, then p"/A, where v =

{mq(q - 1) + 2q(r + l)}tm.

For Fm,Fm+i, ■ ■ ■ , Y2m-i are of degrees at least tm in p; F2m,F2m+i,

• • • , Fzm—i, at least ¿.tm, * • * ; F qm, • • • at least qtm.

V.   Relations among the coordinates of an integer;

second method

The formulas of §IV have been determined by observing that, if y is an

integer, so also is y + xr. These will be found sufficient to determine

the set of maximal reduced integers in numerical cases and thence a basis,
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possible primes in the denominators of the former being determined by

Theorem I. We may also obtain useful relations by observing that, if y is

an integer, so also is yx.

Theorem V. When a maximal reduced integer in p of degree n — 1 in x

exists but none in p of lower degree in x, there exists a single-prime reduced

integer,

1
y = -(ao,ax, • • • , an_2,l),

P

such that either (i) yx reduces to ordinary integers and a„_2 = Bn-X, an-i

m Bn-2, • • • , öo = Bx, 0 = Bo, all (mod p), or (ii) yx does not reduce to ordin-

ary integers and a„_2 + Bn-X, a„_2(a„_2 - Bn-X) = a„_3 — Bn-2, • • • ,

ar+x(an-2 — Bn-X) =. ar — Br+i, • • ■ , ax(an-2 — Bn-X) = «o — Bx, ao(an-i

- Bn-X) = - Bo, all (mod p).

For on reducing xn in yx by the field equation, we have

Bo     cio — Bx                    ar — Br+X
yx =-1-x+ ■ ■ ■ -\-x

P P P

an-3 — Bn-2        „       an-2 — Bn-l
+ ■ ■ ■ -\-xn~2 -\-s"-1.

p p

If an-2 = Bn-i (mod p), since there is no single-prime reduced integer in p

of degree < n — 1 in x, yx reduces to ordinary integers and the remaining

coefficients must be rational integers, leading to the congruences in (i).

If an-2 sf5 Bn-X, yx cannot, but yx — (a„_2 — Bn-X)y must reduce to ordinary

integers. The coefficients of each power of y in this difference must be

rational integers, leading to the congruences in (ii).

Corollary 1. If Bo^O (mod p) and a maximal reduced integer in p of

degree n — linx exists but none in p of lower degree in x then, if any aT = Br+X

(mod p), ar+i = 0.

For, in this case, by the last congruence in (i) above, yx cannot reduce

to ordinary integers; whence the result follows from (ii).

Corollary 2. If pis a factor of each of Bo,Bx, • • • , Bn-X, and a maximal

reduced integer in p of degree n — 1 in x exists but none in p of lower degree

in x, then x"-1 + p is an integer.

If so, yx reduces to ordinary integers.  For, if not, aB_2 + Bn-i (mod p).
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From the last congruence of (ii), remembering that — § < (ao + p) = i,

we have that a0 = 0 since p/B0. From the second last, ai = 0 and so on

to a„_2 = 0, contradicting a„_2 + Bn-i (mod p). If yx reduces to ordinary

integers, a„_2 ■ Pn-i (mod p), or an-t = 0 since p/Bn-i. From the con-

gruences of (i), we have an_3 = 0, ■ • • , a0 = 0, whence the integer must be

xn~l + p.

Corollary 3. If p is a factor of BB, Bi, • ■ • , Br, but not of Br+i, and

there is a maximal reduced integer in p of degree n — 1 but none in p of lower

degree in x, then a0 = ai = • • • = ar_i = 0 a»a* either (i) aT ^ 0 if an-2

m Bn-i (mod p) or (ii) ar = 0, ar+i ^ 0 if an-t + Pn-i (mod p).

The proof follows the same lines as in Corollary 2.

Corollary 4. Ifp is a factor of Bn-i but not of Bo, then aa 9a 0 and an-2 ^ 0.

For yx can not reduce to ordinary integers. Hence a„_2 + P„-i, or

a„_2 t¿ 0.  Since a0(a„_2 — Bn-i) = — B0 (mod p), a0 ^ 0.

A two-fold use may be made of this theorem and its corollaries. First,

many cases may be excluded on inspection before applying Theorem

IVa. Second, when a maximal reduced integer in p exists, the single-

prime reduced integer obtained serves as a starting point in building

up the former. The theorem can be enunciated so as to cover cases

in which the powers of p in the denominators are higher than the first,

but, in practice, it will be found more convenient to obtain the integer

of the theorem and to apply the method to obtain integers with higher

powers, using Theorem lib. Using the corollary to Theorem Ha, it may

also be enunciated to cover cases in which there are maximal reduced in-

tegers of degree < » — 1 in x. The corollary to Theorem He, however,

furnishes a single-prime reduced integer at once, from which the maximal

reduced integer can be built up. Both these methods are illustrated in the

next section, the former by the case p = 2, etc., and the latter by the case

p = 3.

VI. Application to the cubic field

In the first instance we suppose that the cubic is reduced to x3 + Qx + R

= 0 in the normal form of §1. If y = (ao,ai,a2) is an integer, from Theorem

IVa, we have the rational integers

(la) 3a0-2a2<2;    (lb) 2a!Î+3û!2P;    (le) a0Q-3aiR;

(II) 3a02 -4aoa2Q+ax*Q+3axa.R+a2iQ2;

(III) a«3 -2ao*a2Q+aoaïQ+3aoaiaiR+aoaïQi-aïR-aia?QR+a2iR'1.
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That (la), (II) and (III) are rational integers is a condition sufficient to

make y an integer. We use the standard notation, (<z0 ■*•£', ax + pm, a2 -=- p")

for single-prime reduced integers. The discriminant, A, equals — 4Ç3 — 27i?2.

If there is a maximal reduced integer, y = (a0 ■*■ p', ax ■*■ pm), of degree 1

in a;, it cannot have a0 = 0. For, by (II) above, p2m/Q, and by (III)^3m/2?;

which cannot occur if the equation is in the normal form. Hence further

m > t; for, if so, the reduced integer derived from pm~'y has a0 = 0. By

Theorem IVc, since a0 ^ 0, p'/3 and pm/Q. Hence p = 3, t = 1 = m, and

3/Q. Since — \ < (a0 + 3) = 5, a0 = ± 1. Substituting these values, (la)

is satisfied, (II) is satisfied only if Q = — 3 (mod 9), and (III) only if

R = ±(Q + 1) (mod 27) according as a0 = ± 1. We have therefore the

maximal reduced integer %(x ± 1).

We dispose first of the cases in which there is a maximal reduced integer

of degree 2 in x but none of degree 1. If both p/Q and p/R, by Corollary 2,

Theorem V, x2 -*■ p is an integer. Conditions (la), (II) and (III) are satis-

fied if p2/R. If x2 -t- p is not maximal, by Theorem lib, we must have an

integer of the form (aQ -5- p, ax + p, 1 + p2). Since the equation is in its

normal form, we cannot have p2/Q and p3/R. But, since p^/A = — 4Q3

- 27R2 (Theorem I), p2/Q unless p = 2. Hence, from (la), unless p = 2,3,

we have a0 = 0 and, from (II) if ai^O, or (III) if ai = 0, p3/R. If p = 3, we

have from (la) that 32/Q and we proved above that 32/R. From (III),

3/«o3, or a0 = O. Hence, again from (III), 3b/R2, so that 33/R. Finally,

if p = 2, from (la) a0 = 0 and from (II), written as a congruence, 6oii?+Q2 = 0

(mod 16). Since 22/R, 23/Q2 or 22/Q; also, unless 23/R, ax = 0. If so, from

(III), 23/i?. Hence there can be no integer of the form (ao+p, ax+p, 1 -i-p2).

If neither p/Q nor p/R, in the integer referred to in Theorem V, a0 i¿ 0,

ax 9^ 0 (Corollary 4). Hence any maximal reduced integer is homogeneous

in p. Since ^>2/A = — 4Q3 — 27R2, we cannot have p = 2 or 3. Conditions

(Ia,b) become 3a0 - 2Q = 0, 2axQ + 3R = 0 (mod p"), where ¿>2"/A. Substi-

tuting from these in the congruences, (mod p2n) and (mod p3n), derived from

(II) and (III), we may omit terms congruent to 0 with these moduli, even if

divided by 2,3, Q, leaving (II') A = 0 (mod p2n), and (III') A2 = 0 (mod p3n),

respectively.   Since p2n/A, these are satisfied.

There remain only the cases in which p = 2 and 2/R but not 2/Q, and

in which p = 3 and 3/Q but not 3/R. In the former, from Corollary 3,

Theorem V, we must have an integer of the forms (5,0,5) or (0,5,5).   Only
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the latter satisfies (la), while (II) requires that R = Q + 1 (mod 4). If

this integer is not maximal, the latter must be of the form (a0 -r 2', ai -f 2",

1 -i- 2"), where ai = 1 (mod 2), and 22n/A = - 4Q3 - 27R2. Since Q is odd,

R = 2 (mod 4), from the last, and Q = 1 (mod 4). From (Ia,b), t = n — 1,

3a0 - Q = 2»-1«, 2aiQ + 3R = 2nb. Writing A = 22"A', from (II) and (III)

we obtain (II') b2 = A' (mod 4), and (III') 6<22a(362 + A') - 32?6(Z>2 - A')

+ 2"A'(A' - b2) = 0 (mod 8). Hence, if b is odd, A' = 1 (mod 4), and, if b is

even, A' = 0 (mod 4), or 22"+2/A. Hence, if Ais of the form22S:(4i + 1), we

have n = k for the maximal, and 2axQ + 3R = 0 (mod 2n) but ^ 0 (mod

2B+1) ; otherwise, n is the greatest index such that 22n+2/A, and 2aiQ + 3R

m 0 (mod 2»+!).

If p = 3 and 3/Q but not 3/2?, in the integer referred to in Theorem V,

a0 7a 0, ai 5¿ 0 (Corollary 4), and, if y = \ (a0, ai, 1),

/      R    a0 — Q    a A
'—{-T-T'J)-*"'

apart from ordinary integers. Hence a0ai = — R, ai2 = a0 (mod 3), giving

a0 = l,ai = ±1 since - } < (a -*- 3) á f From (III), 2? = + (Q + 1)

(mod 9), according as a! = + 1, and (la, II) are satisfied, giving the integer

| (1, + 1,1). This is maximal unless there is a maximal reduced integer

of degree 1 in x. For, if not and y = |(a0, ai, 1), then 3y = (1, + 1,1),

apart from ordinary integers, giving a0 = 1, ai = ±1 (mod 3). From (la),

Q = — 3 (mod 9). As above, a0ai = ± 2, a0 + 3 =; ai2 (mod 9), from which

we have (a0, Oi) = (1, ± 2), (4, + 4), ( - 2, + 1). Substituting in (III),

we obtain either a contradiction of R = + (Q + 1) (mod 9), or the condition

R = + (Q + 1) (mod 27), the condition already obtained for the existence

of a maximal reduced integer of degree 1.

If there is such an integer, viz. J( ± 1, 1, 0), its square, £(1, + 2, 1) is

an integer. Since Q = — 3 (mod 9), and R + 0 (mod 3), from (Ia,b), an

integer of higher degree in 3 must be homogeneous in 3. If (1 -f- 3")(a0, oi, 1)

is this integer, from (Ia,b), 3a0 — 2Q = 3"a; also 2axQ + 3R = 3nb, and

from Theorem III, 32"+2/A. Writing A = 32n+2A' and substituting in (II)

and (III), we obtain (II') a2 s Ô2 (mod 3), and (III') SQ3a3 + lSQ2ab2 -

27Rb3 + 54Q2A'a + 243RA'b = 0 (mod 36). From the latter, since Q = - 3

(mod 9), a3 = Rb3 (mod 3), or a = ± b (mod 3) according as 2? = +2

(mod 9).   The solutions a = ± b = ± 1 (mod 3) evidently lead to values of
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a0) ax, differing from those obtained from a = b = 0 (mod 3) by 3n_1; i.e. the

integers obtained differ by 3 (x + 1). As any one of the three will serve for

the maximal reduced integer (Theorem Ha), we may take a = b = 0 (mod3 ),

and both (II') and (HI') are satisfied. The maximal reduced integer is there-

fore (1 ■*■ 3") (a0, ax, 1), where a0 and ax are determined from 3aa — 2Q = 0,

2axQ + 3R = 0 (mod 3n+1). n being the greatest index such that 32b+2/A.

Basis for a general cubic

For the general cubic, A0z3 + Axz2 + A2z + A3 = 0, all ^4's bring

rational integers, we obtain x3 + Qx + R = 0 in the normal form by writing

dx = Aoz + AX,Q = 3(A0A2 - Ax) + d2,R = (AoA3 - 3AoAxA2 + 2AX) + d3,

where d is the greatest rational integer for which such division is possible;

also A = — 4Q3 — 27R2. Then 1 is one element of the basis; x = (AoZ + Ax)

+ d is a second element unless Q =■ — 3 (mod 9), R = + (Q + 1) (mod 27),

when i (x ± 1) = (A0z + Ax ± d) -s- 3d is the second element. To determine

the third element, the complete set of maximal reduced integers m{ of degrees

w, in the primes p,, where pi2 is a factor of A, is determined from the table

below. The third element is 2~Luimi, where the w's are rational integral

non-zero solutions of ^ (M¿ "»" Pini) = 1- The solutions a0 and ax of the con-

gruences below are such that — 5 < (a 4- D) =

denominator given.

5, where D is the

Max. Red. Int. Conditions

P/Q and P2/R;n = 1.

2

3a

oo + axx + x1 p prime to 6QR; n greatest index such that p2n/A; 3ao — 2Q = 0,

2aiQ + 3R = 0(modpn).

x + x*
p = 2,Q=i (mod 2), R = Q + 1 (mod 4), (3b) unsatisfied; n = 1.

3b
<xo      ai 1
-x H-x12»     2n T

p = 2,Q=l,R = 2 (mod 4); if A is of the form 22t(4s + 1), n = *,

2axQ + 3R = 0 (mod 2"), but fé 0 (mod 2»+1); otherwise, n is the

greatest index such that 22n+2/A,2oiÇ + 3R = 0 (mod 2n+1); 3at> -

e = 0(mod2»-').

4a
1 + x + x1

p = 3,Q = 0(mod 3) ,R = ± (Q + 1) (mod 9), (4b) unsatisfied; n = 1.

4b 1 + 2* + x1 p = 3,Q^ -3(mod9),i?= + (Q+ l)(mod27), (4c) unsatisfied;

n = 2.

4c
i + axx + x1 p = 3, 32»+î/A, n > 2; 3oo - 2Q s 0, 2axQ + 3R = 0 (mod 3»+1),

where n is the greatest index such that 32n+2/A.
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