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Introduction. Implicit function theorems occur in analysis in many

different forms, and have a fundamental importance. Besides the classical

theorems as given for example in Goursat's Cours d'Analyse and Bliss's

Princeton Colloquium Lectures, and the classical theorems on linear integral

equations, implicit function theorems in the domain of infinitely many

variables have been developed by Volterra, Evans, Levy, W. L. Hart and

others. Î

The existence and imbedding theorems for solutions of differential equa-

tions, as treated for example by Bliss, § have also received extensions to

domains of infinitely many variables by Moulton, Hart, Barnett, Bliss

and others. If Special properties in the case of linear differential equations

in an infinitude of variables have been treated by Hart and Hildebrandt. ||

On the other hand, Hahn and Carathéodory** have made important

generalizations of the notion of differential equation by removing conti-

nuity restrictions on the derivatives and by writing the equations in the

form of integral equations.

*Presented to the Society March 25, 1921, and December 29, 1924; received by the editors

January 28,1926.

jNational Research Fellow in Mathematics.

ÎSee Volterra, Fonctions de Lignes, Chapter 4; Evans, Cambridge Colloquium Lectures, pp. 52-72;

Levy, Bulletin de la Société Mathématique de France, vol. 48 (1920), p. 13, Hart, these Transactions,
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These various theories suggest the desirability of a general unifying

theory. Lamson began such a general theory in his paper entitled A

general implicit function theorem* However, his theory is limited in

power, because it contains no theorems on the differentiability of the solu-

tions. Most of the papers on special cases by the other writers mentioned

above have a like defect, in that they give, if any, a very incomplete theory

of differentiability properties.

The authors propose in the present paper to give a simple general theory

of implicit functions and their differentiability, and in a second paper to

develop a few special cases, including some new results which find applica-

tion in the calculus of variations.

The classical implicit function theorems deal with the solution of equa-

tions G(x, y) = 0, where x and y are points of ordinary space of one or more

dimensions. In this paper the authors generalize the theory to the case

where x and y are points of abstract spaces of the type discussed by Fréchet.

However, no previous knowledge of Fréchet's theory is needed or used.

Also the notation is so devised that the reader may readily compare the

theory with the classical theory of implicit functions, and interpret it in

the finite domain if he so desires.

In the Part I the fundamental postulates and definitions are set

down, and certain fundamental propositions are proved. Part II contains

the preliminary theorems on the solution of equations in the form y = F(x, y).

In Part III, the differential calculus of functions in our abstract spaces is

developed. This depends on the notion of total differential, as defined by

Stolzf for the case of an ordinary function of n variables, applied by Fréchetf

in the theory of functionals, and finally developed by Fréchet (independently

of the authors of this paper) for the general case.§ Part IV contains lemmas

concerning reciprocal linear functions, and Part V contains the final

theorems on the existence and differentiability of implicit functions defined

by equations of the form

G(x, y)=y*.

* American Journal of Mathematics, vol. 42 (1920), p. 243.

f Grundzüge der Differential- und Integralrechnung, 1893, vol. 1, pp. 130 ff., 155 ff. Cf. also W.H.

Young, Proceedings of the London Mathematical Society, vol. 7 (1909), p. 157; and Fréchet, Sur la

notion de différentielle totale, Comptes Rendus du Congrès des Sociétés Savantes en 1914, Sciences.

% These Transactions, vol. 15 (1914), p. 140.

§ Comptes Rendus, vol. 180 (1925), p. 806, and Annales de l'École Normale Supérieure, vol. 41

(1925), p. 293.
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I.   Postulates, definitions, and fundamental propositions

1. Postulates. We shall be dealing in the following sections with

systems (31, ï, || ||, ©, O) having some or all of the following properties.*

1.11. 21 is either the real number system or the complex number system.

1.12. ï is a class having at least two distinct elements.

1.13. || is a function on ïï to the real non-negative part of 21, i. e.,

to every pair xx, x2 of elements of 1 corresponds a unique positive or zero

number denoted by ||xi, Xi\\ .

1.14. ||xi, x2|| =||a;2, *i|| for every xx, Xi.

1.15. ||*i, *2|| =0 is equivalent to xx=Xi.

1.16. ||*i, *2|| ^||*i, *a||+||*a, *í||  for every xx, *2, x3.

1.2. For every sequence {xn} such that

lim ||xm,  xn\\ = 0
m = «

there exists an element x such that

lim ||x„,  a;|| =0.
/,= »

1.31. 9 is a function on ïï to Ï, i. e., to every pair xx, *2 there cor-

responds a unique element of H denoted by xx © x2 and called the sum

of *i and x2.

1.32. © is commutative, i. e., xx © X2 = x2 © *i for every xx, *2.

1.33. © is associative, i. e., (xx © x2) © *3 = *i. © (*2 © *3) for every

XX, Xi, x3.

1.34. O is a function on ï2t to ï, i. e., to every element x and number a

there corresponds a unique element of ï, denoted hy xQa, and called the

product of * by a.

1.35. O is associative, i. e., (x Q ax) O a2 = x O (ax a2) for every

x, ax, ct2.

1.36. O is doubly distributive, i. e., (xx © x¿) O a = xx O a © *2 O a,

and * O (ax+cti) =x O ax © * O a2, for every xx, x2, x, a, ax, Oi.

1.37. * O 1—x for every x.

* For similar sets of postulates, cf. Banach, Fundamenta Mathematicae, vol. 3 (1922), p. 133;

Hahn, Monatshefte für Mathematik und Physik, vol. 32 (1922), p. 3; Fréchet, Comptes Rendus, vol.

180 (1925), p. 419. The sets of Banach and of Hahn are somewhat redundant. Our thanks are due

to M. H. Ingraham for suggestions tending to eliminate some superfluous postulates.
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Notation. The element x O ( — 1) will be denoted by — x, and the

element Xi © (—x2) will be denoted by Xi—x2. The number ||x, x O 0||

will be denoted by ||x||. When no ambiguity can arise, the sign © will be

replaced by the ordinary +, and O will be omitted altogether.

1.38. ||xi, x2|| =||x1—x2|| for every Xi, x2.

1.39. ||xa|| =||x|| \a\ for every x and a, where |a| denotes the ordinary

absolute value of a.

If a system (21, ï, || ||, ffi, O) satisfies the group of postulates 1.11

to 1.16, we shall call ï a metric space; if 1.11 to 1.16 and 1.31 to 1.39 are

satisfied we shall call 36 a linear metric space; and in either case if 1.2 is

also satisfied we shall say that H is complete* The elements of a metric

space will be called points. If we denote the real number system by dt

and the complex number system by S, we readily verify that the systems

21 = 9î, ï = 9î, ||ri, fi|| = |fi-fg|, fi © f2 = fi+fí, fi O r = fif,

and

21 = S, X = S, ||ci, Ca|l = ki —c«l> Ci ® c2 = Ci + c2, Ci O c = cic,
satisfy all the postulates 1.11 to 1.39. Moreover, if ï is linear metric with £

as its associated number system, it is also linear metric with 9Î as its asso-

ciated number system.

2. Properties of spaces. A metric space •£ has the following additional

properties.

2.11. If the sequence {xn}, the points x and x', and the number a are

such that

lim ||Xn,  x\\ =0,
rt=w

and ||x„, x'll ¿a for every n, then ||x, x'|| si a.

2.12. If a sequence {x„} has a limit, it has only one, i. e., if {x„},

Xi and x2 are such that

lim ||x„,   Xi|| = 0, lim ||xn,   xî|| = 0,
«= » » = 00

then X! = x2.

The first of these follows from 1.14 and 1.16, and the second from 1.14,

1.16 and 1.15.

For a complete metric space ï we have the following proposition :

*A metric space is one of the classes denoted by (£) in Fréchet's thesis, and by (1)) in his later

work. A complete linear metric space is called by Fréchet a space of Banach, or "espace (T))

vectoriel complet", and is a special case of his "espace affine" for which the postulates are set down

in the note cited above.
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2.21.    If the sequence {xn\ is such that the series

2-1  II Xn,    Xn+l\\
n

is convergent, then the sequence has a unique limit.

This follows from 1.14, 1.16, 1.2, and 2.12.
A linear metric space 36 has the following additional properties.

2.31. *i O 0=#2 O 0 for every xx, x2.

Notation. The point * O 0, which is independent of * by 2.31, will

be denoted by **.

2.32. x+x* = x for every x, and ** is the only point of Ï having this

property.

2.33. xa = x* is equivalent to a = 0 or x=x*.

2.34. For every pair xx, *2, there exists uniquely a point *3 such that

*l + *3=*2,  Viz., *a=*2—*1.

2.35. Ii a^O and xxa = X2a, then xx=X2.

2.36. If Xt¿x* and xax = xai, then ax = Oi.

2.37. ||*il| —11**11 I ̂ ||*i±*ï|| á||*i||+||**|| for every xx, Xi.
The property 2.31 follows from 1.11, 1.34, 1.38, 1.35, 1.36, 1.39, and

1.15; 2.32 from 1.11, 2.31, 1.37, 1.36, 1.32; 2.33 from 1.11, 2.31, 1.34, 1.35,

1.37; 2.34 from 1.11, 1.31, 1.32, 1.33, 1.37, 1.36, 2.31, 2.32; 2.35 from 1.11,
1.34, 1.35, 1.37; 2.36 from 1.11, 1.31,1.36, 2.31, 2.33; 2.37 from 1.11, 1.38,

2.31, 1.14, 1.16, 1.31, 1.32, 1.35, 1.36, 1.37, 1.39, 2.32, 2.34.

3. Composition of classes. For definiteness consider two classes 3Ê

and g). Then the composite class SB = (ï, g)) is defined to be the class of

all pairs (*, y) of elements, one from 3E and one from g). If ï and g) are

metric spaces, and if we define

II II 11/ \/ \ll r)^*   *1 )  "2 I
(3.1) \\wx, Wi\\ =    (*i, yi), (*2, y2) | ■ greater of <

ib\\yx, y2||

where a and b are fixed positive constants, then SB is also a metric space.*

Unless otherwise specified in the sequel, we take a = 0 = 1. If ï and g)

are complete metric spaces, so is SB. If X and g) are linear metric spaces

with the same associated number system 21, and if we define wx+wt = (xx, yx)

+ (Xi, y*) = (*i+*2, yi+y2), wa = (x, y)a=(xa, yd), then SB is also a linear

metric space. We note that any number of classes may be composed in

this way, and that composition may be regarded as an associative process.

*Of course many other definitions might be used for ||«ii, ws||, e. g., ||j»i, ^|| = (||xi, xj||p+

l|yi> yi\\v)llv (P> !)• The one given in the text seems to be the most convenient for our purposes.
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4. Neighborhoods. For a given point x0 of a metric space 3E, and a

positive number a, we define the neighborhood (x0)o to be the set of all

points x such that ||x, x0||<a. When we speak of "a neighborhood" of a

point x, we shall always mean a neighborhood of this type. A neighborhood

of x may contain no points distinct from x, unless 36 is linear.

5. Regions. A region of a metric space 36 is a set 36o of points of 36

such that every point x of 36o has a neighborhood consisting wholly of points

of 36o. Regions will be consistently designated by attaching subscripts to

the German capitals representing the spaces to which they belong. A neigh-

borhood of a point x is an example of a region. In a composite space

(36,2)) = SB, a neighborhood (wo)c= ((x0, yo))0 consists of all pairs (x, y)

for which x is in (x0)<¡ and y is in (yo)e, where d = c/a, e = c/b, and a and ô

are the constants of the definition (3.1) above. The composite 2B0 = (ïo, §)o)

of two regions 36o and g)0 is also a region in the composite space SB = (36, g)),

but the converse need not be true. However, the set g)0 of points of §) such

that (xo, y) belongs to a region SB o of SB constitutes a region for each fixed

Xo of 36, unless the set is empty.

6. Continuous functions. Relative uniformity. We shall have frequent

use for the notion of relative uniformity, due to E. H. Moore.* Let 36 and g)

be two metric spaces, and let $ be a general range. Let F be a function

on ïo$ to §), i. e., F makes correspond to each point x of the region 36o of 36

and each element p of the class ty one and only one element F(x, p) of §). Let

o- be a function on *$ to 2Í. Then we say that F is continuous at a point x0

of 36o uniformly on ty relative to <r, more briefly, uniformly ($; a), in case

for every e>0 there exists a d>0 such that, for every x in (x0)d and every

p of $, we have ||F(x, p), 2?(x0, p)\\ ¿e\cr(p)\. We say that F is continuous

on 36o uniformly ($ ; a) in case 2? is continuous at each point of 36o uni-

formly ($; a). Obviously we obtain the definition of ordinary continuity

as a special case by taking a singular range ty and a(p) = 1. We say that F

is continuous on 36o uniformly (3Eo^3 ; a) in case for every e>0 there exists a

d>0 such that, for every Xi and x2 of 36o satisfying ||xi, x2|| =d and for every

p of $ we have \\F(xu p), F(x2, p)\\ =e\o(p)\.

Note that it is important tó specify the range, of uniformity. In the

applications we shall make of the notion of relative uniformity, the range %

will frequently have as a component a linear metric space SB, and the scale

function a will then have as a factor the norm ||w||.

*Cf. Introduction to a Form of General Analysis, p. 27.
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7. Connected sets. If H is a metric space, we say that a set 36(0)

of points of X is a connected set in case for every pair xx, *2 of points of

36(0) there exists a function F on an interval 9î0 (where 9î is the axis of reals) to

j(o) which is continuous on 9i0 and such that F(rx) =xx, F(r2) =x2, where rx

and r2 are points of 3Î0- Not every metric space contains a connected set.

However, in a linear metric space, a neighborhood forms an example of a

connected region. The composite (36(0), g)<0)) of two connected sets 36(0)

and g)(0) is also a connected set.

8. Boundary of a set. We shall say that a point * belongs to the

boundary of a set ï(0) of a metric space 36 in case every neighborhood of *

contains both a point of 36<0) and a point not of 36(0). The boundary of

36(0) consists of all such points. By definition of a region, no point of the

boundary of a region 36o belongs to 3Eo- Also if every neighborhood of a

point x contains a point of a set 36(0), then x belongs either to 36CO) or to the

boundary of 36(0).

II.   Existence and continuity of solutions of equations

of the form y = F(x, y)

9. Throughout this section we shall denote by g) a complete metric space,

and by 36 a metric space.

Theorem 1. Let the point y0 of g) and the region 36o of 36 and the function

F on 36o(yo)o to g) be such that

(Ex)   for every * in 36o there exists a positive constant kx<l such that

\\P(x,yx), F(x,y2)\\   =  k, ||y„ y2||

for every pair yx, y2 in (y0)a ;

(Ht) \\F(x,yo),yo\\<d-kx)a

for every x in 36o-   Then there exists a unique function Y on 36o to (y0)a such that

(9.1) Y(x) = F(x, Y(x))

for every x in 36o-

This theorem is basic for all the following theorems, and its proof is

the only place where a sequence of approximating functions is used. In most

applications of this theorem the constant kx may be taken independent of *.

It should be noted also that only an approximate initial solution is required.

The proof is as follows.

We define a sequence of approximations by the equations

(9.2) Yx(x) =F(x,  yo),    Ym+X(x) = F(x,  Ym(x)) (m > 0).
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By 2?2 we have || Fx(x), y0|| = (l — kx)cx, where cx<a, and by Hi and induction,

(9.3) ||Fm+i(x), Fm(x)|| = *,-(l - kx)cx (m>0).

From this we obtain

(9.4) \\Ym(x), yo|| < cx < a (m > 0),

so that the approximations (9.2) are surely defined when x is in 36o-

From the inequality (9.3) and property 2.21 we conclude that there exists

a unique function F on 36o to §) such that

(9.5) lim||Fm(x),  F(x)|| =0.

That F(x) is in (y0)o follows from the inequality (9.4) and property 2.11.

By 22i we have

||F, F(x,  Y)\\ = \\Y,   Ym+i\\ + \\F(x,  Ym),    F(x,  Y)\\

= \\Y,   Ym+i\\ + kx\\Ym,  Y\\,

from which by equation (9.5) and property 1.15 we obtain the desired

equation (9.1). To obtain the uniqueness of the solution we again apply

Hi and property 1.15.

We note that the hypotheses of Theorem 1 imply that for each x of

the region 36o the function F(x, y) transforms the neighborhood (yo)0 into

a part of itself. For each x the solution F(x) is the unique invariant point

of this transformation. This point of view has been developed by Birkhoff

and Kellogg* and by J. L. Holleyf for certain special cases.

Theorem 2.   Let SBo be a region of the composite space (36, £)), and let

the function F on SBo to §) and the point (x0, yo) of SBo be such that

(Hi)    yo = F(x0,yo);

(H2)    there exists a positive constant k<l such that

\\F(x,  yi), F(x,  y2)\\ = k\\yi,  y2\\

for every (x, y0, (x, y2) in SBo;

(H3) F is continuous in its argument x at (xo, yo)- Then the following

conclusions hold :

(Ci) for each x there is at most one point (x, y) in SBo which is a solution

of the equation.

(9.6)_ y = F(x,  y) ;

* These Transactions, vol. 23 (1922), p. 96.

tHarvard thesis, 1924.
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(C2) there exist a region 36i containing *o and a function Y on 36i to g)

such that the point (x, Y(x)) is in SBo and is a solution of (9.6) for every x

inlx;

(C3)    the solution Y is continuous at x0;

(d) if F is continuous on SBo [uniformly (SBo; 1), and if SBo is the com-

posite of two regions 36o and g)0], then the solution Y of equation (9.6) is con-

tinuous on its domain of definition [uniformly on that domain].

Cx follows as before from H2 and Postulate 1.15. By the definition' of

region, there exist positive constants a and b such that the region ((*o)¡>,

(yo)o) is contained in SBo- By Ex and E3, if b is sufficiently small, iT2 of

Theorem 1 is satisfied on (*o)¡>. Thus C2 follows from Theorem 1. To obtain

C3 and d (where the parts in brackets form an alternative reading), we use

the inequalities

||Fi,  Yi\\^\\F(xx, Yx),   F(xx,  FOU + ||F(xi,  Yt),   F(xt,  F,)||

= k\\Yx, r,|| + ||F(*i, Yt), F(x2, roil,

\[Yi, Yt\\ = (1/(1 - *)) \\F(xx, Yt),   F(xí, rOII,

where we have set  F(*i) = Fi,  Y(x2) = F2.    These inequalities are valid

in all cases, at least if xx is in a sufficiently small neighborhood of *2.

Note that Cx, d, d are still valid if in place of an exact initial solution

as assumed in Ex, we have merely an approximate solution, as in Theorem 1,

i. e., if merely ||.F(*o, yo), yo|| is sufficiently small.

III. Differentials.   The class 6(n)

Throughout this section and the succeeding ones, we shall assume that

we are working with linear metric spaces 36, g), 3, ' ' ■ • In addition we

shall frequently add a general range ty. The associated number system

is assumed to be the same for all spaces considered.

10. Linear functions. We say that the function F on 36 ty to g) is

distributive on 36 if for every ax, aiy *i, x2 and p it is true that

F(axxx + 02*2, p) = axF(xx, p) + a2F(x2, p)*.

The function F on 36'iß to g) is said to be modular on 36 uniformly on ty

relative to a (or uniformly (^}; a)) in case there exists a constant M such

that for every x and p,

\\F(x, p)\\=M\\x\\-  \a(p)\.

*We shall frequently omit the argument p in equations similar to this one especially when p

enters "homogeneously."
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The minimum of effective values for M, which minimum obviously exists,

is called the modulus of F.

The function F on 36$ to §) is said to be linear on 36 uniformly (%\; a)

if it is distributive and modular uniformly ($; a).

With respect to functions having the modular property we have

Lemma 10.1. If F on 36o §)$ to S is continuous at x0 uniformly (§)$ ;|| y ||a)

and modular on g) for x = x0 uniformly (ty; a), then there exists a neighborhood

(x0)o of Xo such that F is modular on §) uniformly ((x0)o$ ; <r).

This is an immediate consequence of the definitions. More generally

it is possible to show that if F is continuous on 36o uniformly (§)$; ||y||a)

and modular on g) uniformly ($; a) for every xn of 36o, then the modulus

of F on g) is continuous on 36o-

11. The differential. The function F on 36o to §) is said to have a

differential at x0 of 360 if there exists a function dF on 36 to §) linear on 36

such that the function 2? on 36o to §) defined by the conditions

F(xi) — F(xo) — dF(xi — xo) = 2?(xi)||xi — x0|| for xi ^ x0,

y* = R(xi) for xi = x0,

is continuous in Xi at Xo, i. e.,

lim  ||2?(xi)|| = 0.*

It is natural to denote the argument of the function dF by dx. The

range of the variable ax is then always the whole space 36. In the special

case F(x)=x, we have dF(dx)=dx.

We have at once the following result :

Lemma 11.1. If F is on 36o to g) and has a differential at x0 of 36o, then

this differential is unique and can be obtained as

F(xo + adx) — F(xo) d
lim   -     or     —F(xo + adx)
a=o a da

the limit being taken in the sense of norm.

This is an immediate consequence of propositions 1.39 and 2.12.

12. The class ©'. As in ordinary analysis we get a class 6' of functions

F by limiting ourselves to functions F whose differentials dF have certain

continuity properties on 36o-    We definef

*We follow here the Stolz-Young definition of differential, whose applicability to functional

analysis was emphasized by Fréchet. For a discussion of different types of definitions of differen-

tials in the case of functional cf. Levy, Analyse Fonctionnelle, pp. 50 ff.

fCf. Bolza, Variationsrechnung, p. 13.
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F on 36o$ to g) is of class 6' on 36o uniformly ($; a) in case there exists a

function dF on 360 36$ to g) having the following properties:

(1) dF is continuous on 36o uniformly (36$; ||dx||a);

(2) for every x0 of 36o, dF is linear uniformly ($; a);

(3) for every x0 of 36o the function 2? on 36o36o$ to §5 defined by

F(xi) — F(xo) — dF(x0 ; xi — x0) = 2?(xi, x0)||xi — x0|| for xi ^ x0,

y* = R(xi, Xo) for xi = x0,

is continuous in Xi at x0 uniformly ($; a).

Obviously this is not the only method of defining the concept "function F

of class 6'", but it is the simplest direct generalization of the usual definition

which adapts itself to elegant results. Another useful concept is obtained

by the addition of the range 36o to the range of uniformity in the above

conditions on dF. We shall call such a class of functions "class <5' uniformly

(360$;a)."*

Most of the lemmas which we shall derive hold in two ways, obtained

by adding or omitting the class 36o in the range of uniformity in hypothesis

and conclusion. In most cases the proof of one lemma thus obtained can

be derived from that of the other without difficulty.

Lemma 12.1. If F on 36o$ to §) is of class S' on 36o uniformly ($; a)

then F is continuous on 36o uniformly ($; a). Moreover for every x0 of 36o

there exists a vicinity (x0)a and an M such that for all points x of (x0)a and all

p of $ it is true that

\\F(x) -F(xo)\\ = M||x- *o|| | «r |

and
\\dF(x, dx)|| ^ Jf ||d*|| | ff | ,

i. e. F is linear on 36 uniformly ((x0)o$; a).

The first of these is an immediate consequence of the modularity of dF

and the application of condition (3) to the inequality

||F(x) - F(xo)\\ g ||dF(x0> x - xo)|| + \\R(x, *0)|| ||x - x0||.

A similar result (without the addition of the uniformity as to a) follows

immediately from the existence of the differential.

The second result is an immediate consequence of Lemma 10.1.

*It is possible to show that if F is of class S' uniformly Cp; a) then the conditions (1) and (2) on

dF hold uniformly (£00$; ") for every compact subclass X0o of X0.
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Lemma 12.2. If F is of class 6' on 36o uniformly (Xo^; a), then F is

continuous uniformly (36o^3; a) and there exist constants a and M such that

for every xx and *2 of 36o for which

||*i — **|| = a

and for every p of ty, it is true that

\[F(xi) -F(xt)\\ = M\\xx- xt\\\v\ ,

i. e., F satisfies a kind of Lipschitz condition on 36o-*

13. Partial differentials. If the class 36 is a composite of a finite number

of classes 36(1), 36(2), • • • , 36(n), and F is on 36o to g), then the existence of the

differential of F for x=x0 will imply the existence of partial differentials

and we shall have

n

dF(x0 ; dx) =   ^ dx<.i)F(x0 ; ds(i)),
t-i

where dx = (dx(1), ■ • ■ , dxM). In the same way if F is of class S' on 36o

then the partial differentials have certain continuity properties. We state

them in the following lemma for the case in which n = 2.

Lemma 13.1. // 36o= 36o' 36o" and F on 36o$ to g) is of class S' on 36o uni-

formly (^5; a) then the partial differentials dX'F and dx>>F have the following

properties :

(0) dF(x; dx)=dx,F(x; dx')+dx-F(x; dx");

(1) dX'F and dx>>F are continuous on 36o uniformly (3E'$; ||¿*'||<r) and

(36"^; || dx"\\a) respectively;

(2) dX'F and dX"F are linear in dx' and dx" respectively, uniformly (ty ; a) ;

(3) if Rx> on 36o36o'iß to g) is defined by

F(xlx{') -F(x¿x{ ) - dx>F(x¿Xo" ; x[ - x¿) = Rx>(xix0)\\xi - x0\\

for xx?¿ xo,

y* = RX'(xxXo) for xx = xo ,

* A similar result for xi and x2 in a neighborhood (x0)e of x0 (a depending on x0) could be deduced

under the hypothesis of uniformity on Ç only, if condition (3) on the class (5' were replaced by the

condition

lim        \\R(xi,xi)|| = 0 uniformly (ï*;<r).
Xi=Xq, Xt=Xo

This extended result is however also deducible from the original condition (3) by an application of

Taylor's theorem. Cf. L. M. Graves, Riemann integration and Taylor's theorem in general analysis,

in the present number of these Transactions.
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then Rx> (xi, x0) considered as a function of Xi is continuous at Xo uniformly

($;a). A similar condition holds for RX" (xi, x0) similarly defined. Con-

versely, if dx>F and dx>*F satisfy the conditions (1), (2), (3) on 36o uniformly

($; a) then F is of class S' on 360 uniformly ($; a) and dF can be defined by

condition (0).

The properties (0), (1), and (2) are obvious. For (3) we use the existence

of dx»F and dF = dX'F+dX"F uniformly (p; a). The proof of the converse

is obvious.

In case F is of class £' uniformly (36o$ ; a) we have the following simpler

lemma :

Lemma 13.2. If 360 = 36o 360" and F is on 360$ to g), then F is of class 6'

on 36o uniformly (36o$ ; a) if and only if the partial differentials dx-F and dz>-F

have properties similar to those of dF uniformly (36o$ ; xr).

These lemmas emphasize the fact that the partial differentials are func-

tions on 36o36' and 36o36" respectively, and that the limit involved in the

total differential is essentially a two-dimensional one.

14. Higher differentials. The class 6(n). If for some neighborhood of

Xo, dF(x ; dix) exists and if this function has for every a\x a differential at x0,

then F is said to have a second differential, d2F(x0; dix, d2x). This function

will be distributive in a\x but not necessarily modular. If the function

d2F(x0; dix, d2x) is modular in d2x uniformly (36; || dix ||) then obviously

d2F will be bilinear in a*ix and d2x ; i. e.

d2F(xo ; d{x + d{'x, d¡x + di'x) = d2F(x0 ; d{x, dix)

+d2F(x0 ; d{x, di'x) + d2F(x0 ; d{'x, dix) + d2F(x0 ; d('x, di'x) ;

and there exists a constant M such that, for every a\x and d2x of 36,

\\d2F(xo ; dxx, dtx)\\ = M\\dxx\\ ■ ||d,*||.

Without further assumptions on d2F it does not seem possible to prove

that d2F is symmetric in dix and d2x.

Obviously we can extend these definitions to the nth differential and.

we have, for every k<n,

¿n-kdkF = dnF¡
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i. e. the differential operation is associative.   But the successive differential

operations are not necessarily commutative.

We define the term "F is of class S(n) uniformly ([3£0]$; o-)"* by the

following recurrence relation :

F is of class 6(n) uniformly ([36o]1?; <r) if F is of class S' uniformly

([ïo]?; o-) and dF is of class <£<-» uniformly ([Xo]ï$; ||¿i*||<r).

It is possible to state equivalent definitions as indicated by the following

Lemma 14.1. If k is an integer between 0 and n, and if F is of class 6(i)

uniformly ([&]$; <r) and dhF is of class @>-*> uniformly ([36o]36 • • • 36;

n*=i \\dix\\ o), then F is of class Ë(n) uniformly ([36o]$; a) and conversely.

For convenience we shall omit the range [36o]$ and the scale a of uni-

formity from the discussion. We proceed by induction and assume that

we have proved the lemma (necessary and sufficient conditions) for all

values of k g m and for all n>m.    We show then

(a) if F is of class g<™+» and dm+1F is of class ß(»-<«+i» uniformly

(36 • • • 36; n™=V \\dix\\), then F is of class G(">.

For if F is of class 6(m+1) then F is of class 6' and dF is of class S(m)

uniformly (36; ||di*||). On the other hand, the statement that dm+1F is

of class gi"-™-1) uniformly (36 ■ • • 36; IlJLt1 ||¿¿*||) is equivalent to dm(dF)

is of class gc«-'»-1) in the same way. Applying the lemma for, k = m, it follows

that dF is of class g(»-»-i+»o or g<»-o uniformly (36; ||di*||). This together

with the fact that F is of class 6' gives the result that F is of class 6(n).

On the other hand

(b) if F is of class 6(m) and dmF is of class g<"-">> uniformly (36 • • -36;

IL-i ll<MI )> then F is of class S(m+1> and dm+1F is of class £<»-«-» uni-

formly (36 • • • 36; IITJi1 IM>*||), i- e- we can g° from k = m to k — m+1.

For from the second condition it follows that dmF is of class Ê' uni-

formly (36 ■ • • 36; IlS.i||¿i*l|) and dm+ip is of class S(B_m_1) uniformly

(36 • • • 36; II™*1 ||¿t*l|)- ßy applying the lemma for ¿ = w and n = m+l,

we find that if F is of class £(m) and ¿"i7 is of class Ê' uniformly (36 • • • 36;

Jjr=i \\dix\\) then i7 is of class g(m+1). We thus get the two conditions of

the conclusion from the two conditions of the hypothesis of our statement

(b).    This completes the proof of the lemma.

*By enclosing 3£o in the bracket [ ] we shall indicate the possibility of its omission from the range

of uniformity.
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15. Functions of functions. Lemma 15.1 If G on 360§)$ to S is of

class (&' on 36o uniformly (2J$; ||y|| a) and linear on 2J for every x of 36o uni-

formly ($ ; a) ; if moreover H on Ho to 36o ii of class Ë' on Ho, and K on Uo33

to 2) is of class £' o» Uo uniformly (33 ; || o || ) and linear on S3 for each u of Uo,

then

G(u,v, p) =G(H(u), K(u, v), p)

on Uo33$ to S is of class S' onVLo uniformly (33$ ; ||u|| a) arad ¿¿«ear <w 33 for

each u of Uo uniformly ($; a); moreover

duG(u,v,p ;du) = dxG(H(u),K(u,v),p ;dH(u ;du)) +G(H(u),dK(u,v ;du),p).

The fact that G(H(u), K(u, v), p) is linear on 33 for each u of Uo uniformly

($; a) is obvious. We show that G on Uo33$ to S is of class S' uniformly

(33$; 111>|| a) by showing that djG satisfies the conditions imposed in the

definition of the class 6'. For simplicity we shall omit the range $ and

the scale function a from the argument. It is easy to see that their addition

does not change the form of the reasoning.

We shall show in the first place that duG is continuous on Uo uniformly

(U33 ; \\du\\ • || v\\). We consider for this purpose each term of duG separately

and study the difference

dG(H(u), K(u, v) ; dH(u ; du)) - dG(H(u0), K(u0, v) ; dH(u0 ; du))

= [dG(H(u), K(u, v) ; dH(u ; du)) - dG(H(u0), K(u, v) ; dH(u ; du))]

+ dG(H(u0), K(u, v) ; dH(u ; du) — dH(u0 ; du))

+ dG(H(u0), K(u, v) — K(uo, v) ; dH(u0 ; du)).

In order to show that each of these three terms approaches z*, we assume

that u has been chosen in the vicinity of w0 on which, by Lemmas 10.1

and 12.1, dH(u;du) is uniformly modular in du, and K(u,v) uniformly

modular in v. Then the continuity of dG uniformly relative to

\\dH(u ; du)\\ ■ \\K(u,v)\\

and the continuity of H suffice to make the first difference approach z*

uniformly (U33; ||d«|| ■ ||z>||); the modularity of dG uniformly relative to

\\K(u, v)\\ and the continuity of dH(u;du) uniformly relative to ||d«||

produce the approach to z* uniformly (U33; \\du\\ ■ \\v\\) for the second

term, while the additional continuity of K(u, v) uniformly (33; ||u||) pro-

duces the same result in the third term.
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The continuity of G(E(u); dK(u, v; du)) is proved along entirely

similar lines.

The modularity of duG follows immediately from that of dzG, G, dE

and dK.

We consider finally

R(ui, Uo)\\ux — «o|| = G(H(ux), K(ux,v)) —G(H(u0), K(u0, v))

— dxG(H(uo), K(uo, v) ;dH(uo; ux — ua))

— G(H(u0), dK(u0, v; ux — u0))

= [G(H(ux), K(ui, v) - K(uo, v))

— G(H(u0), dK(uo, v ; ux — «0))]

+ [G(H(ux), K(uo,v))  -G(H(uo), K(u0, v))

— dG(H(uo), K(u0, v) ; dH(u0 ; ux - u0))].

The first group of terms we rewrite in the form

[G(H(ux), K(ux, v) - K(uo, v) - dK(u0, v ; ux - m0))]

+ [G(H(ux), dK(u0, v ; ux - u0)) - G(H(u0), dK(u0, v ; ux - u0))].

If now we assume that «i is in such a neighborhood of w0 that E(ux) lies

in the neighborhood of E(ua) for which, by Lemma 10.1, G is uniformly

modular on g), it follows that the norm of the first expression is|less than

or equal to

Mq\\Rk(ux, «OH • ||«i-«o||

in which the coefficient of ||«i—«o|| approaches zero uniformly (S3; \\v\\)

as «i approaches ua. For the second expression we utilize the continuity

of G uniformly (g); ||y||), i. e. (g); \\dK(u0, v; Wi-m0)||) which in turn can
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be replaced by uniformly (g); M*||»|| • ||«—m0||) so that the second term

when divided by ||«i—«o|| will approach z* uniformly (33; ||»||) as «i

approaches u0.

The second group of terms in the expression for 2?(«i, «o)||«i—«o|| can

be replaced by

Ra(H(ux), H(uo) ; K(u0, v))\\H(ux) - H(u0)\\

+ dG(H(u0), K(uo, v) ; RH(ux, «o)||«i - «o||).

By Lemma 12.1 if «i is in a sufficiently small neighborhood of w0 there exists

an M such that

\\H(ux) - H(uo)\\ = Jf||«i-«o||.

Hence the first term when divided by ||«i—«o|| wUl approach z* uniformly

(V; || i>||). The same result for the second term follows from the modular

properties of dG.   This completes the proof of

lim ||2?(rti, Mo)|| = 0 uniformly (33 ; ||»||).

We note that the addition of further linearity in the function K will

induce corresponding linearity in G, i. e., if K(u; vi, ■ • • , vn) on Uo33i ■ • -33„

is of class 6' on Uo uniformly (33i • • • 33n; IT"=i ||"<||) and linear on each S3,-

uniformly (33i • • • 33,_i 333+i • • • 33„; IL^í \\vj\\) then G has the same
properties as K.

It is possible to extend this lemma still further. To simplify the statement

we introduce the following terminology : G on 36o?)i • ■ • 2)m$ has the property

P(n) on 36o§)i • • • Sjm uniformly ($ ; a), in case G is of class S<B) on 36o uniformly

(2)i • • • £)m$; nr=illyilk) and for each x of 36o, G is linear on % uniformly

(tk ■ ■ ■ pt-i®i+i ■ ••!>.?; n^/IWk).
Obviously if G has the property P' and dG has the property P<»-«

uniformly (36; ||dx||) then G has the property P(n).

We then have the following lemma :

Lemma 15.2. If G on 36o2)i • • •?)*$ to£ has the property P« on 360g)i •••§)*

uniformly ($; a); if, moreover, H on Uo to 36o is of class £(n) on Uo, and Ki

on Uo33,i • • • Bat to g)i has the property pw on Uo33ü • • • S3i3iJ then G on

Uo33ii • • • 33*ijfc$ has the property P("> owU033ii • • • 33*/t uniformly ($; a).

The proof for n = l and ^ = 1 has been given in Lemma 15.1 and the

appended remark.   Assume that it has been proved for values n = l and
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k g m and show that it holds for k = m+l.    This is a result of  applying

the lemma for k = m and k — 1 to the following functions:

G(u, ym+i, in, • • • , vmjm, p) = G(H, Kx, ■ ■ ■ ,  Km,ym+X,p),

H (u)   = u,

K(u, »«+1,1, • • • , vm+i,im+1)= ym+i = Km+X(u, flm+1,1, • • • , vn+x,Im+l).

To prove the lemma for any n, assume that it has been proved for

n¿m and extend it to the case n = m+l. It is obviously sufficient to show

that duG has the property Pim) uniformly ($ ; a).    Now

duG = dxG(H, Ki, ■ • • , Kk, p ; dH(du))

k

+  TiG(H, Kx, ■■■ , dKi(du), Kk, p).
i=l

Obviously E is of class S(m), and dxG, dH, Ki, ■ ■ ■ , Kk, dKx, • • • , dKk

have the property f>(m) in their respective arguments. From the relation

of P(m) to the class S(m> it follows that duG has the property P(m) uniformly

(U^ß; ||¿«||o-) and consequently G has the property P(-m+1'> uniformly (ty; a).

As a special case of this lemma we note the following

Lemma 15.3. If G is on Xoty to S of class (S(n) on 36o uniformly ($; a)

and E is on Uo to 36o of class S(n> on Uo, then G(E(u), p) on Uo^ to S is of class

SCn) on Uo uniformly (ty; a).

We need only apply the preceding lemma to the following situation :

93 =g) =9î = the class of real numbers,

K(u, r)=r for every u of Uo,

G(x, r) = rG(x) and E(u) = E(u).

We note that if G is of class S and E of class S' then

duG(H(u)) = dxG(H(u) ; dH(u, du)),

a function of the type considered in Lemma 15.1.

In Lemmas 15.1, 15.2 and 15.3 it is possible to get a parallel group of

lemmas by inserting the classes 36o and Uo in the range of uniformity. In

this case, especially for Lemma 15.1, the proof is simplified in a few places.

As a matter of fact it is possible in this case to prove Lemma 15.3 directly

by a line of reasoning which considers dG as a function of class ©<m) of

a two-partite argument, each argument in turn being a function on a two-

partite class.
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IV.  On the reciprocals of linear functions

16. In this section we shall assume that g) is a complete linear metric

space and SB is a linear metric space.

We say that a function K on 2J to g), linear on g), has a reciprocal if there

exists a function L on g) to g) linear on g) satisfying the conditions

K(L(y)) = L(K(y)) = y

for every y of g).

We note that if such an L exists, then it is unique. For from

K(Li(y)) = K(Lt(y)) = y
follows

L2KLX = L2KL2 or Lx(y) = Z.2(y).

Also from the existence of the reciprocal L it follows that if

L(y) = y*

for a given y, then y = y*.   Conversely if there exists an L on g) to g) linear

on g) satisfying the two conditions

L(K(y)) = y for every y of 2),

¿(y) = y* if and only if y = y*,

then
K(L(y)) = y for every y of g).

For

L(KLy — y) = LKLy — Ly = Ly — Ly = y*.

We take up first the reciprocal of a function which is suggested by the

linear integral equation of the second kind in the following

Lemma 16.1. // G on SBog) to g) is linear on g) for each w of SBo with

modulus M(G, w)<l, then for every w of SBo there exists a reciprocal of

y — G(w,y). If G is continuous on SBo uniformly (g); ||y||) then the reciprocal

is also continuous uniformly (g); ||y||).

The proof of the first part of this lemma follows the lines of the successive

substitution method used in Theorem 1, or the lemma can be shown to be

a corollary of Theorem 1, which amounts essentially to the same thing.

From either point of view, it appears that if Gn(w, y)=G(w, Gn-X(w, y));

Gx(w, y) =G(w, y), then for all (w, y) of SBog) the reciprocal of y — G(w, y) is

oo

y - H(w, y) = y +  £ G»(w, y),
i
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and the modulus

M (H, w) <-
1 - M(G, w)

Obviously H satisfies the relations

H(w, y) +G(w, y) = G(w, H(w, y)) = H(w, G(w, y))

which are reminiscent of the reciprocal relations of linear integral equations.

To show that the continuity of G on SBo uniformly (g); ||y||) implies

a similar continuity in the function H we utilize the first of these reciprocal

relations to obtain

H(wi, y) +G(wi, y) — G(wi, H(wi, y))

= H(wo, y) +G(wo, y) - G(w0, H(w0, y))

from which follows

\\H(wi, y) - H(wo, y)\\ = \\G(wu y) - G(w0, y)\\ + \\G(wi, H(wi, y)

- H(w0, y))\\ + \\G(wi, H(wo, y)) -G(w0, H(w0, y))\\.

Now from the continuity of G(w, y) on SBo uniformly (g)0;||y||) it follows that

there will exist a vicinity (w0)a of w0 such that if Wi is in this vicinity then

M(G, wi)<k<l, so that for such Wi

\\H(wi, y) - H(wo, y)\\(l - k) = \\G(wu y) - G(w9, y)\\

+ \\G(wi, H(wo, y)) -G(w0, H(w0, y))\\,

The continuity properties of G applied to this inequality give us correspond-

ing continuity properties of H.

By the same method we can obviously show that if G is continuous on

SBo uniformly (SBo?); ||y||) then for every w0 there exists a vicinity (wQ)a

such that H is continuous on (w0)a uniformly((w0)o2); ||y||). This vicinity

can be extended to include the region SBo if there exists a k < 1 such that

for all w of SBo

M(G, w) < k.

Lemma 16.2. Suppose that K on SBog) to g) is linear on g) for each w of

SBo ; that it has a reciprocal L0 for w = wQ, and is continuous in w at w = w0

uniformly (g); ||y||); then there exists a constant a such that for each w of the

neighborhood (w0)a, K has a reciprocal, which is continuous at w0 uniformly

®;IHI).
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Consider the function

G(w, y) = Lo(K(wo, y) - K(w, y)) = y - L0K(w, y).

Using the continuity of K at Wo, we can select a k and an a such that for

all w in (wo)a we have

\\K(wo, y) - K(w, y)\\ < k\\y\\,        kM(Lo) < 1.

Then
M(G, w) <kx<l

and so by Lemma 16.1,

LoK(w, y) = y -G(w, y)

has on (w0)a a reciprocal Lx continuous at w = w0 uniformly (g); ||y||). Then

for every y of g) and w of (w0)a,

LiLoKy = L0KLxy = y,

where for convenience we have omitted the w. Then ZiZ,0 is a left hand

reciprocal of K.    That it is also a right hand reciprocal follows from

LQKLxLoy = L0y     or    La(KLxL0y — y) = y*

and the property of L0 as reciprocal of K(w0, y). The continuity of LXL0

at w = Wo uniformly (g); |[y||) follows from that of Lx.

If K is also continuous on SBo uniformly ([9Bo]g); ||y||) then this recip-

rocal will be continuous on (w0)a uniformly ([(wo)aW; \\y\\)-

Differential properties of K carry over to the reciprocal as we show in

Lemma 16.3. // K on SBog) to g) is linear on g) for each w of SBo, has a

reciprocal ¿o for w = w0 and is of class C(n) on SBo uniformly ([SBo]g); ||y||),

then there exists a constant a such that the reciprocal L is of class C(n) on (w0)a

uniformly ([(wo)Jg); ||y[|).

We select the constant a in such a way that the function L(w, y) is

uniformly modular on (wa)a, which is always possible as can be seen from

Lemma 10.1.    We then prove this lemma first for the case » = 1 by showing

that

(16.4) dL(w, y ; dw) = — L(w, dK(w, L(w, y) ; dw))

satisfies the three conditions imposed on differentials of functions of the

class S'. The relation (16.4) can be obtained by applying Lemma 15.1

heuristically to the reciprocal relation

K(w, L(w, y)) = y.



148 T. H. HILDEBRANDT AND L. M. GRAVES [January

The continuity of dL can be shown by following the method used, or

the result obtained in the proof of the corresponding part of Lemma 15.1.

Similarly the modularity of dL is deducible from that of L and dK. It

remains to show that dL satisfies condition (3). From the reciprocal rela-

tion between K and L it follows that for Wi and w2 in (w0)a it is true that

K(wi, L(wi, y)) =K(w2, L(w2, y))

or

K(wi, L(w2, y)) - K(wi, L(wu y)) = - (K(w2, L(w2, y)) - K(wu L(w2, y))

= — dK(wi, L(w2, y) ;w2— wi)

— RK(w2, wi, L(w2, y))\\w2 — Wi\\.

Then
L(w2, y) — L(wi, y) = — L(wi, dK(wi, L(w2, y) ;w2 — wi))

— L(wi, RK(w2, wi, L(w2, y))) \\w2 — w2\\,

so that

Rl(w2, wi, y)\\w2 — wi|| = L(w2, y) — L(wi, y) — dL(wi, y ; w2 — Wi)

= — L(wi, dK(wi, L(w2, y) — L(wi, y) ; w2—wi))

— L(wx, RK(w2, wi, L(w2, y))) ||wi — wi\\.

Now by Lemma 12.1, K is continuous at Wi uniformly (g); ||y||) and so by

Lemma 16.2 L is continuous at Wi uniformly (g); ||y||). Further, from the

modularity of dK and L it follows that

||L(wi, dK(wi, L(wt, y) — L(wi, y) ; w2 — wx))\\

= M(L)M(dK)\\L(w2, y) -L(wu y)\\\\w2 - wi\\,

so that the coefficient of ||w2 — Wi|| approaches zero uniformly (g); ||y||)

as w2 approaches Wi. Similarly, from the uniform modularity of L on (w0)a

and the manner of approach of Rk to y* it follows that

\\L(wx, Rk(w2, Wi, L(wi, y)))\\

approaches zero uniformly (g); ||y||). This completes the proof that 2?¿

approaches y* uniformly (g); ||y||) as w2 approaches Wi.

We prove the general case by induction, i. e. assume that the lemma holds

for n — m and show its validity for n = m+l. Assume then that K is of

class (S(m+1) uniformly (g); ||y||). Then dK is of class S(m) on 2B0 uniformly

(g)SB; ||y|| • ||dw||) and also L is of class (S(m) on SBo uniformly (g); ||y||).
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Then by applying Lemma 15.2 we get that dK(w, L(w, y); dw) is of class

S(ra) on SBo uniformly (g)3B; ||y|| ■ \\dw\\) and so by a second application

of Lemma 15.2 it follows that L(w, dK(w, L(w, y); dw)) = —dL(w, y; dw)

has the same property. This completes the proof of the lemma.

V.   Existence and differentiability of solutions of

EQUATIONS OF THE FORM G(x, y)=y*

17. Neighborhood theorems. Theorem 3. Let 36 be a metric space

and g) a complete linear metric space. Let the point y0 of g) and the region

36o of 36 and the function G on 36o(yo)0 to g) be such that

(Hi) there exist a linear function K on g) to g) with a reciprocal L, and a

positive constant Mo such that, if M(L) denote the modulus of L, then

MoM(L) < 1,   \\K(yi - y2) - G(x, yx) + G(x, y2)|| = M0\\yx - y,||

for every x in 36o and every yx and y2 in (yo)0;

(H2)    there exists a positive constant c<a such that

M(L)\\G(x, yOll = (1 - MoM(L))c

for every x in 36o-

Then for every x in 36o there exists a unique solution Y(x) of the equation

17.1) G(x, y) = y*.

Note that in Theorem 3, only an approximate initial solution, and

also only an approximate differential at the approximate initial solution are

required.    The proof is as follows:

We define a new function F on 36o(yo)a to g) by the equality

F(x, y)=y-L(G(x, y)).

Then the equaton

(17.2) y=F(x,y)

is equivalent to (17.1). To equation (17.2) we can apply Theorem 1.

For by Hx we have

F(x, yi) -F(x, yt) = L(K(yx - y2) - G(x, yx)+G(x, y2)),

\\F(x, yi)-F(x, yOll = M(L)Mo\\yx - yt\\,

so that the function F satisfies Ex of Theorem 1. That the hypothesis H2

of Theorem 1 also holds for the function F is readily verified.
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Theorem 4. Let HL be a linear metric space, and g) a complete linear

metric space, and let SBo be a region of the composite space SB = (36, g)). Let

the function G on SBo to g) and the point (x0, yo) of SBo satisfy

(Hi) G(xo,yo)=y*;

(H2) G is of the class ©(n) on SBo [uniformly on SBo] ;

(H3) dyG(xo, yo; dy)szKo(dy) has a reciprocal La.

Then there exist positive constants a and b and a function Y on (x0) ¡> to

(yo). with the following properties :

(Cx) the region ((x0)&, (yo)o) is contained in SBo;

(C2) the point (x, Y(x)) is a solution of the equation

(17.3) G(x, y) = y,

for every x in (x0)&, and there is no other solution with the same x, having y

in (y0).;

(C3) the differential dyG(x, Y(x) ; dy) has a reciprocal for every x in (x0)j;

(d) the function Y is of the class S(n) on (x0)b [uniformly on (x0)&].

The parts in brackets in H2 and C4 constitute an alternative reading.

We shall prove only the theorem with the parts in brackets omitted. The

proof of the other theorem is parallel, except that no recourse to Taylor's

theorem is required. We proceed as follows :

Let M (La) be the modulus of the reciprocal L0 of K0, and let Mo be a

constant satisfying the condition 0<Af0Af(Zo)<l- By Taylor's theorem*

we have, for every (x, yi), (x, y2) in a sufficiently restricted neighborhood

((*o, yo)).,

G(x, yi) — G(x, y2) =   I    dfi(x, y2 + (yi — y2)r ; yi — y2)dr.
Jo

If we take a sufficiently small, the inequality

\\G(x, yi) - G(x, yt) - KQ(yi - y2)\\ á M0||yi - y*||

follows from the continuity of dyG at (x0, yo) and the properties of Riemann

integrals.f Therefore the hypothesis 22i of Theorem 3 is fulfilled on this

neighborhood. By Lemma 12.1 there exists a positive constant b = a such

that Ht of Theorem 3 is fulfilled on (xo)b- Hence the conclusions G

and Ct follow from Theorem 3.

*See Graves, Riemann integration and Taylor's theorem in general analysis, already cited.

fGraves, loc. cit.
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By Lemma 12.1 and Theorem 2, we find that the solution Y(x) is con-

tinuous on (xo)b- Then by Lemma 16.2, if the constant b is sufficiently

restricted, dyG(x, Y(x); dy) has a reciprocal L(x; dy) which is continuous

on (x0)b uniformly (g); ||¿y||) and linear on g) uniformly on (x0)b- This gives

us C3.

In proving C4 for n = l, we show that the differential dY is given by

the formula

dY(x ; dx) = — L(x ; dxG(x, Y(x) ; dx)).

The continuity and linearity of dY follow readily from the corresponding

properties of L and dxG.    Since G is of class E' and G(x, Y)=y*, we have

y* = dwG(x, Y ;YX-Y) + dxG(x, Y ; xx - x) + RG(WX, W)\\WX - W\\.

By applying the operation L to both sides of this equation, we obtain

(17.4)      y*= Fi- r-dr(*;*i- x) + L(x ; R0(WX, W))\\WX - W\\.

Here we have set W= (x, Y(x)), etc. If the ratio r = \\WX — W^ -H|*i—*|| is

bounded when xx is in a sufficiently small neighborhood of x, then the re-

mainder Ry(xx, x) = — L(x; Ro(Wx, W))r is continuous at xx = x, since we

have already shown that the function L is linear and the function F is

continuous. To show that r is bounded, we evidently need consider only

the points *i at which ||lFi — W\\ =||Fi— F||. At these points we have

from equation (17.4),

||r, - r|| = M(dY)\\xx - x\\ + M(L)\\R0\\  ||Fi - F||.

Select a constant c so small that whenever xx is in (x)c we have M(Z,)||i?G||

less than a constant e<l.    Then by transposing we obtain r(l — e) = M(dY).

To complete the proof of C4 for all values of n, we assume it is true for

n = m and that G is of class g<ro+1' on SBo- Then by Lemma 15.3, dvG(x, Y ;dy)

and dxG(x, Y;dx) are of class E(m) on (x0)¡> uniformly (g); ||dy||) and (36;

||d*||), respectively. Next, by Lemma 16.3, the reciprocal of dvG(x, Y; dy)

ovL(x;dy)isoi class 6(m) on (x0) & uniformly (g);||¿y||). Then by Lemma 15.2,

dY is of class &m) on (xo)b uniformly (3c; ||¿*||), so that, by definition, F

is of class Ë<m+1) on (*0)&.

18. The unique maximal sheet of solutions containing a given solution.

In Theorem 4, the existence of a solution was shown only in a restricted

neighborhood of the given solution. However, the region on which the solu-

tion is defined can frequently be extended beyond such a neighborhood, by

a kind of process of continuation.   The maximal sheet of solutions through
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a given solution, as defined below, is limited only by boundary points of

the region SBo and by points at which the differential dyG(x, y; dy) has no

reciprocal. The theorem is a generalization of one given by Bliss in his

Princeton Colloquium Lectures (p. 22), and it will be convenient to use a

slight modification of his terminology here.

A sheet of points in the space SB = (36, g)) is a set SB(0) of points w = (x, y)

of SB with the following properties :

(a) for every w0 of SB(0) there exist positive constants a and b = a

such that, no two points of SB(0) in (w0)a have the same "projection" x,

and every point x in (x0)¡> is the "projection" of a point w of SB(0) contained

in (wQ)a;

(b) the set 3B(0) is connected.    (See § 7.)

A boundary point of a sheet SB<0) is a point not belonging to SB(0) but every

neighborhood of which contains points of SB(0).

"Sheet" as thus defined corresponds to Bliss's "connected sheet con-

sisting wholly of interior points." This is the only kind we shall have

occasion to consider.

Under the hypotheses of Theorem 4, we say that a point w = (x, y)

of SB is an ordinary point for the function G if w is in SBo and the differential

dyG(x, y ; dy) has a reciprocal. In the contrary case we call w an exceptional

point for the function G.

We say that a sheet SB(0) is a sheet of solutions of the equation (17.3)

in case every w= (x, y) of SB<0) satisfies (17.3).

Theorem 5. 2/ a point w0 = (x0, yo) is an ordinary point for the function

G and is a solution of the equation (17.3), then there is a unique sheet SB(0)

of solutions of that equation with the following properties :

(Ci)    SB(0) contains wa;

(C2)    every point of 3B(0> is an ordinary point for the function G;

(C3) the only boundary points of the sheet SB(0) are exceptional points

for the function G.

By Theorem 4, there exists at least one sheet of solutions SB(1) having

properties G and C2. Now let 3B<0) be the least common superclass of all

such sheets SB(1). Evidently 3B(0) is a connected set of solutions satisfying

G and G- That SB(0) is a sheet follows from G and Theorem 4. To

show that SB(0) satisfies C 3, let (xi, yi) = Wi be a boundary point of SB(0)

and an ordinary point for G. Since G would then be continuous at (xi, yi),

G(xi, }'i)=y*. Then by Theorem 4 we could extend the sheet 3B(0)

to include Wi, in such a manner that the new sheet satisfies G and G,

which contradicts the definition of 3B(0).    Now suppose that there is a second
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sheet 9B(2) of solutions, having properties Cx, C2, C3. Then SB(2) is included

in SB(0), and there exists an element wx in SB(0) but not in SB(2). Since SB(0)

is connected, there exists a continuous function W on 9Î to SB(0) such that

W(rQ) =Wo, W(rx)=wx, r0<rx. By the property G of SB(2), W(r0) is in SB<2>.

Let r2 be the least upper bound of the numbers r in the interval r0 = r = ri

such that W(r) is in 3B(2). Evidently W(rx) is a boundary point of SB(2).

But since W(r2) is in SB(0>, it is an ordinary point for G, which contradicts

the property C3 of 3B(2).

Every sheet of solutions determines a single-valued function Y(x) in a

neighborhood of each one of its points. By Theorem 4 each of these func-

tions is of class 6(n).
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