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BY

LAWRENCE M. GRAVESf

The importance and usefulness of Taylor's theorem need not be dwelt

upon here. We are interested in it for functions whose arguments and

functional values belong to abstract spaces of the Fréchet type. Conse-

quently no Rolle's theorem can be even stated, and the proofs will be some-

what different from the usual proofs in the theory of numerically-valued

functions. It is also to be expected that a slight strengthening of hypotheses

will be required. However, it is not necessary to assume the existence of a

uniformly continuous nth differential, as was done in the first announcement

of these results.^ It is sufficient that the function should have an wth variation

(in the sense of Gateaux), with certain limitations on its discontinuities.

The functions we discuss will be one-valued functions whose arguments x

and functional values y belong to linear metric spaces 36 and g) respectively,

briefly, functions Fon 36 to g). Linear metric spaces correspond to the

spaces called by Fréchet, "espaces (D) vectoriels." For the notations, postu-

lates and fundamental propositions, we refer the reader to Part 1 of a paper

by T. H. Hildebrandt and the author,§ to avoid practically entire repetition

of that section.    No other parts of that paper are needed here.

We shall consistently use the letters r, s, a, b, c to refer to real numbers,

and the German 9Î to refer to the real axis. The notation 9Î0 will then

refer to a set of open intervals of that axis. By the notation (ab) we shall

mean the bounded closed interval of 3Î with end points a and b. Whenever

the space g) is required to be complete, this will be specifically mentioned.

The form of remainder obtained in our Taylor's formula is a generaliza-

tion of that given by Jordan || and analogous at least to those obtained in

* Presented to the Society, September 10, 1925; received by the editors January 28, 1926.

t National Research Fellow in Mathematics.

i Comptes Rendus, vol. 180 (1925), p. 1719.

§ Implicit functions and their differentials in general analysis, in the present number of these

Transactions.

IICoKrj d'Analyse, 3d edition, vol. I, p. 251.
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other special cases by Hart,* and involves a Riemann integral of a function G

on 9î to a linear metric space g). Hence it is necessary to develop a theory of

Riemann integration for such functions. This is on the whole parallel to,

or rather a generalization of, the theory for numerically valued functions.f

A theory of line integrals taken along curves in an abstract space 36 could be

developed in a similar way, as well as a theory of Stieltjes integrals. We

shall content ourselves here with discussing Riemann integrals.

1. Derivatives and variations. For functions F on 36 to g) there are

several useful definitions of differentiability. We are concerned to base

the present theory on the least restrictive one, in order to gain for it the

widest range of applicability. We have selected a definition of variations

generalizing the one given by Gateaux.J Gateaux's definition is less re-

strictive than the definition of variation used by Levy in his Analyse Fonc-

tionnelle^ and much less restrictive than the definition of differential used

by Fréchet.||

Derivatives. We say that a function fon a region 9îo of the real axis,

to g), has a derivative, or more specifically, a first derivative,

dF
F'(ro) = -

dr

at a point r0 of 9Î0 in case

lim
F(r) - F(r0)

r - r0
- F'(r0) 0.

In case F is defined on a closed interval (ab), we define the derivatives at

the end points by one-sided limits, as is commonly done in the classical

theory of real functions. We define nth derivatives inductively, as in the

classical theory.

* These Transactions, vol. 18 (1917), p. 138, vol. 23 (1922), p. 39; Annals of Mathematics,

(2), vol. 24 (1922), pp. 28; 32.
f N. Wiener has discussed functions F on (£0 to g), where So is a domain of the realm (S of complex

numbers and §) is a linear metric space having E as its associated number system, and has briefly

treated differentiation, integration, and Taylor's series for such functions. See his paper in Funda-

menta Mathematicae, vol. 4 (1923), p. 136.

X Bulletin de la Société Mathématique de France, vol. 47 (1919), p. 83.

§ See pp. 50-52.

|| Cf. these Transactions, vol. 15 (1914), p. 139; vol. 16 (1915), p. 216; Annales Scientifiques de

I' École Normale Supérieure, vol. 42 (1925), p. 293. Also § III of the paper on implicit functions by

Hildebrandt and Graves, already cited.
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Variations. We say that a function F on a region 36o of 36 to g) has an

wth variation at a point x0 of 36o in case, for every element 5* of 36, the func-

tion of r, F(x0+r5x), has an wth derivative at r = 0. We denote this wth

derivative at r = 0 by 5"F(x0, 5x). Regarded as a function on 36 to g), 5"F

is the wth variation of F at *0. We say that F has an wth variation on 36o

in case it has an wth variation at each point of 36o.

Lemma 1.1. If a function F on 9?0 to g) has a first derivative at a point

r0 of 9îo, then F is continuous at r0.

It is not true in general, however, that a function F on a region 36o to g)

which has a first variation is therefore continuous, as numerous examples

from the calculus of variations show.

Some properties of the wth variation (which is readily shown to be unique)

are stated in

Lemma 1.2. Suppose the functions F on 36o to g), G on 36o to g), and E

on 36o to 9Î, all have nth variations ônF(x0, bx), ■ • ■ , at a point x0 of 36o.    Then

(a) F has variations of all lower orders at x0, and for every positive integer

k<n and every point 5x in 36 we have

dk
SnF(x0, Sx) =-(8»-kF(xo + rSx, Sx))

drk

(b) the sum function F+G and the product function FE have nth varia-

tions at *o, and 5n(FE) is given by a generalization of Leibnitz's formula;

(c) the variations 5"F, etc., are homogeneous of the nth degree in ôx, i. e.,

SnF(x0, sSx) = snSnF(x0, Sx)

for every point ôx of 36 and every real number s.

Property (a) follows at once from the definition of derivative and varia-

tion, and property (b) is proved in the usual way, considering derivatives

first. To prove property (c), we proceed by induction. We have first,

if j^O,

F(xo + (r/s)sôx) - F(xo) I
||5F(*o, sSx) - sSF(xo, Sx)\\ g SF(xo, sSx) —

(r/s)

+   s
F(a:0 + rSx) - F(x0)

— 5F(xo, Sx)
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Since the terms on the right approach zero with r, the left hand side equals

zero. The case 5 = 0 follows from the fact that ôF(x0, x*)=y* for every

function F. The manipulation to complete the induction proceeds in the

same way as above.

2. Riemann integration. The theory of Riemann integration of

bounded functions here presented is on the whole parallel to the classical

theory. A noteworthy hiatus is the failure to show that for the existence

of the integral it is necessary that the Lebesgue measure of the set of dis-

continuities of the integrand shall be zero. That this condition is not

necessary is shown by the following example, where the integrand function

is discontinuous at every point of the interval O^f = 1. Let the space g)

consist of all functions y on the interval 0 — t = 1 to 9Î which are bounded on

that interval, and let ||y|| = the upper bound of \y(t) \. Consider the system

of points yr defined by

fOfor 0 ^ t g r,
yr(t) = { O^fll.

\liorr = t=l,

Let F(r)=yr.    Then F is integrable and yet everywhere discontinuous.

Definition of integrals. Consider a bounded function F on (ab) to g).

(By bounded we mean that 112^)11 is bounded on (ab)). Let x be a partition

of (ab) into sub-intervals A< of lengths A¡. Denote the norm of the parti-

tion by Nt. The lengths A¿ are understood to have the same sign as (b — a).

Let f< be an arbitrary point of the interval A<.    Then if the limit

lim E^WA.-
iVir-0   T

exists, we say that F is integrable on (ab), and denote the limit by the usual

symbol

F(r)dr.
/.

The limit is taken in the sense that, for every positive e there exists a positive

ô such that, for every partition tt with Nir — 6 and every choice of the points

ri in the intervals A< of x, we have

EFÍ/OAí-  f F(r)d,

In a complete linear metric space we have the usual necessary and suffi-

cient condition for the existence of the integral, stated in
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Lemma 2.1    If the space g) is complete, then a necessary and sufficient

condition that a bounded function F on (ab) to g) be integrable on (ab), is that

lim

ifir2=0

£ F(rn)A,-i -   £ F(r,-2)Ai2 = 0.

We find it convenient in proving Theorem 1, on the sufficiency of certain

conditions for the existence of the integral, to derive the lemmas numbered

2.2 and 2.3 relating to oscillation and the sets of discontinuities of functions.

Oscillation. For an interval (ab) and a function F on (ab) to g), we define

the oscillation 0F(a, b) to be the upper bound of ||F(ri) — F(r2)|| for rx and

r2 in (ab). For an interior point c of (ab) we define the point oscillation

Op(c) by the equation

0F(c) =  lim Op(c — r, c + r).
=o

If c is an end point, say the left hand end point, of the interval, then we put

c in place of (c—r) in the limitand. The oscillation functions 0F(a, b)

and 0F(r) are evidently always well defined for bounded functions F.

A necessary and sufficient condition for the continuity of a function F

at a point c is that 0F (c) = 0.

Content and measure. Let S be a set of points of the real axis dt.

Then we shall mean by content <§., the Jordan measure of (g,* and by

measure (g, the Lebesgue measure of @,* if these measures exist.

For a function F on (ab) to g), we shall denote by <ätF the set of points

r of (ab) at which 0F(r) èe, and by 35F the set of points of (ab) at which F

is discontinuous.

Lemma 2.2. For every bounded function F on (ab) to g), the statements

"content Ç£,F = 0 for every e>0," and "measure 35f = 0" are equivalent.

Consider a sequence of positive numbers {ek} with lim ek = 0. Then

35 f = Ex°° <SekF. By definition of content, each (§.(hF is enclosable interiorly

in a finite number of non-overlapping intervals the sum of whose lengths

is less than e/2*, where e is arbitrary. Hence 35 f is enclosable in a denumer-

able infinity of intervals the sum of whose lengths is arbitrarily small, so

that measure 35 f = 0. For the converse, we prove first that every set @,f

is closed. Let c be a limit point of @<f. Then every interval (c—r, c+r)

encloses a point of <&.tF, so that 0F(c—r, c+r)=€ for every positive r, and

*See Jordan, Cours d'Analyse, 3d edition, vol. I, p. 28; Lebesgue, Leçons sur l'Intégration, p. 102

and p. 28.
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hence 0F(c)=e. Now by definition of "measure 33V = 0," for every positive

number co there exists a denumerable set of intervals enclosing £>F interiorly

with the sum of their lengths less than w. Since each set (i(F is a part of

the set 2)/? and since each 6eP is closed, we can apply the Heine-Borel-

Lebesgue theorem in generalized form* to show that each ®cF is enclosed

interiorly by a finite number of intervals the sum of whose lengths is less

than w.    Since w is arbitrary, each @ei? has content zero.

Lemma 2.3. Let F be a function on (ab) to g) such that 0F(r)=e on (ab).

Then for every constant co>0 there exists a constant 5>0 such that, for every

pair tti, TTt of partitions of (ab) with norms less than ö we have

(2.1) £ ^(fii)A,-i -   2>(r<2)Ai2 = (e + «)  \b - a I

The hypothesis 0F(r)~e on (ab) implies that F is bounded on (ab).

By definition of the point oscillation 0F(r), we know that if we fix « ar-

bitrarily, then for every point r of (ab) there is a constant 2ar such that

(2.2) 0F(r - 2ar, r + 2ar) ^ e + w.

Since (ab) is a closed interval, by the Heine-Borel-Lebesgue theorem there

is a finite subset (f<— ari, fi + ari) of the set of intervals (r — ar, r+ar),

which also covers (ab). Let 4S be the minimum length of the intervals

of this finite subset, i. e., 25 = minimum ari. Then if tti and 7r2 have norms

less than 6, and Ai and A2 are intervals of xi and ir2 respectively having a

point in common, there is an interval (f< —2arj, fi+2ari) to which Ai and A2

are both interior. Let ir3 be the partition of (ab) obtained by using all the

division points of tti and 7r2.    Then by the inequality (2.2) we have

E F(rn)An -   £ F(rj2)Ai2 £ [F(rki) -F(rh2))Ak3

á (í + a) | b - a |

Theorem 1. Existence theorem. Suppose that the space g) is complete,

and that the function F on (ab) to g) is bounded on (ab), and has measure

T)F = 0.    Then F is integrable on (ab).

•For a simple proof of this theorem, see Lebesgue, loc. cit., p. 105. Only a slight modification of

Lebesgue's reasoning is necessary to prove the theorem when the interval (ab) is replaced by an

arbitrary bounded closed set E. See Hildebrandt, Bulletin of the American Mathematical Society,

vol. 32 (1926), pp. 423 ff.
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By Lemma 2.2, we may replace the hypothesis "measure 35f = 0" by

"content (gcF = 0 for every positive e." Select positive numbers e, co, and a

arbitrarily. Since content Sep = 0, there is a finite set © composed of w

intervals, the sum of whose lengths is less than a, and which enclose the

set @,f in their interiors. Let X be the set of intervals complementary

to © on (ab). Then 0F(r)<e on X. By Lemma 2.3, there is a positive

5« corresponding to co such that the inequality (2.1) holds for all partitions

7Ti and ir2 of the set of intervals ¡E, having norm less than §„. Select Si<5„

and <a/n, and let ir3 and ir4 be partitions of (ab) of norm less than ôi.

Let 7T6 and ir6 be the partitions formed from ir3 and 7r4 respectively by in-

serting the end points of the intervals of the set © as division points. The

number of intervals of w3 which are not identical with intervals of ir¡, is

not greater than 2w, where w is the number of intervals in ©. We specify

that on an interval A,-6 identical with a A<3, r,-6 = ri3, so that

£F(r<3)Ai3-   2>(r,0AyS = 4MnSi = 4Ma,

where M is the upper bound of ||F(r)|| on (ab).    We do similarly for x4

and 7TS.    Next we have

£F(ri6)A,-5 + Í>(r,0A/. g 2Ma,

where the sums are taken over the intervals of 7r6 and wo contained in the

set ©.    Since SX<SU, we have finally

£ F(rit)Ait -   £ F(rí6)Aí6   g (e + w) | b - a | .

By combination of these inequalities we obtain

£F(ri3)A<3-   £ F(rn)A» = lOMa + (e + w) | b - a \ .

Since a, e and w are arbitrary, we may apply Lemma 2.1 to obtain the desired

conclusion.

The next theorem contains the ordinary formulas for definite integrals,

which extend immediately to our general case.
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Theorem 2. Suppose that the functions F, G, and H, on (ab) to g),

g), and 9Î respectively, are integrable on (ab). Let c, d, and e be points of (ab).

Then the following equalities and inequality are valid :

/*d /%9 (.9

(2.3) \  F dr + I  F dr = I   F dr if the space g) is complete ;
Je Jd Jc

(2.4) (  (F + G)dr =   f F dr + f G dr ;
%Ja Ja Ja

(2.5) f FH dr = H I   F dr if H is constant on (ab) ;

FH dr = F I   HdrifF is constant on (ab) ;

(2.7) f FdA ai Hdr   if \\F(r) \\ = H(r) on (ab).
\\J a I Ja

3. Relations between derivatives and integrals. We say that a func-

tion F on (ab) to g) has a primitive H in case the function H is defined on (ab)

to g) and has F for its derivative on (aô). If a function F on (ab) to g) is

integrable on every sub-interval of (aô), then the function

G(r) =   f F(r)dr
Ja

is called an indefinite integral of F. In Theorem 4 we show essentially

that when a function F has both a primitive and an indefinite integral, these

differ at most by a constant element of the space g). A particular case where

both a primitive and an indefinite integral exist is when the space g) is com-

plete, and the function F is continuous. This follows from Theorems 1

and 3.    Lemma 3.1 is concerned with integration by parts.

Theorem 3. If the space g) is complete, and if the function F on (ab)

to §) is integrable on (ab), then the function G on (ab) to g) defined by

G(r) = f Fdr

has the properties

(1) ||G(fi)— G(r2)\\^M\ri-r2\ for every n,ft in (ab), where M is the

upper bound of \\F(r)\\ on (ab);
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(2) G is continuous on (ab);

(3) if F is continuous at a point r0 of (ab), then G has a derivative at r0,

equal to F(r0).

This theorem is proved by application of the formulas of Theorem 2.

Theorem 4.    If the function F on (ab) to g) has a derivative F' on (ab

which is integrable on (ab), then

F(b) -F(a) =   f F' dr.*
Ja

For definiteness we assume a<b. Let e be an arbitrary positive number.

Then since F' is integrable, there exists a 5 >0 such that, for every partition x

with Nir = 5 and for every choice of the r< in the closed intervals A,- of x,

we have

(3.1) Ef'WA,—   Cp'dr
x Ja

Since F' is the derivative of F on (ab), there is for each point r of (ab) a

positive number ar = 5 such that, for every point r' of (ab) satisfying

\r'—f| = o!r, we have

(3.2) \\F(r') - F(r) - F'(r) (r' - r)\\ ^ t\r' - r\.

The open intervals Ir = (r — aT<r'<r+ar) constitute a set covering the

closed interval (ab) ; hence we may apply the Heine-Borel-Lebesgue theorem

to show that a finite set Ix ■ ■ ■ Im of these, with centers at pi<p2< • • -<pm

respectively, also cover (ab). We may evidently assume that no one of

the intervals 2* is wholly contained in another one of them, and that pi = a,

pm = b. For each interval Ik we have by (3.2) the condition that when r

is in Ik or at an end point of /*,

(3.3) ||F(r) - F(Pk) - F'(Pk)(r - Pk)|| = e | r - Pk \ .

Now in the interval pk = r gpt+i blot out all end points of intervals /,• having

j^k. The remaining end points together with the points pk, determine a

partition x of (ab) of norm = Ô. Each interval At = (riy ri+x) of x has at

least one of the points pk for an end point. If there are two, we choose the

left hand one, and in either case denote the pk thus determined for A< by pf.

Then by (3.3) we have for every i,

(3.4) llFf/tt-O - F(u) - F'Íp^U = eAi.

This theorem in its present generality is due to T. H. Hildebrandt, as is also the second corollary.

I have slightly altered his proof.
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Thus by (3.1) and (3.4) we obtain

[January

F(b) - F(a) -   fF'dr\\=   2:|F(ri+i) - F(n) - F'(Pi)A«
J a i    \\

+ Il 2ZF'(Pi)ài - Çf'
It Ja

dr t(b - a + 1).

Since € is arbitrary, the equality is proved.

That two primitives of a function always differ by a constant is a result of

Corollary 1. If the function F on (ab) to g) has a derivative F'(r)=y*

on (ab), then F is constant on (ab).*

For the function F' is evidently integrable on every sub-interval of (ab),

and hence

F(r) -F(a) =   f F'dr = y*
Ja

for every r in (ab).

Corollary 2. If the space g) is complete, and if the function F on (ab)

to g) has a derivative F' on (ab) which is continuous on (ab), then

lim
'i-'i

F(ri)-F(r2)
- F'(r2) = 0

f i — r2

uniformly on (ab).

Since F' is continuous on (ab), it is bounded on (aô), and since (ab) is

closed, F' is continuous uniformly on (aô). This can be shown by classical

methods.    Then by applying Theorems 1, 4, and 2, we obtain

F(ri)-F(r2)
- F'(r2)

Cri[F'(r) -F'(r2)]dr

Jr2

fi — r2fi - n

whenever [ri—r21 is sufficiently small.

Lemma 3.1. Integration by parts. Suppose the space g) is complete,

and that the functions F on (ab) to g) and G on (ab) to di have derivatives F'

and G' on (ab) which are bounded on (ab) and whose sets of discontinuities

on (ab) each have measure zero.    Then

F(b)G(b) -F(a)G(a) =   f F(r)G'(r)dr +   f F'(r)G(r)dr.
Ja Ja

* Cf. Fréchet, Annales de l'École Normale Supérieure, vol. 42 (1925), pp. 313, 316.
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For the proof we apply Lemmas 1.2 and 1.1 and Theorems 1, 4, and 2.

4. Taylor's theorem. Taylor's theorem is valid only for convex regions

as defined below. However, it should be remarked that in a linear metric

space every "neighborhood" constitutes a convex region.

Convex regions. A region 360 of a linear metric space 36 is convex in

case, for every pair of points xx, *2 of 36o and every number r in the interval

(0, 1), the point xx + (x2—xx)r is in 36o-

Theorem 5. Taylor's Theorem. Suppose that the space g) is complete,

and that the region 36o of the space 36 is convex, and suppose that the function F

on 36o to g) has an nth variation on 36o- Suppose also that for every xx, Xt in 36o

the function of r, hnF(xx+(x2—xx)r, *2—xx), is bounded on the interval (0, 1)

and its set of discontinuities is of measure zero. Then for every xx, x2 in 36o

we have
n-l

F(*0 = F(*i) +  £ 5F(*i, xt - xi)/»l    + Rn(xx, xt)
»-i

where
r1 (1 - f)"-1

Rn(xi, xt) =   I   SnF(xx +(x2 — xx)r, X2 — xx)—-—- dr.
Jo (n — 1) !

We first note the fact that for n > 1, the existence of the wth variation

of F on 36o implies the continuity and hence the boundedness of the function

5n-1F(*i-r-(*2—xx)r, Xt—*i) on the interval (0, 1), by Lemma 1.1. Con-

sider now the case » = 1. The function F(*i + (*2—xx)r) has a first derivative

5F(*i+(*2—xx)r, Xt— xx) which is integrable on (0,1), by definition of

variation and Theorem 1. Then Theorem 4 yields the required result.

Now assume the formula true for n = m, and that F has an (w-|-l)st varia-

tion with the specified properties. Then the function G(r) = 5mF(xx+(xt—xx)r,

x2—xx) has for its derivative om+1F(xx+(xt—xx)r,Xt—xx). The function

E(r) = — (1— r)m/ml has a continuous derivative E'(r). Therefore we

may integrate the remainder Rm by parts (Lemma 3.1) and obtain

r1 SmF(xx, xt - xi)
Rm(xx, xi) =   I   G(r)H'(r)dr =---1- i?m+i(zi, x2).

Jo ml

This completes the induction.

Note that by Lemma 1.2, the Taylor's expansion has the following

properties :

(a) SiF(x,(Sx)r) =SiF(x,Sx)ri (i - 1, • . . , n - 1),

and

(b) lim R„(x, x + (8x)s)/s»-1 = y»,
1=0
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holding for every x in 36o, Sx in 36, and r in 9î.    The uniqueness of an expansion

having these properties is shown in

Theorem 6. Let the function F be on 36o to g), and let x0 be a point of 36o-

Then for each positive integer m there is not more than one expansion

(4.1) F(x) = F(xo) +  ¿ Li(x - xo) + 2cm+i(x)
t-i

having the properties

(4.2) Li((8x)r) = Li(5x)r< (i = 1, • • • , m),

Rn+i(xo + (5x)s)
(4.3) Inn-= y„

•»o sm

holding for every real number r and every 8x in 36.

For each ox of 36, the point x0+(Sx)s is in 36o when s is sufficiently small.

Now assume two expansions (4.1) with terms Lt and Mi and remainders

2?m+i and Sm+i respectively. Assume also that for a certain integer k

satisfying 1 á k = m we have

(4.4) U» Mt (1SS*<*).

Then by substituting Xo+(Sx)s for x in (4.1) and using property (4.2) we

obtain the inequality

\\Lk(Sx) - Mk(Sx) || =   £    \\\Li(ôx) || + \\Mt(ix) ||]| i I-*

{{R^Xo + (Sx)s)\\ WSn+^Xo + (SX)S)\\

I * I* lSl*

By property (4.3), the right hand side approaches zero with s. Therefore

Lk = Mk is a consequence of the assumption (4.4). By m applications of

this result we arrive at the desired conclusion.

5. Applications. We shall discuss here only a few simple applications

of Taylor's theorem. As a first consequence we state an existence theorem

for the expansion whose uniqueness was shown in Theorem 6. We have

already noted that the existence of such an expansion foUows immediately

from Taylor's theorem, but by a simple manipulation it is possible to show

that existence under less restrictive hypotheses.
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Theorem 7. Let the space g) be complete, and let x0 be a point of the

space 36. Let F be a function defined on a neighborhood (xo)„ to g), which has

an (m-l)st variation on (x0)a satisfying the hypotheses of Taylor's theorem,

and which has also an mth variation at x0. Then the function Rm+X on (xa)a

to g) defined by the equation

m

F(x) = F(x0) +  £ 5^*0, * - *o)/ü + Rm+i(x)
«-i

satisfies the condition
Rm+i(xo + Sxr)

lun-= y„
r-o rm

for every 5* of 36.*

For the case m = 1 we omit the hypothesis concerning bm~1F. The con-

clusion in this case follows immediately from the definition of variation.

For m>l, we apply Taylor's theorem with n = m — l to obtain the formula,

valid for every fixed bx in 36, for every real value of t sufficiently small,

J'1 r(l - r)m~2

o (m — 2)1

where
Sm~1F(xo + (Sx)tr, Sx) - S^F^o, Sx)

S(r,j) =-
tr

- SmF(xo, Sx)

S(r, t) = y*

By definition of mth variation, we have

lim S(r, t) = y»
<=o

uniformly on 0 = r = l.    Then application of Theorem 2 yields the required

result.

Symmetry of differentials, f Symmetry has no meaning for variations

as we have defined them. But for differentials of order higher than the

first, as defined by Fréchetf and by Hildebrandt and Graves in the paper

previously cited, Part III, we do have a theorem on symmetry.   This is a

* In discussing these theorems for the case ï=g)=9î, W. H. Young states, in the Proceedings of

the London Mathematical Society, vol. 7 (1909), p. 158, that the existence of an expansion of F at

*o in the form given in Theorem 6 is equivalent to the existence of an »nth derivative of F at x<¡.

That this is erroneous is shown by a simple example such as F(x) = a^sinil/x), m = 2.

t Cf. Fréchet, these Transactions, vol. 16 (1915), p. 233.

X Annales de l'École Normale Supérieure, vol. 42 (1925), p. 321.

(tr*0),

(tr = 0).
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generalization of the theorem on inversion of the order of partial differentia-

tion for ordinary functions of several variables. For present purposes it is

sufficient to define differentials as follows. We say that a function F on 36o

to g) has a first differential at a point x0 of 36o in case there exists a function

dF(x0, dx) on 36 to g) with the following properties:

(1) dF(x0, (dix)ai+(d2x)a2) = dF(xQ, d-_x)ai+dF(xo, d2x)a2 for every pair

¿ix, d2x in 36 and every pair of numbers ax, a2;

(2) for every e>0 there exists a d>0 such that, for every Ax in 36

such that ||Ax|| —d we have

||F(xo + Ax) - F(xo) - dF(x0, Ax)|| = \\Ax\\e.

We say that F has an nth differential at x0 in case F has an (n-l)st differen-

tial dn^F(x, dix, ■ ■ ■ , dn-ix) which is continuous in x in a neighborhood

of x0,and the function dn~lFhas a first differential at x0 for each a\x, • • • , d„_ix

in 36 • • • 36. We note that a function which has an wth differential at a

point certainly has an nth varation at that point, and that the nth dif-

ferential if continuous satisfies the requirements of Taylor's theorem on the

nth variation. The above definition requires less than the one given by

Fréchet, but is sufficient to validate the following theorem on symmetry.

Theorem 8. If the space g) is complete, and the function F on 36o

to g) has an nth differential at x0 (n^2), then dnF(xo, dix, ■ ■ - , dnx) is sym-

metric in each pair of differentials diX, d¡x, of the independent variable x.

Consider first the case « = 2. Since F has a continuous first differential

on a neighborhood of x0, we can apply Taylor's theorem on such a neighbor-

hood to obtain

F(xo + (¿ix)a + (d2x)a) - F(x0 + (á"2*)a)
22(a) — a2F(x0, dix, d2x) =-

a2

F(xo+(dix)a)-F(xo)
-d2F(xo, dix, d2x)

a2

dF(xo+ (dix)ar + (d2x)a ,dix) — dF(x0,dix)

a

- d2F(xo, dix, (dix)r + d2x) \dr

dF(xa + (dix)ar, a\x) — dF(x0, dix)

a

— d2F(xo, dix,  (dix)r) \dr.

-n

-a
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Since dF has a first differential at x0, we can apply the second condition in

the definition of first differential, and Theorem 2 to show that || E(a)

—d2F(xo, dxx, dix)\\ approaches zero with a. Since E(a) is symmetric in

the arguments dxx, d2x, so is its limit d2F.

To complete the proof by induction, we suppose that the proposition

is true for n = m, and that F has an (m+l)st differential at x0. Then

F has an (m-l)st differential dm~1F(x, dxx, ■ ■ ■ , dm-Xx), and an mth

differential dmF(x, dxx, • • • , dmx), which are continuous on a neighborhood

of *0. The differential dmF is symmetric in the differentials dxx, ■ ■ ■ , dmx,

and hence dm+1F(x0, dxx, ■ ■ ■ , dm+xx) is also symmetric in the first m

differentials. Since dm+1F is the second differential of dm~1F, dm+1F is

symmetric in its last two arguments. Hence it is symmetric in all its

differential arguments, and the induction is complete.

Difference functions. Bliss, Barnett, and Lamson have made some use

of the notion of difference function.* Taylor's theorem shows that a func-

tion F having continuous differentials up to order w has also continuous

difference functions up to order w. The converse is true only for w = l.

Other relations between different definitions of differentiability in abstract

spaces are easily derived.

* Cf. Bliss, these Transactions, vol. 21 (1920), p. 79; Barnett, American Journal of Mathematics,

vol. 44 (1922), p. 172; Lamson, the same Journal, vol. 42 (1920), p. 243.
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