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In the present paper I offer a new method for solving some questions

regarding the distribution of residues and non-residues of powers.

The difference between the present method and the methods developed

in my papers of 1916-18 lies in its entirely elementary character.

The chief idea of this method consists of two different ways of calculating

the number of numbers of the form a(ax+b), where a ranges over all the

different least positive residues of numbers congruent to Ax* (mod p) and

where x independently of a assumes all values 0, 1, • • • , h — l(h<p).

I shall deal here with the demonstration of the chief formula only,

which gives for the prime p the number of numbers congruent to Ax"(mod p)

in the progression ax+b; x = 0, 1, • • • , h — 1, with an approximation of

order  <  y/p log p.

Other results, such as the law of distribution of the primitive roots,

the upper bound pll2k(}og p)2, k = e(n~1)ln, for the least positive non-residues

of degree w, modulo p (p — l=nd), and others, follow from this theorem

in the same way as in my previous researches on these questions.

In the near future I hope to publish further applications of this method

to the demonstration of the chief theorem and to some other important

questions of the asymptotic theory of numbers.

Lemma I. If p be a prime number >2, a an integer prime to p, and k a

positive integer, then there exist relatively prime integers x and y which satisfy

the conditions

ax =. y (mod p); 0 < x = k; 0 < |y| < p/k.

Proof.   Let us consider the system of congruences

ar = ßr (mod p) (r = 1, 2, • • ■ , k),

the right hand members of which are least positive residues of the left hand

ones. Arranging these congruences in such a way that the ßT are ascending,

* Presented to the Society. September 9, 1926; received by the editors in July, 1925.
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and adjoining to them the obvious congruence a • 0=p (mod p), we obtain

the foUowing system:

ayi = Xi (mod p),

ay2 = X2 (mod p),

ayk=^k (modp),

a-0  = p. (mod p).

Subtracting one congruence from the other as shown we come to the fol-

lowing system :

a7i = Xi (mod p),

a(y2 — 71) = X2 — Xi (mod p) ,

a(y3 — 72) = X3 — X2 (mod /»),

a(— yk) = P — \k (mod p).

Among the numbers Xi, X2—Xi, X3—X2, • • • , p— X* there is certain to be at

least one ^ p(k + l)~1, for the number of these numbers is equal to k+1,

every one of them is greater than 0, and their sum is p. Among the congru-

ences of the last system there must therefore be at least one of the form

axi = yi (mod p) ;    0 < xi = k;   0 < | y | ^ p(k + i)~l.

Hence, observing that the numbers xi and yi can always be reduced to be

relatively prime by dividing by their common divisor, we arrive at the con-

clusion that the lemma is true.

Lemma* II. Let k be any number = 1, q a positive integer ¿k, c an integer,

m a positive integer ^kq~l, B an arbitrary number and A a number of the form

t      e
A=- + -

q       kq

where t is an integer prime to q, and \d\ <1. Then, denoting in general by the

symbol {z} the fractional part of z we have

c+ mq—1 J J

5= E \Ax + B] =—mq + —P(m+l); \ p\ < 1.
X*-C A. ¿

* The same lemma somewhat differently formulated is proved in my paper A new method

for obtaining asymptotical expressions of arithmetical functions, Bulletin of the Russian Academy of

Sciences, 1917.
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Proof,   (i)  Let us assume that q >1. We have then

/*     Ox tx+f(x) Ox
Ax + B = - + - + B =-— ; /(*) = Bq + -.

q       kq q k

The set of values of the function f(x) for x = c, c+1, • ■ ■ , c+mq — 1 forms

an arithmetical progression. We shall consider only the case 0^0. The case

0<O can be investigated in a similar way. Let n=[f(c)]. Two cases are

possible :

(a) All values of the function f(x) are less than w+1.

(ß) One of them at least ^ w+1.

(a) Expanding the sum S in the form of a series of sums

c+q—l      c-¥2q— 1 c+mq—1

(i) s=E+ £+•••+ Z     ,
x^c       x=c+q x-.c+mq— q

let us consider one of these sums

<H-^~1 (tx+n+\(x)\

«-«H-.« ' ? '

where X (x) =f(x)— n. Replacing the numbers tx+n by their least positive

residues r, modulo q (which is permissible since {z} does not alter by adding

to z an integer), and putting \(x) =v(r) we get

ÇJ  (r+ v(r))       I-1 r + v(r)

r-0     l q > r-0

Therefore

1 1       1    «z1 1 1
h-~q-- + -   2Z"(r)=-q-- + e,;0 = 6'<l.

I ¿ q      r-0 ¿ ¿

Hence

(2) 11.
I»- — 9 + —p*i  I Pi I  = !»

1 ! i    i
5 = —■mq + — mp ; \p\ £1,

which proves the case (a) of our lemma.

Let us now consider the case (ß). Let a be the greatest integer that satis-

fies the condition f(c+aq) <w+l ; then, putting in the sums /, of the series

(1) where s^a, \(x)=f(x)—n, and in those where s>a, \(x)=f(x)—n — l,

and considering any sum I„ s<a, we shall get 0gX(#)<l and therefore,
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where s> a, we shall have as before the equation (2).   Equation (2) holds

good also whens=a, if \(c+<rq+q —1)<1.

There remains consequently to consider the sum I„ under the following

conditions: \(c+aq) <1 =X(c+ag+a — 1) <2.    We have

1 1   <+'«+<r-l 3

-Û-   L   x(x)<--
A. q       x=c+aq A.

Reducing as in case (a) the sum I„ to the form

r=o  l     a     ;

we may write down the equation

(r + v(r))       r + v(r)m-q    )        q
only when f = 0, 1, • • • , q — 2  (for now the case l = v(r)<2 is possible),

but when r = q — 1 this equation must be replaced by

|> + v(r))       r + v(r)

fv-V -ô,q    i q
where 5 may be equal to 0 or 1. Thus we get

1 II       c+cg+q-l J

/,= —?-— + -       £      X(x)-5=-? + p, ; |p,| < 1.
2 2 a i=c+(rs 2

Substituting this expression for I„ and expression (2) for /„ 5 > a, in

the equation (1), the validity of the lemma becomes obvious,

(ii) Now putting q = 1, it is evident that

1 1 1
-m ^ S-ma < — m.

2 2 2

The lemma is thus completely proved.

Lemma III. Let p be a prime number > 2, a an integer not divisible by p,

h a positive integral number < p and ßa any integer which depends on a.

Further let
*"!   (ax + ßa) 1

Sa = }2 1-} ; La = Sa-h ;
x-o  \      p      J 2

then the sum £ \La\ extended over all numbers of the set

(3) l,2,--,p-l
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is less than

T-HU-H).
x=i  y=i   \xy        /

h    px"í

xy

where for every x the summation for y extends only over the numbers prime to x.

Proof. As a first step let us consider any single sum Sa. Supposing in

Lemma I that k — h we can then find two relatively prime numbers xo, yo

which satisfy the conditions

p
axo = yo (mod p) ; 0 < x0 = h ; 0 <  | y0 | < — •

h

Hence we find ax0 — yo + to p, where t0 is an integer. Moreover

a       to        yo        to        &o
- = — + —- = — + —-;  |0o|<l.
p       Xo      Xop      Xo      Xoh

Supposing m = [hx0~l], hx = h — mx0, we get

m^1    (ax + ßa) m^+Ä,-l rax _|_ ß\

Sa   =   Ti      \-->  + Sa' ;   Sa'  =    Ti      i ~^ f  > 0 =  *1 < * -
x-O       V P ' x-mi0     \ p        )

Hence, applying Lemma II, we find

11 1 1     /h       \
Sa = — mxo + —p(m+l)+Sa'=—(h-hx)+—po[ — +l) + Sa' ;

2 2 2 2      Vjco        /

| Po| < 1.

Putting kx = hx and applying to the sum Sa' the same treatment as used in

the case of the sum Sa, we obtain

1 1     /hi
Sa' = — (hi- h2) + —pi(-

\Xi /

where the sum Sa" consists of ht terms.  In the same manner we find

Sa" =—(hi-   ht)   + —Pit— +l)+ Sa'"  ;    \P2\<l;0=h3<h2,
2 2     \X2       /

and so on, until we reach some h„+i = 0. Thus we find finally

s--T*+H(^+1)+ë+1)+-+Ê+1)]il'l<'
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The lemma will be proved if we can show that

-7ç[(=+o+e+o+-+e+o]<*
where the summation extends over all numbers of the set (3). It is necessary

to notice that the number n, as weU as the numbers hi,ht, ■ • • , hn,x0,Xi, • • •,

x„, depends on the value attributed to a, and for a given a the numbers

x0, Xi, • • • , x„ are different. In order to estimate the sum ñ we shall

first determine an upper bound of the sum of those terms k/x+1 which

correspond to the same value of x. The given x can correspond only to those

values of a which satisfy the congruence ax = y (mod p), where y is an integer

prime to x and \y\ < pk~x and therefore also \y\ < px~x. Hence for a given

x,y can take only the values ± 1, ± 2, • • • , + [px~*] prime to x. For

every such y we shall find a corresponding value of a. To every admissible

system of numbers x,y,a corresponds some k, which satisfies the condition

\y\ < pk~x, or k < />|y|-1. Therefore the sum of aU the terms in the sum Q

which correspond to a given x wiU be less than

'£ (±+i).

„=i    \xy      /

where y ranges over numbers prime to x. From this Lemma III follows

immediately.

Lemma IV. Let p be a prime number > 2, ß or ßa an integer which may

depend on a, and h and y integers which satisfy the conditions 0 < h < p;

0 <7 <p. Let us denote by the symbol Ra the number of least positive residues of

ax + ßa (x = 0, 1, • • -, h- 1)

which are less than a given number y, and let us suppose

Ra  =   hyp~l + Ha ;

then extending the summation over all a = 1,2, •• -, p — 1 we shall get

£ | Ha | < 2T.

Proof.  According to Lemma III and putting

s,, £i^±£n\ ,Lh+L,.,s.-z{=±3-U+L..
x-oV p        )        2 x-o  \     p     }        2

we have

2Z\La'\ <T; £|£„| <T; £ I Sa' - Sa \ < 2T.
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It is easy to see that

(«x + ß\      7

P

then

(Ü) if

then

Therefore

(ax + ß — 7)        (ax + ß) 7

P

(ax +ß)        7

\     p     / ==   P '

lax + ß —y\       (ax + ß\        7

I * )       \     p     )        p'

hy
O a ¿>a = Ka = H a ,

P

which proves the lemma since2~2 \Sa' — Sa\ <2T.

Theorem. Let p be a prime number > 2, e a factor of p — 1, a aw integer

not divisible by p and b any given integer. Distributing all the numbers 1,2, • • •,

p — 1 into e classes and referring to the ith class all those, the indices of which

are congruent to i (mod e), the number of numbers of any class, which belong

(mod p) to an arithmetical progression ax + b; x = 0,1, • • • , h — 1 (0 < h

< p) can be represented in the form

h 1
— + A;A2<T+ —p.
e 2

Proof. Let (p — l)e-1 = / and let us consider a set of fh numbers of the

form

(4) a(ax + b),

where a ranges over all the numbers of the ith. class, while x, independently of

a, ranges over all the numbers 0,1, ■ ■ ■ , h — 1. To every number of the

set (4) we can find one and only one number u, which satisfies the conditions

au + b = a (ax + b)    (mod p) ;   0 < u < p,

and where the number u, after introduction of a' by means of the congruence

aa' = 1 (mod p), can be determined by the following conditions:

(5) u = ax + ßa (mod p) ;   ßa = aba' — ba' ;   0 ^ u < p.
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Let D be the number of numbers u, which are < h, obtained in this way.

The idea of the following proof consists in evaluating the number D by two

different methods.

(i) If we leave a constant, then ßa also does not vary, and therefore, in

view of congruence (5), the number of values of u less than h, which corre-

spond to all the numbers of the set

a(ax + b) (x = 0, 1, • • • , h - 1)

may be represented in accordance with Lemma IV in the form

h2
— + Ha,
P

where on extending the summation not only over numbers a of the ith

class, but over all a = 1, 2, • • • , p — 1, we shall obtain

(6) 2Z\Ha\<2T;

and since the number of numbers a of the ith class is /,

h2       ^
D = f—+   £,/2a,

P

where £< denotes the sum extended over all numbers of the ith class,

(ii) Let there be in the set

(7) ax + b (x = 0, 1, • • • , h - 1)

Co numbers of class 0, Ci numbers of class 1, ■ ■ • , ce-i numbers of class

e — 1. The symbol c, we shall later use also, when s^e, denoting by it the

number of numbers of the class, the index of which is the lowest positive

residue of number s, modulo e. Multiplying one of the numbers of the jth

class of the set (7) by all numbers of the ith class, and putting instead of

these products the numbers au+b, 0 = u<p, congruent to them modulo

p, we shall obtain/ numbers au+b which evidently belong to the class i+j.

Among these numbers au+b there will obviously be ci+i numbers for

which u<h. Therefore taking into consideration that./ can take only the

values 0, 1, • • ■ , e — 1 we find

D  =   Co Ci +  Cl Ci+i +  Ct Ci+t +  •  •  •   +  C,-i Ci+e-l.

Comparing this value of D with that obtained before, we get

h2    _
CoCi + CiCi+i +  •  •  •  +Ce-lCi+e-i =/-l"^i'22B.

P
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Let
h

c, =-\-S. ;
e

then, since c0+cx+ ■ ■ ■ +ce_i may be represented in the form h— a, cr = 0,

or 1 (because one of the numbers (7) may be divisible by p), we shall have

5o+ôi+ • • • +ôe_i=—er; whence we obtain

h2     2ha h2      ^
(8) -+ SoSi + SXSi+X + • • • + Oe-l Si+e-X = /— +   22< Ha.

e e p

From this, extending the summation over all i = l, 2, • • • , e — 1, we find

h2(e -1) e - 1
-2kc-h (T2 - S2 - S2 - ■ ■ ■ - 51-1

e e

f(e - l)h2    *=*   -^
=-— + 2Z    22iHa,

P i-l

and hence

g—i «—i o_ i

ES.2   <    2Z\TliBa\+  p-
<-o i-i e

Also putting i = 0 in (8) we get

Eo,2    <|£o#a    I+--
1-0 e

Adding the two last inequalities, and dividing by 2, we obtain

e-l i

£s,2 <T+--p
«=o 2

and, in particular, for each r

1        /        h y 1
V<T + 1p\cr--)<T + -p,

which proves the theorem.

Note.   Evident transformations give an upper bound of |a| less than

Vp log p.

Leningrad, Russia


