
ON THE BOUND OF THE LEAST NON-
RESIDUE OF nth POWERS*

BY

J. M.  VLNOGRADOV

1. In my paper On the distribution of residues and non-residues of

powers (Journal of the Physico-Mathematical Society of Perm, 1919) I demon-

strated that the least quadratic non-residue of a prime p is less than

pWQog p)2

for all sufficiently great values of p.

Using the same method one can establish a more general theorem :

Theorem I. If p is a prime and n a divisor of the number p — 1 distinct

from 1, the least non-residue of nth powers modulo p is less than

pmk(logp)2; k = *<»-»/•

for all sufficiently great values of p.

This bound may be considerably lowered, by means of very simple

changes in our method. For example one can demonstrate the following

theorems :

Theorem II. If p is a prime and n a divisor of the number p — 1 greater

than 20, the least non-residue of nth powers modulo p is less than p11* for all

sufficiently great values of p.

Theorem III. If p is a prime and n a divisor of the number p — 1 greater

than 204, the least non-residue of nth powers modulo p is less than pllB for all

sufficiently great values of p.

We prove finally the general theorem :

Theorem IV. 2/ p is a prime and n a divisor of the number p — 1 greater

than mm, where m is an integer = 8, the least non-residue of nth powers modulo p

is less than pllm for all sufficiently great values of p.

2. First we shall demonstrate Theorem I.  We use the notations

p . pl'2(\ogp)2 ; T = p"2k(\ogp)2 ; k = e<—*>'»,
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and assume that there are no non-residues of wth powers modulo p less

than T. Then only numbers divisible by integers greater than T and less

than P can be non-residues of wth powers less than P. But evidently,

of such numbers, there are not more than

fpq,
q>T L q A

Using the

primes, we may bring this expression to the form

q>T Lq

where q runs only over primes.    Using the known law of distribution of

logP
Plog-^- +

logT \log pj
o(—)-

Xlogp/

n- 1
1 +

4 log log p

+ log-
logp

1 +
4k log log p

logp

+ °(—)
\logp/

\   w

« — 1      (4 — 4k) log log p
+

\ogp )+0(4)
On the other hand, according to my previous work, the number of resi-

dues of wth powers modulo p in the range

1,2,•••, [P]

may be given as follows :

[P]
—+ A;   |A| Kp^logp.

n

Thus the number of non-residues in the same range may be expressed by

the formula

p(^A + p;  \p\ Kp^logp + l.

Hence

/w - 1\ /« - 1     (4 -4k) log log p\ / P \

\   n   ) '        \   n logp / \\ogp/

which brings us to the inequality

(4*- 4) log logia 0(1),

which is impossible for sufficiently great p.   This proves Theorem I.
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3.    To prove Theorem II, let

P = pll2(logp)2; T = pu\

and assume that there are no non-residues of nth powers modulo p less

than T. Then only numbers divisible by primes greater than T and less

than P can be non-residues less than P. The number of such numbers is

evidently equal to

q<P r p-\      q<pm    q,<Plq r P "1       (KP"3    !i<(P/î)W   q,<Plqqi r    p   ~\

(i)      SÍtI-S    £[--!+£     £      £   | — |
i>t L/> J       t>T      qi>q   L qqiJ       q>T        tl>q 82>«i    LqqiqtJ,

where q, <7i, q2 run over primes.

But, according to the law of the distribution of primes, the first sum

may be written

logP / P \ /Plog log/»\
Plog-^ + Oi--) = PIog3+o( Sy),

logT \log/»/ \   logp     I

which for sufficiently great p is less than

P • 1.0987.

The second double sum may be put into the form

*%? 1       log (P/q) ( P \        «<£'* 1        log/»1'2«^ 1       log(iya) ( F \        «^'4 1
p£  -log   °K lv + o(-—) = p £  -log

q>T     q logp Wogp/ q>p1* ?q>T   q log p \log pi q>pin q log a

+
o /Plog log A

\    log *    /log/»

But applying the law of distribution of primes we have

p r""4lo log (Pm/z)       dz        o /Ploglogp\

Jp1" log 2 2 log 2 \      log p      /

J«1"          1-«     ¿M /Plog log p\
log-+ °(-T^r)'

1/3                M            « \      log/»      /

which, for p sufficiently great, is greater than

P ■ 0.147.

The last triple sum evidently is a quantity of the order

log log/»

log/»



1927] NON-RESIDUES OF nth POWERS 221

so that the expression (1) for sufficiently great p is less than

P(1.0988 - 0.147) = P ■ 0.9518.

On the other hand, the number of non-residues of wth powers modulo p

in the series

1,2, ••• , [P],

as seen in § 2, is equal to

0-î)+o(—)■Xlogp/

So, for p sufficiently great, we have the inequality

<P ■ 0.952.K)
The impossibility of this inequality for w>20 proves Theorem II.

4.    To prove Theorem III we let

P = p^log p)2 ; T = p1»,

and assume that there are no non-residues of wth powers, modulo p, less

than T.   It is easy to show that the number of such numbers is less than

q<P  r   P"l q<PW      qi<P/q  r   p, q<PU3      3i<(P/4)l/2    Î2<P/5Î1 r      P       -I

(2)   e|-|-e   z|-|+£   £     e | — -1
q>T   LqJ q>T ij>a     L??lJ q>T qi>q q,>qi     LffÇl^J

where q, qx, qt run over primes only.

Applying the known laws of distribution of primes, we can put this

expression into the form

q<plli      p «<pl'4        51<pl/2/8      P 5<pl/6 ql<plH/qm     S2<P1ft/ïSl        P

E -- E     E — + E      E        E
?>J>i/s   g       9>ri/8        41>„    gçi       g>Pi/8 51>g 8>9      qqtf,

o /P log log A

\        10R*        /log/)

The first sum may be put into the form

pl084 + 0(4)

which for sufficiently great p is less than

P ■ 1.3863.
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Then as in the proof of Theorem II the second double sum may be given

in the form

J'1/2     1-u du / P \
log-+ °(t—;)'

1/1            u      u \log/»/

which for sufficiently great p is less than

P • 0.40609.

It remains to estimate the third triple sum.   We have

a,<^/aîl   p         p        Jlogp-loga-logai  ,      /     P    \
£     -= — log-:-+ 01—•—-1.
«2>ïi   qqiqi    qqi logai Vaailog/»/

Noting this, it is easy to obtain

Sl<^*Sl/l        l2<plft/î(!l p p     „pllt/qm ¿y |   l0g  p    _    l0g  q    _    l0g   y

£ £    -= — —-log---
ax 92>«i    ??i?2      qJq y log y logy

/    P    \     P /.w*-»/î dz       i - v - z /    P   \ log a
+ o(-—} = - -log--+ o(-—);» = r^

\qlog\p/      qjv z z \q log /»/ logp

The third triple sum may be given in the form

J.i/1 ¿vçiii-vit dz/   n    \ z z2

1/8   7J, 7\l0gV2 ~ 7 ~ l0g Z ~ h - v ~ 2(* - t»)*

/ \log*/3(J-»)' / \logí>

%1/í,   Ki -- ») .     (2(\ ~ i>)\

'1/8

. p f    lo *(* - *> lo   /2(è - p)V/2 dv_
Jilt V \        V        /        V

Cm /111 1 \dv
- P\       (- +-+-+-+ • • • )—

Jilt   \2      4-4     8-9      1616 / v

/•i/« /    v 1/    *   \2    1/    s   V V»

+ PX. (rr; + j(rr-J + i(rr-J + "-)7

Introducing in the first integral the substitution

= «,
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and in the third the substitution

v
--«,

h - v

we easily obtain

C*        u du /111 \        4
P I    log -log2«1'2-P(- +-+-+•••  Jlog-

J» 2 1 + w \2     4-4     8-9 /       3

rm/    ii \ du       / p \
+ P\       (l + -M + -«2+  •••   )- + 01-).

Jut \      4      9 Jl + u        \\ogp)

But this expression for sufficiently great p is less than

P ■ 0.01489.

Comparing this result with those obtained for simple and double sums

we find that the expression (2) for sufficiently great p is less than

P(l.38631 - 0.40609 + 0.01489) < p(l-j,

whence, reasoning as in Theorem II, we prove Theorem III.

5. Passing to the demonstration of Theorem IV let us prove first the

following lemma :

Lemma. If k be a positive number increasing indefinitely, and s an integer

^2, then the number T of numbers less than t, and not divisible by primes

greater than k, where t, is any number satisfying the condition

k' < t. = k'+u<■'+»,

is greater than
t.

s\(s + 2)'

for all sufficiently great values of k.

Demonstration.   Let
1

* ~ s + 2

(i)   Taking any number tx such that

k < tx < k2~2',
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we find a lower bound of the number Tx of numbers which are ~ ii and

divisible at least by one prime greater than k1'* and á k.   Evidently

t, -1 VA,
8>*i- L q J

where q runs over primes only. Considering certain laws of distribution

of primes, this number may be written in the form

logri /  tx \
tx log-h O (-).

6(l-í)log¿ \logkJ

But this last expression is greater than

''logr^+0(¿)

which for sufficiently great k is greater than e tx.

So for sufficiently great k we have

Tx > etx.

(ii)    Taking any number i2,

k2 < t2 è k3~3',

we find a lower bound of the number T2 of numbers which are = f2 and

divisible by the product of any two primes, greater than k1_t and g k.

Products differing in the order of divisors, we shall consider as different.

Let q be a prime greater than k1-' and = k.    The numbers not surpassing

it and divisible by q are

q,2q, ■ ■ ■ , I — \q.

Consequently, we must find how many numbers of the series

— •[7]

are still divisible by primes greater than k1'' and =ß.    Since

h
k =  k2-1 < — < ¿3-3.-U-.)  =  ki-u (

1
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then, according to (i), we find that this number for sufficiently great k

is greater than

h
€- •

q
Hence, as in (i), we find that

T2 > e%

for all sufficiently great values of k.

(iii)    Arguing thus, we finally find that, if t, is any number satisfying

the condition

k> <t, = J-H-wo«,

and T, denotes the number of numbers = ta and divisible by the product

of s primes greater than kl~' and g k (considering as different the products

with different order of divisors), then for sufficiently great k

l>
T„ > e't, =

(s + 2)'
Noting that

T>-,
s\

we prove the lemma.

Demonstration of Theorem IV. We have seen that, if » is a divisor

of p — 1 differing from 1, the number 2? of residues of rath powers modulo p

less than pll2(log p)2 can be written in the form

♦»»(log*)1
(3) R=F        *"   +0(p"2logp).

n

Taking any integer m = S, and letting k = pllm; s = m/2 for m even;

s = (m+l)/2 for m odd, according to the lemma the number of numbers

less than pll2(log p)2, divisible only by primes less than pllm, is for p suffi-

ciently great, greater than

pl,t(logp)>

s\(s + 2)'

Assuming that among the numbers less than pllm there are no non-residues

of nth powers modulo p, we have

r     p^dog p)2

s\(s + 2)' '
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Comparing this inequality with equation (3) we have

(1/w) + O (l/\ogp) > l/(s\(s + 2)') whence » < s\(s + 2)' + S, where 5

goes to 0 with increasing p. But applying the formula of Stirling, we have

s\(s + 2)' < mm, from which it follows that, for sufficiently great values of

p, n < mm, which is impossible for n>mm.    This proves the Theorem IV.

Remark. Evidently the bound n>mm is very rough. Thus, with

m = 8, we get here the inequality w> 16777216 instead of the inequality

w>204 found above.

6. We know that to find a primitive root of a prime p it is enough,

having found different primitive divisors 2, qx, q2, ■ ■ ■ , qr of the number

p — 1, to find one further non-residue v0, vx, • • • , vT of each of the powers

2, ?i, • • • , ar. By means of the numbers v0, vx, • ■ • , vr it is quite easy to

find the primitive root. Applying the established theorems it is easy to

prove that

(i) If p is sufficiently great, all the numbers v0, vx, • ■ • vT are found

in the range

(4) 1,2, ••• , [pll2*"(logp)2].

(ii) If p is not of the form 8A7+1, and the numbers qx, qit • • ■ , qr

are sufficiently large, then instead of the range (4) we can take shorter

ranges, depending on the lowest bound Q of the numbers q. For example,

if Q>20, we take the range

(5) -1,1,2, ••• , [#«•];

if Q>204, then

(6) -1,1,2, ••• , ¡p«'],

and finally if Q>mm, when m is an integer ^8,

(7) -1,1,2, ••• , [p1"*].

These results can be formulated in a different manner.

(i) If p is a sufficiently great prime, then a complete system of residues

modulo p can be got by multiplying the powers of the numbers of the

range (4).

(ii) If p is not of the form 8ÍV+1, and all the numbers qx, q2, • ■ ■ , qT

are not less than Q, then instead of the range (4) we can take the range (5)

for Q>20, the range (6) for O>204, and finally the range (7) for Q = mm; m = &.
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