ON THE BOUND OF THE LEAST NONRESIDUE OF nth POWERS*

BY
J. M. VINOGRADOV

1. In my paper On the distribution of residues and non-residues of powers (Journal of the Physico-Mathematical Society of Perm, 1919) I demonstrated that the least quadratic non-residue of a prime p is less than

$$
p^{1 / 2 e^{1 / 2}(\log p)^{2}}
$$

for all sufficiently great values of p.
Using the same method one can establish a more general theorem:
Theorem I. If p is a prime and $n a$ divisor of the number $p-1$ distinct from 1, the least non-residue of nth powers modulo p is less than

$$
p^{1 / 2 k}(\log p)^{2} ; k=e^{(n-1) / n}
$$

for all sufficiently great values of p.
This bound may be considerably lowered, by means of very simple changes in our method. For example one can demonstrate the following theorems:

Theorem II. If p is a prime and n a divisor of the number $p-1$ greater than 20, the least non-residue of nth powers modulo p is less than $p^{1 / 6}$ for all sufficiently great values of p.

Theorem III. If p is a prime and n a divisor of the number $p-1$ greater than 204, the least non-residue of nth powers modulo p is less than $p^{1 / 8}$ for all sufficiently great values of p.

We prove finally the general theorem:
Theorem IV. If p is a prime and n a divisor of the number $p-1$ greater than m^{m}, where m is an integer $\geqq 8$, the least non-residue of nth powers modulo p is less than $p^{1 / m}$ for all sufficiently great values of p.
2. First we shall demonstrate Theorem I. We use the notations

$$
P=p^{1 / 2}(\log p)^{2} ; T=p^{1 / 2 k}(\log p)^{2} ; k=e^{(n-1) / n},
$$

[^0]and assume that there are no non-residues of nth powers modulo p less than T. Then only numbers divisible by integers greater than T and less than P can be non-residues of nth powers less than P. But evidently, of such numbers, there are not more than
$$
\sum_{q>F}^{v<P}\left[\frac{P}{q}\right]
$$
where q runs only over primes. Using the known law of distribution of primes, we may bring this expression to the form
\[

$$
\begin{aligned}
P \log \frac{\log P}{\log T}+O\left(\frac{P}{\log p}\right) & =P\left(\frac{n-1}{n}+\log \frac{1+\frac{4 \log \log p}{\log p}}{1+\frac{4 k \log \log p}{\log p}}\right)+O\left(\frac{P}{\log p}\right) \\
& =\left(\frac{n-1}{n}+\frac{(4-4 k) \log \log p}{\log p}\right)+O\left(\frac{P}{\log p}\right)
\end{aligned}
$$
\]

On the other hand, according to my previous work, the number of residues of nth powers modulo p in the range

$$
1,2, \cdots,[P]
$$

may be given as follows:

$$
\frac{[P]}{n}+\Delta ;|\Delta|<p^{1 / 2} \log p
$$

Thus the number of non-residues in the same range may be expressed by the formula

$$
P\left(\frac{n-1}{n}\right)+\rho ;|\rho|<p^{1 / 2} \log p+1 .
$$

Hence

$$
P\left(\frac{n-1}{n}\right)+\rho \leqq P\left(\frac{n-1}{n}+\frac{(4-4 k) \log \log p}{\log p}\right)+O\left(\frac{P}{\log p}\right)
$$

which brings us to the inequality

$$
(4 k-4) \log \log p \leqq O(1)
$$

which is impossible for sufficiently great p. This proves Theorem I.
3. To prove Theorem II, let

$$
P=p^{1 / 2}(\log p)^{2} ; T=p^{1 / 6},
$$

and assume that there are no non-residues of nth powers modulo p less than T. Then only numbers divisible by primes greater than T and less than P can be non-residues less than P. The number of such numbers is evidently equal to

$$
\begin{equation*}
\sum_{q>T}^{q<P}\left[\frac{P}{p}\right]-\sum_{q>T}^{q<P P^{1 / 2}} \sum_{q_{1}>q}^{q_{1}<P / q}\left[\frac{P}{q q_{1}}\right]+\sum_{q>T}^{q<P 1 / 3} \sum_{q 1>q}^{q} q_{q}<(P / q)^{1 / 2} \sum_{q_{2}>q_{1}}^{q_{2}<P / q q_{1}}\left[\frac{P}{q q_{1} q_{2}}\right], \tag{1}
\end{equation*}
$$

where q, q_{1}, q_{2} run over primes.
But, according to the law of the distribution of primes, the first sum may be written

$$
P \log \frac{\log P}{\log T}+O\left(\frac{P}{\log p}\right)=P \log 3+O\left(\frac{P \log \log p}{\log p}\right)
$$

which for sufficiently great p is less than

$$
P \cdot 1.0987
$$

The second double sum may be put into the form

$$
\begin{array}{rl}
P \sum_{Q>T}^{q<P^{1 / 2}} \frac{1}{q} \log \frac{\log (P / q)}{\log p}+O\left(\frac{P}{\log p}\right)=P & P \sum_{Q>p^{1 / 6}}^{q<p^{1 / 4}} \frac{1}{q} \log \frac{\log p^{1 / 2}}{\log q} \\
& +O\left(\frac{P \log \log p}{\log p}\right)
\end{array}
$$

But applying the law of distribution of primes we have

$$
\begin{array}{r}
P \int_{p^{1 / s}}^{p^{1 / 4}} \log \frac{\log \left(p^{1 / 2} / z\right)}{\log z} \cdot \frac{d z}{z \log z}+O\left(\frac{P \log \log p}{\log p}\right) \\
=P \int_{1 / 3}^{1 / 2} \log \frac{1-u}{u} \cdot \frac{d u}{u}+O\left(\frac{P \log \log p}{\log p}\right)
\end{array}
$$

which, for p sufficiently great, is greater than

$$
P \cdot 0.147
$$

The last triple sum evidently is a quantity of the order

$$
P \frac{\log \log p}{\log p},
$$

so that the expression (1) for sufficiently great p is less than

$$
P(1.0988-0.147)=P \cdot 0.9518
$$

On the other hand, the number of non-residues of nth powers modulo p in the series

$$
1,2, \cdots,[P]
$$

as seen in $\S 2$, is equal to

$$
P\left(1-\frac{1}{n}\right)+O\left(\frac{P}{\log p}\right)
$$

So, for p sufficiently great, we have the inequality

$$
P\left(1-\frac{1}{n}\right)<P \cdot 0.952
$$

The impossibility of this inequality for $n>20$ proves Theorem II.
4. To prove Theorem III we let

$$
P=p^{1 / 2}(\log p)^{2} ; T=p^{1 / 8}
$$

and assume that there are no non-residues of nth powers, modulo p, less than T. It is easy to show that the number of such numbers is less than
where q, q_{1}, q_{2} run over primes only.
Applying the known laws of distribution of primes, we can put this expression into the form

$$
\begin{gathered}
\sum_{q>p^{1 / 8}}^{q<p^{1 / 2}} \frac{P}{q}-\sum_{q>p^{1 / 8}}^{q<p^{1 / 4}} \sum_{q q_{1}>q}^{q<p^{1 / 2 / q}} \frac{P}{q q_{1}}+\sum_{q>p^{1 / 8}}^{q<p^{1 / 8}} \sum_{q_{1}>q}^{q 1<p^{1 / 4 / q^{1 / 2}}} \sum_{q_{2}>q}^{q 2<p^{1 / 2 / q q_{1}}} \frac{P}{q q_{1} q_{2}} \\
+O\left(\frac{P \log \log p}{\log p}\right)
\end{gathered}
$$

The first sum may be put into the form

$$
P \log 4+O\left(\frac{P}{\log p}\right)
$$

which for sufficiently great p is less than

$$
P \cdot 1.3863
$$

Then as in the proof of Theorem II the second double sum may be given in the form

$$
P \int_{1 / 4}^{1 / 2} \log \frac{1-u}{u} \frac{d u}{u}+O\left(\frac{P}{\log p}\right)
$$

which for sufficiently great p is less than

$$
P \cdot 0.40609 .
$$

It remains to estimate the third triple sum. We have

$$
\sum_{q \geq q_{1}}^{q_{1}<p / 2 / q q_{1}} \frac{P}{q q_{1} q_{2}}=\frac{P}{q q_{1}} \log \frac{\frac{1}{2} \log p-\log q-\log q_{1}}{\log q_{1}}+O\left(\frac{P}{q q_{1} \log p}\right) .
$$

Noting this, it is easy to obtain

$$
\begin{aligned}
& \sum_{q_{1}>q}^{q_{1}<p_{1} / q_{q^{1 / 2}}} \sum_{q_{2}>q_{1}}^{q_{2}<p p^{1 / 2 / q q_{1}}} \frac{P}{q q_{1} q_{2}}=\frac{P}{q} \int_{q}^{p^{1 / 4 / q^{1 / 2}}} \frac{d y}{y \log y} \cdot \log \frac{\frac{1}{2} \log p-\log q-\log y}{z} \\
& +O\left(\frac{P}{q \log \mid p}\right)=\frac{P}{q} \int_{v}^{1 / 4-v / 2} \frac{d z}{z} \log \frac{\frac{1}{2}-v-z}{z}+O\left(\frac{P}{\log p}\right) ; v=\frac{\log q}{\log p} .
\end{aligned}
$$

The third triple sum may be given in the form

$$
\begin{aligned}
& P \int_{1 / 8}^{1 / 8} \frac{d v}{v} \int_{v}^{1 / 4-v / 2} \frac{d z}{z}\left(\log \left(\frac{1}{2}-v\right)-\log z-\frac{z}{\frac{1}{2}-v}-\frac{z^{2}}{2\left(\frac{1}{2}-v\right)^{2}}\right. \\
&\left.-\frac{z^{3}}{3\left(\frac{1}{2}-v\right)^{3}}-\cdots\right)+O\left(\frac{P}{\log p}\right) \\
&= P \int_{1 / 8}^{1 / 6} \log \frac{\frac{1}{2}\left(\frac{1}{2}-v\right)}{v} \log \left(\frac{2\left(\frac{1}{2}-v\right)}{v}\right)^{1 / 2} \frac{d v}{v} \\
&-P \int_{1 / 8}^{1 / 6}\left(\frac{1}{2}+\frac{1}{4 \cdot 4}+\frac{1}{8 \cdot 9}+\frac{1}{16 \cdot 16}+\cdots\right) \frac{d v}{v} \\
&+P \int_{1 / 8}^{1 / 6}\left(\frac{v}{\frac{1}{2}-v}+\frac{1}{4}\left(\frac{v}{\frac{3}{2}-v}\right)^{2}+\frac{1}{9}\left(\frac{v}{\frac{3}{2}-v}\right)^{8}+\cdots\right) \frac{d v}{v} .
\end{aligned}
$$

Introducing in the first integral the substitution

$$
\frac{\frac{1}{2}-v}{v}=u
$$

and in the third the substitution

$$
\frac{v}{z-v}=u,
$$

we easily obtain

$$
\begin{aligned}
& P \int_{2}^{3} \log \frac{u}{2} \log 2 u^{1 / 2} \frac{d u}{1+u}-P\left(\frac{1}{2}+\frac{1}{4 \cdot 4}+\frac{1}{8 \cdot 9}+\cdots\right) \log \frac{4}{3} \\
& +P \int_{1 / 3}^{1 / 2}\left(1+\frac{1}{4} u+\frac{1}{9} u^{2}+\cdots\right) \frac{d u}{1+u}+O\left(\frac{P}{\log p}\right)
\end{aligned}
$$

But this expression for sufficiently great p is less than

$$
P \cdot 0.01489 .
$$

Comparing this result with those obtained for simple and double sums we find that the expression (2) for sufficiently great p is less than

$$
P(1.38631-0.40609+0.01489)<P\left(1-\frac{1}{205}\right)
$$

whence, reasoning as in Theorem II, we prove Theorem III.
5. Passing to the demonstration of Theorem IV let us prove first the following lemma:

Lemma. If k be a positive number increasing indefinitely, and s an integer $\geqq 2$, then the number T of numbers less than t_{t} and not divisible by primes greater than k, where t_{s} is any number satisfying the condition

$$
k^{\prime}<t_{t} \leqq k^{0+1 /(c+2)},
$$

is greater than

$$
\frac{t_{0}}{s!(s+2)^{\bullet}}
$$

for all sufficiently great values of k.
Demonstration. Let

$$
\epsilon=\frac{1}{s+2}
$$

(i) Taking any number t_{1} such that

$$
k<t_{1}<k^{2-20},
$$

we find a lower bound of the number T_{1} of numbers which are $\leqq t_{1}$ and divisible at least by one prime greater than $k^{1-\epsilon}$ and $\leqq k$. Evidently

$$
T_{1}=\sum_{Q>k^{1-\epsilon}}^{q \leq k}\left[\frac{t_{1}}{q}\right],
$$

where q runs over primes only. Considering certain laws of distribution of primes, this number may be written in the form

$$
t_{1} \log \frac{\log t_{1}}{(1-\epsilon) \log k}+O\left(\frac{t_{1}}{\log k}\right)
$$

But this last expression is greater than

$$
t_{1} \log \frac{1}{1-\epsilon}+O\left(\frac{t_{1}}{\log k}\right)
$$

which for sufficiently great k is greater than ϵt_{1}.
So for sufficiently great k we have

$$
T_{1}>\epsilon t_{1}
$$

(ii) Taking any number t_{2},

$$
k^{2}<t_{2} \leqq k^{3-3 e},
$$

we find a lower bound of the number T_{2} of numbers which are $\leqq t_{2}$ and divisible by the product of any two primes, greater than $k^{1-\epsilon}$ and $\leqq k$. Products differing in the order of divisors, we shall consider as different.

Let q be a prime greater than $k^{1-\epsilon}$ and $\leqq k$. The numbers not surpassing t_{2} and divisible by q are

$$
q, 2 q, \cdots,\left[\frac{t_{2}}{q}\right] q .
$$

Consequently, we must find how many numbers of the series

$$
1,2, \cdots,\left[\frac{t_{2}}{q}\right]
$$

are still divisible by primes greater than $k^{1-\epsilon}$ and $\leqq k$. Since

$$
k=k^{2-1}<\frac{t_{2}}{q}<k^{3-3 \epsilon-(1-\epsilon)}=k^{2-2 ¢}
$$

then, according to (i), we find that this number for sufficiently great k is greater than

$$
\epsilon \frac{t_{2}}{q}
$$

Hence, as in (i), we find that

$$
T_{2}>\epsilon^{2} t_{2}
$$

for all sufficiently great values of k.
(iii) Arguing thus, we finally find that, if t_{s} is any number satisfying the condition

$$
k^{s}<t_{s} \leqq k^{s+1-(s+1) e},
$$

and T_{s} denotes the number of numbers $\leqq t_{s}$ and divisible by the product of s primes greater than $k^{1-\epsilon}$ and $\leqq k$ (considering as different the products with different order of divisors), then for sufficiently great k

$$
T_{s}>\epsilon^{s} t_{s}=\frac{t_{s}}{(s+2)^{s}}
$$

Noting that

$$
T>\frac{T_{s}}{s!}
$$

we prove the lemma.
Demonstration of Theorem IV. We have seen that, if n is a divisor of $p-1$ differing from 1 , the number R of residues of nth powers modulo p less than $p^{1 / 2}(\log p)^{2}$ can be written in the form

$$
\begin{equation*}
R=\frac{p^{1 / 2}(\log p)^{2}}{n}+O\left(p^{1 / 2} \log p\right) \tag{3}
\end{equation*}
$$

Taking any integer $m \geqq 8$, and letting $k=p^{1 / m} ; s=m / 2$ for m even; $s=(m+1) / 2$ for m odd, according to the lemma the number of numbers less than $p^{1 / 2}(\log p)^{2}$, divisible only by primes less than $p^{1 / m}$, is for p sufficiently great, greater than

$$
\frac{p^{1 / 2}(\log p)^{2}}{s!(s+2)^{s}}
$$

Assuming that among the numbers less than $p^{1 / m}$ there are no non-residues of nth powers modulo p, we have

$$
R>\frac{p^{1 / 2}(\log p)^{2}}{s!(s+2)^{2}}
$$

Comparing this inequality with equation (3) we have
$(1 / n)+O(1 / \log p)>1 /\left(s!(s+2)^{s}\right)$ whence $n<s!(s+2)^{\bullet}+\delta$, where δ goes to 0 with increasing p. But applying the formula of Stirling, we have $s!(s+2)^{\cdot}<m^{m}$, from which it follows that, for sufficiently great values of $p, n<m^{m}$, which is impossible for $n>m^{m}$. This proves the Theorem IV.

Remark. Evidently the bound $n>m^{m}$ is very rough. Thus, with $m=8$, we get here the inequality $n>16777216$ instead of the inequality $n>204$ found above.
6. We know that to find a primitive root of a prime p it is enough, having found different primitive divisors $2, q_{1}, q_{2}, \cdots, q_{r}$ of the number $p-1$, to find one further non-residue $\nu_{0}, \nu_{1}, \cdots, \nu_{r}$ of each of the powers $2, q_{1}, \cdots, q_{r}$. By means of the numbers $\nu_{0}, \nu_{1}, \cdots, \nu_{r}$ it is quite easy to find the primitive root. Applying the established theorems it is easy to prove that
(i) If p is sufficiently great, all the numbers $\nu_{0}, \nu_{1}, \cdots \nu_{r}$ are found in the range

$$
\begin{equation*}
1,2, \cdots,\left[p^{1 / 2 e^{1 / 2}}(\log p)^{2}\right] \tag{4}
\end{equation*}
$$

(ii) If p is not of the form $8 N+1$, and the numbers $q_{1}, q_{2}, \cdots, q_{r}$ are sufficiently large, then instead of the range (4) we can take shorter ranges, depending on the lowest bound Q of the numbers q. For example, if $Q>20$, we take the range

$$
\begin{equation*}
-1,1,2, \cdots,\left[p^{1 / 6}\right] ; \tag{5}
\end{equation*}
$$

if $Q>204$, then

$$
\begin{equation*}
-1,1,2, \cdots,\left[p^{1 / 8}\right] \tag{6}
\end{equation*}
$$

and finally if $Q>m^{m}$, when m is an integer $\geqq 8$,

$$
\begin{equation*}
-1,1,2, \cdots,\left[p^{1 / m}\right] \tag{7}
\end{equation*}
$$

These results can be formulated in a different manner.
(i) If p is a sufficiently great prime, then a complete system of residues modulo p can be got by multiplying the powers of the numbers of the range (4).
(ii) If p is not of the form $8 N+1$, and all the numbers $q_{1}, q_{2}, \cdots, q_{r}$ are not less than Q, then instead of the range (4) we can take the range (5) for $Q>20$, the range (6) for $Q>204$, and finally the range (7) for $Q=m^{m} ; m \geqq 8$.

Leningrad, Russta

[^0]: *Presented to the Society, September 9, 1926; received by the editors in January, 1926.

