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1. Introduction. In a previous paper| in these Transactions the repre-

sentation of real functions by generalized Taylor's series was discussed. The

methods there employed are not applicable to the corresponding representa-

tion of functions of the complex variable. In the present paper new methods

are developed, and the representation of an arbitrary function of the com-

plex variable is obtained.

Let us denote the function to be represented by f(z) and the functions

in terms of which the representation is to be made by

(1) Wo(z),   Mi(z),

As in the previous paper we begin by a sort of "normalization"! of this se-

quence, replacing it by a sequence

(2) go«, *i(«),

where the function gn(z) is a linear combination of u0(z), Ui(z), • ■ ■ , un(z),

and has a zero of order n exactly at the origin. The possibility of such a

normalization imposes, of course, a restriction on the sequence (1) which we

shall specify in §2. Indeed, a number of other conditions must be imposed,

as one would expect, in order to insure the representation of an arbitrary

analytic function f(z) by means of linear combinations of the functions

(1). These conditions are most conveniently expressed in terms of the set

(2), and amount briefly to demanding that they be analytic and that

11— nlgn(z)/zn\ should decrease at least as rapidly as 1/w when n becomes

infinite. It is then found that the region of convergence of a series

(3) Hc„gn(z)
n-0

* Presented to the Society, September 6, 1927; received by the editors in March, 1928.
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§ This process corresponds to orthogonalizing and normalizing the sequence of prescribed func-

tions by the Schmidt method, when the method of approximation employed is that of least squares.
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is circular, and that an analytic function f(z) can be represented in a series

of this type inside a circle with center at the origin and reaching out to the

nearest singularity of f(z), just as in the case of Taylor's series. These facts

we shall prove in §§2 and 3.

In §4 we compare the result just stated with one of G. D. Birkhoff* on

generalized Taylor's series. We show that the latter result demands im-

plicitly that the functions vn(z) of Birkhoff* should have exactly n zeros

inside the circle |z|<l. In that respect the function is like the function

gn(z) of the present paper, which has n zeros coincident at the origin and no

others in the unit circle if n is sufficiently large. But it is found that the

conditions imposed on the mode of decrease of \hn(z) | in the present paper

are of such a nature that a class of expansions arise which can not be treated

by. Birkhoff's theorem. When the expansion can be treated by both methods

a comparison of the two methods of determining the coefficients ffor a com-

mon function f(z)) yields an interesting identity.

Finally, we cite several other papers concerned with problems related to

our own, but which do not treat the case considered by us:

S. Kakeya, On the expansion of analytic function, Proceedings of the Phy-

sico-Mathematical Society of Japan, (3), vol. 2 (1920), p. 96.

Y. Okada, On a certain expansion of analytic function, Tôhoku Mathemati-

cal Journal, vol. 22 (1923), p. 325.

J. L. Walsh, On the expansion of analytic functions in series of polynomials,

these Transactions, vol. 26 (1924), p. 155.

S. Izumi, On the expansion of analytic function, Tôhoku Mathematical

Journal, vol. 28 (1927), p. 97.

R. F. Graesser, A certain general type of Neumann expansion and expan-

sions in hypergeometric functions, American Journal of Mathematics, vol.

49 (1927), p. 577.

J. L. Walsh, On the expansion of analytic functions in series of polynomials

and in series of other analytic functions, these Transactions, vol. 30 (1928),

p. 307.
We wish to emphasize the fact that the series of the present paper con-

verge throughout the circular region of analyticity of the function f(z) and

represent f(z) there, a property not shared by the series of Izumi and Graes-

ser, for example. This property is retained from Taylor's series in the gen-

eralization, and is also shared by the series of Birkhoff and Walsh.

2. The region of convergence.  Let the functions (1) and/(z) be analytic

* G. D. Birkhoff, Sur une généralisation de la série de Taylor, Comptes Rendus, vol. 164, p. 942.

For a statement of the theorem see §4 of the present paper.
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in the circle \z \ ¿R. Denote by sn(z) a linear combination of the first n+i

functions (1) :

Sn(z)  = C0U0(z) + CiUi(z) + C2U2(z) +  • • • + CnUn(z) ,

and determine the constants of combination c0, C\, • - • , c„ in such a way that

f(z)—sn(z) shall have a zero of order «+1 at z = 0. This is possible if the

Wronskian

Wn(z) = W[uo(z), ui(z), ••• , un(z)]

u0(z)       ui(z)

uó (z)      u[ (z)

U0™ (z)      M/"' (z)   •  •  • W„(b) (z)

Wn(z)

«„'(z)

is different from zero at z = 0. We assume that Wn(z) ¿¿0 for |z | ¿R and for

all* n. The computations of the previous paper are evidently applicable

here, so that sn(z) takes the form

5„(z) = Zo/(0)go(z) + W(0)gi(z) + • ■ • + Lnf(0)gn(z),

where

gn(z) =

^n(O)

mo(0) «i(0)

u¿ (0)       u{ (0)

W"-"(o) «^-^(o)

Mo(z) Ml(z)

Lnf(z)   =
1T[mo(z),  Ml(z),   •  •  •   ,  «n-l(z^

«n(0)

«n'(0)

«n(z)

/(»)]

^n-l(z)
(« =  0,1,2,   •••).

Since the functions gn(z) are linear combinations of the functions (1), it is

clear that L„f(z) may equally well be expressed in terms of gn(z) :

Lnf(z) =
W[go(z),gi(z), ••-,gn-i(z),/(z)]

W[go(z), gi(z), • • • , g„_i(z)]

* J. L. Walsh has called the author's attention to the fact that if we admit the rearrangement of

the order of the functions in the sequence (l),then it is only necessary to assume here that W„(0)?í0

for n sufficiently large. The proof of this fact becomes evident by use of a lemma of Walsh to be found

in the American Journal of Mathematics, vol. 42 (1920), p. 93.
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It is seen that the functions gn(z) have the properties enunciated in the in-

troduction:

f,(«(0) = 0       (* = 0,1,2, ••-,«- 1),       ?i»)(0) - 1.

Since gn(z) is analytic for \z \ ¿R, it must have the form

gn(z) - *»[l + K(z)]/n\,

where hn(z) is analytic in the same circle and vanishes at the center.   We

further restrict the sequence (2) by the

Conditions A: (a) The functions gn(z) are analytic for \z\ ^R; (b)

gn(z)=zn[l+h„(z)]/n\, where hn(z) is analytic for \z\^R and vanishes at

z = 0; (c) a constant M independent of n exists such that \hn(z) \ ̂ M/(n + l)

for \z\£R.

We can now state

Theorem I. Let the functions gn(z) satisfy Conditions A in \z\^R. Then

if the series
00

(3) 22cngn(z)
n-0

converges for one value z = £, |£ | ^R, it converges uniformly for \z\ur for any

r< |£ | to an analytic function.

To prove this, note first that the convergence of (3) for z = £ implies the

existence of a constant N independent of n such that

| c«g„(Ö | ^ N,

so that a dominant series for (3) can be obtained at once :

2^ng«(z) « N 2^ -,—T—r •
n-0 „_0    I gn{k) |

By Conditions A,

»!    \       »+1/
and

l^l-Ml. + ̂ UtY.-JL).
»! »!    \       « + 1/

Hence

,  (1+jq (1 + JL.)

\       «4-1/ \        «+1/
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Here m is chosen so large that m+l>M. If r< |£|, (3) clearly converges

uniformly for \z \ ¿r, and the theorem is established.

One may show, just as for power series, that if (3) diverges for a value

z = | with \%\<R, it diverges for |£|g \z\^R. It follows then that (3)

converges nowhere except at z = 0, or converges for \z\<r<R and di-

verges for r< |z|^i?, or converges for |z|^i?. It is easy to construct

examples to show that all three possibilities actually arise. It should be

pointed out that in the third case we have not proved that the true region of

convergence is circular, for (3) may converge outside of the circle \z \ ¿R in

which Conditions A hold. In case the region of convergence is a circle we

define the circle as the circle of convergence and its radius as the radius of

convergence.

Theorem II. The radius of convergence p of (3), if it is less than R, is given

by the equation

(4) — =lm( |c|/»!)»».
P »=«o

For, if (4) holds then to every positive e there corresponds an integer m

such that

|c| < (1 +e)"»!/p»,        »£*»,

and by virtue of Conditions A we have

"                    -   (1 + i)».    .   / M \
£ cngn(z) « £ *--1 z |» ( 1 + —— ).

„_m n-m P" \ » + 1/

Hence (3) converges for \z \ <p. It diverges for [z | >p, for by (4) it follows

that
.      (1 - «)B

|c„| >-»!,       « >0,
PB

for an infinite number of integers n.  For these integers

|z|n / M \
| Cngn(z) |   > -Í-M 1 - ——- ) (1  - €)»,

p"   \      »+1/

and if \z\>p and (1 —e)/|z|>p the general term of (3) can not approach

zero as n becomes infinite. Hence p must be the radius of convergence. A

similar proof shows that if lim ( |c„ |/»!)l/n= oo then p = 0, and we have the

first case mentioned above.

3. The representation of an arbitrary analytic function. Let us suppose

that/(z) is analytic in the circle \z \<p^R.   We shall show that the series
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(5) ¿£»/(0)Sn(z)
n-0

converges and represents/(z) in that circle provided that the functions gn(z)

satisfy Conditions A in \z \ ̂ R. To prove this we first prove that (5) con-

verges for \z | <p.  This is done by use of the following formula:

(6) /(-)(0) = L0f(0)goM (0) + Lif(0)g{ ) (0) + - - - + Zn_!/(0)^i(0) + Lnf(0),

taken from the previous paper.* A moment's consideration will show that

the proof there given for the real variable applies equally well here. By its

use we can determine the mode of increase of \Lnf(0) |. We first transform

the formula so as to involve the functions hn(z) instead of g„(z). By the de-

finition of hn(z) it is clear that

where
k\

0-• p/   p\(k-p)\

For formula (6) we shall want ¿>».  Then

ftf" (0)  =  (      )(l + Ä„(Z))<*-"' = (      ) Än(i-")(0) .
\ « / z-0 \ » /

Hence (6) reduces to

(7) Lnf(0) = /<»>(0) -  "¿7 n )hJ*-p)(0)Lpf(0).
p-o \p/

Let r be an arbitrary positive constant less than p.   The analyticity of f(z)

in \z\ <p implies the existence of a constant L independent of » such that

(8) |/(n,(0)| è-~, \z\¿r.
rn

Since hn(z) is analytic in \z\^r and satisfies the inequality

\hn(z)\ûM/(n+l),     \z\úR,

it follows that
, . M     k\

(9) | W» (o)| «;-__.
n+ 1 r*

Now

' Loc. cit., p. 131.
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L0f(0)=f(0), \L0f(0)\^L,

Lif(0)=f'(0)-L0f(0)h¿(0),

| Lif(0) \^L/r + LM/r = L(l + M)/r.

Proceeding in this way one is led to induce the inequality

| X„/(0) | á L(M + l)(M + 2) ■ ■ ■ (M + n)/r» .

To establish this result we may assume it true for »=0, 1, 2, • • • , m — 1,

and show as a consequence that it is also true for n = m. By (7), (8), (9),

and (10)

m— 1 / m\

\Lnf(0) | è |/<""(0) | + £ (     ) | Lpf(0) | • | *,<-*>(0) |
p=o \p/

Lm\       ^ (m\L M     (m - p)\
^-+£(     )—(M+l)(M + 2)---(M + P)-— •

rm        p_o \ P ) rp p + 1      r*»-"

It is easily verified that the expression on the right of this inequality is pre-

cisely

(10) L(M + l)(M + 2) ■ ■ ■ (M + m)/rm,

so that the induction is complete.

We can now establish the convergence of (5) for \z \ <p.   For, we have

Vr «a   n#rf (M+D(M + 2).--(M + n)   | z |"  / M\
22Lnf(0)gn(z) « i 2--!-r ( i + ——- ).
„_o »-o rn »!    \        » + 1/

Simple tests show that the dominant series converges for \z \ <r. Since r

was arbitrary it follows that (5) converges absolutely for \z \ <p. It is equally

evident that (5) converges uniformly for \z\^r if r<p. Consequently the

sum of the series, which we denote by d>(z), must be an analytic function in

the circle \z \ <p. Moreover, the series may be differentiated term by term

as often as desired by a familiar theorem of Weierstrass.

It will now be established that <p(z) =f(z) for \z \ <p. Setting z = 0 it is

seen immediately that <p(0) =/(0). Differentiating (5) term by term k times,

it is clear that

*(«(0) =  £¿„/(0)gn<*>(0) =   £¿„/(0)gn<*>(0).

But by formula (6)

n-0

/(*>(0)=££n/(0)gl*)(0).
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Hence
/(«(0) = 0<«(O) (¿ = 0,1,2, •••).

Since/(z) and 0(z) are both analytic in the neighborhood of the origin, thev

must coincide throughout their region of analyticity, so that

00

/(Z)=    IX/(0)gn(z), |*|   < P.
n-0

We have thus proved not only that the expansion is possible but also that

it is unique (the functions gn(z) supposed given).  We sum up the results in

Theorem III. Let the functions gn(z) satisfy Conditions A in the circle

\z\^R. Then any function f(z) analytic in \z | <p£=R can be expanded in

one and only one way by a series of the form

CO

/(z)  =    11cngn(z)
n-0

convergent in \z \ <p. Moreover, the coefficients cn are determined by the formula

=  W[go(z),gi(Z),   ■•■,gn-l(z),f(z)]

W[go(z), gi(z),  ■ ■ ■   , gn-l(z)]        _o'

or by the recursion formula

Cn - /<»>(0) - C0go(n)(0)  - Cigi^(0)  ----- Cn_igH(0).

It is scarcely necessary to point out that (3) reduces to a Taylor's series

if h„(z)=0, when Conditions A are surely satisfied. The existence of other

functions gn(z) satisfying these conditions can not be held in question, so

that (3) is a bona fide generalization of Taylor's series.

4. Relation of the series to Birkhoff's series. In order to make the pro-

posed comparison we begin by stating

Birkhoff's Theorem.* Let va(z), Vi(z), ■ ■ ■ be a sequence of functions

each of which is analytic in a circle \z \ ̂  1.  If the series

(11) | v0(z) - 11 + I vi(z) - z I + I v2(z) - z21 + • • •

converges uniformly for \z \ = 1 to a value less than unity, every function f(z)

analytic in \z | ̂  1 can be represented by an absolutely and uniformly con-

vergent series of the form

(12) c0v0(z) + ciVi(z) + ■ ■ ■ .

* We have altered the notation in order to avoid confusion.   Also we state the result for the unit

circle rather than for a circle of arbitrary radius in order to facilitate the comparison.
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Here cn is given by

cn =-I    -dt
2riJc  tn+1

where the integration is taken over the circle C, \t | = 1, in the positive sense, and

where g(z) is the solution of the integral equation

1    c  ( A v«(z) - zn\
f(z) = g(z) + ~    ( £ -4-r-)««*-

2« JC   \ n-0 tn+1        /

We wish to point out the resemblance of series (12) to series (3) by show-

ing that under the conditions imposed on (11) vn(z) must have exactly n

zeros in the circle \z | <1. For, since the sum of the series (11) is less than

unity on the unit circle, the general term must surely be less than unity

there,

(13) k(z)-z"| <1,     |*|-1.

Let z trace the unit circle once in the counter-clockwise sense. The change

in the argument of vn(z) thus produced multiplied by l/(27r) gives the num-

ber of zeros of vn(z) inside the circle.  Clearly

arc vn(z) = arc zn[l + y(z)/zn] = n arc z + arc [l + y(z)/zn],

where
\p(z) = vn(z) - z".

By (13)
| *(«)/*" | < 1, 1*1 — 1,

and hence the change in the argument of [l+^(z)/zn] must be zero as z

traces the unit circle. The change in arc z" is 2nw, so that v„(z) must have

just n zeros inside the unit circle. These zeros need not be coincident at the

origin,* however, as is the case with g»(z). We shall show that for the case

in which all the zeros of v„(z) are concentrated at the origin, Conditions A

include cases not included in Birkhoff's Conditions. This may be done by

the simple example hn(z) =z/(»+l).  Then

\n\gn(z) -z»\ = l/(»+l), |*|-1.

Hence series (11) diverges if v„(z) =n!g„(z). But Conditions A are satisfied.

The expansion of f(z) in a series (3) is assured by Theorem III, whereas

Birkhoff's theorem is not applicable.

* The example n„(z) =z*>—1/2" shows this.
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If we restrict the functions hn(z) further by the inequality

| hn(z) | < 1/2-+S     |*| = 1,    A„(0) = 0,

both theorems are applicable. Since the expansion of a function f(z) in a

series (3) was shown to be unique, one may obtain an interesting identity

by comparing the two determinations of the coefficients.  That is, if

gK(z) =~\l + hn(z)],     | hn(z) | < 1/2»«,     M-l,    An(0) = 0,
«!

then

W[go(z),gi(z), ■ ■ ■ , gn-i(z), f(z)} »! r g(t)
,-0     2iriJc   tn+1W[go(z),gi(z), ••• ,gn-i(z)]

where g(z) satisfies the integral equation

1    f  r  "   nlgn(z) - znl
f(z) = g(z)+ —I       L -^¿--\g(t)dt.

2vt Jc L „=o tn+1       J

C is the circle z = l, and the integration is in the positive sense.

University of Minnesota,

Minneapolis, Minn.


