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1. Introduction. There are several well known minimum problems which

do not readily yield to the classical analysis of the calculus of variations.

In some of these, such as the brachistochrone problem of determining the

curve of quickest descent from a fixed curve to a fixed point, the integrand

of the integral to be minimized is a function of an end value which is variable.î

In others, such as that of finding a point it and a curve through this point and

two fixed points such that the area of the surface of revolution formed by

rotating this curve and the ordinate of tr about the OX axis shall have as

small a value as possible, the expression to be minimized is the sum of a point

function and a definite integral.§ A more general theory which includes this

latter problem as a special case has been given by E. H. Clarke. || In order

to develop a general dynamical theory of depreciation it is desirable to con-

sider a very general problem which somewhat resembles each of the above

types, but which does not yield to the analysis of either. 1f

The depreciation problem as well as the others referred to above can all

be considered as special cases of a very general problem with discontinuous

integrand, which also includes the most general problems of both the La-

grange and Mayer type with general boundary conditions.** In this paper

it is proposed to develop a theory for minimizing an integral whose integrand

is a discontinuous function sufficiently general in nature to include all of the

the above mentioned types of problems and many others.ft

* Presented to the Society, April 16, 1927; received by the editors in December, 1927.

t National Research Fellow.

X Bliss, Calculus of Variations, pp. 78-79.
§ Mary E. Sinclair, Concerning a compound discontinuous solution in the problem of the surface

of revolution of minimum area, Annals of Mathematics, (2), vol. 10, p. 55.

¡| E. H. Clarke, On the minimum of the sum of a definite integral and a function of a point, Doctoral
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** O. Bolza, Über den "Anormalen Fall" beim Lagrangeschen und Mayer sehen Problem mit
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The expression to be minimized is the sum of two integrals taken from aci

to a variable limit u, and from co to x2, respectively. It may also be regarded

as a single integral with an integrand which is discontinuous at the point

ai, y(u>) of the minimizing curve. The integrand in addition to containing

the usual arguments x, y and dy/dx contains also the end values aci, y(xi), x2,

y(x2) and the corner values w, y(w).

In the work which follows we will find it convenient to use the notation

of the tensor calculus to indicate summations. It will be understood, there-

fore, that when a subscript occurs twice in a term that term is to be summed

for all values of the subscript.

2. Statement of the problem. It is desired to find among the values w

and arcs yt=yi(x) (* —1, • ■ • , n; xi^x^x2), satisfying m differential

equations,

(1) <fa(x, y, yO - 0 (a = 1, • • • ,m)

in ac and y, and having end points satisfying end equations

(2) 9,(fii,yi,pt,yt) = 0 (m - 1, • • • , p ¿ 2» + 2),

one which minimizes an expression of the form

Jib)
g(x,y,y',Pi,yi,P2,y2,(j,y(<j))dx

f x,
+   I    h(x,y,y',pi,yi,pt,y2,a>,y(u))dx,

Ja

where for convenience in notation the set (yi, • • • , yn, yl, • ■ ■ ,y„') has been

represented by (y, y') ; 71 and y2 are «-partite numbers which for a particular

curve y<(ac) stand respectively for the sets yi(aci), • • • , yn(aci), and yi(a;2),

• • • , yn(a;2), and, finally, primes denote derivatives with respect to a;.

3. Admissible arcs and variations. In the analysis which follows we

will need the following further hypotheses:*

(a) the functions y<(ac) defining the minimizing arc £12 are continuous on

the interval aci, ac2, and this interval can be subdivided into a finite number

of parts on each of which the functions have continuous derivatives;

(b) in a neighborhood R of the values ac, y, y', u, y (a), Xi, y(aci), x2, y(x2)

on the minimizing arc the functions g, h and <pa have continuous derivatives

up to and including those of the second order;

* Bliss, Lectures on the Calculus of Variations, University of Chicago, summer quarter, 1925,

mimeographed by O.E. Brown, Northwestern University, Evanston, 111.; this will be cited as Bliss,

Lectures.
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(c) at every element (x, y, y') on £12 the (wXw)-dimensional matrix

d<pa/dyi has rank m, and

(d) the functions 0„ have continuous derivatives up to and including those

of the second order near the end values (xi, y (xi), x2, y(x2)) of the minimizing

arc, and at these end values the pX (2n+2) -dimensional matrix

|| d0jdxi    d0jdy(xi)    d0jdx2    d0jdy(x2) ||

has rank p.

An arc yi=yi(x), i = l, • • • ,n;xi^x^x2, will be called an admissible arc

if it is given by functions yi(x), defined on an interval (xx, x2), and by a num-

ber <i¡o such that xi<03a<x2 and such that the yl(x) are continuous on

the intervals (xi, w0) and (w0, x2).

Let us suppose that we have a one-parameter family of admissible arcs

given by functions

(4) yi(x, b),    xi(b),    x2(b)    and   o)(b)

defined on an interval (61, b2) such that yi(x, ba) =yi(x), Xi(b0) = Xi, x2(b0) =x2

and w(b0) = o3o, and such that the functions yi(x, b) have continuous first-

order derivatives with respect to x on the intervals [xi(b), co(b)] and [u(b),

x2(b)]. We define the functions ■ni(x)=dyi(x, b0)/db, Çi = xi(bQ), %2 = x2'(b0),

^3 = 0)'(b0) as the variations of the family along Ei2.

Let us denote by Í2¿(r) the variation t)i(x) of yi(x, b) for the interval

Xi^x^u and by ttí(x) the corresponding variation of yi(x, b) for the interval

u^x^x2, and by (u, u') the set (y, y') for Xi^x^u and by (v, v') the

corresponding set (y, y') for u^x^x2. We do not assume that Q¿(w) = ir,(co).

The equations of variation for the functions <pa are defined by

(5) fa = (d<pa/dyi)Vi + (d<j>a/dy!)vi =0 (a = 1, • • • , m)

where it is understood that 77<=n< for Xi^x^u and ^,- = ir,- for a>^x^x2,

and the coefficients d<pa/dyi, dfa,/dyi have as arguments the functions y,-(«)

defining the minimizing arc Ex2.

The equations of variation for the functions d„ are

[d0jdxi + (d0jdyi(xi))yl(xi)]^i + [d0,/dyi(xi)]r,i(xi)

+ [d0jdx2+ (dO,/dyi(x2))yi(x2)]ï2+ [d0jdyi(x2)]r,i(x2) = 0.

A set of functions rji(x) with the continuity properties described in (a)

except at x = w0, and satisfying the above equations of variation, (5) and (6),

we define as an admissible set of variations.
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Theorem 1. For every set of admissible variations t)i(x) along the arc Ei2

there exists a one-parameter family, (4), of admissible arcs containing Eafor

the value b = 0 and having the functions rji(x) as its variations along Ei2. For

this family the functions y<(ac, b) are continuous and have continuous derivatives

with respect to b for all values, (ac, b), near those defining Ei2, and the deriva-

tives yix(x, b) have the same property except at the values of x on the curve de-

fined by x = u(b), yi = yi(oi(b), b) and, possibly, at the values of x defining

other corners of En.

This theorem can be proved by slightly modifying a proof given by Bliss.*

Following his example we enlarge the system <f>a = 0 to have the form

(7) yi  = 0,   •  • •   ,  ym = 0,   4>m+i = Zm+i,  • ■ ■  , yn = Z„,

where zm+i, ■ ■ ■ , z„ are new variables, and <pm+i, •••,</>„ are new functions

of (a;, y, y') such that the functional determinant \d<pi/dyk | is different

from zero along £i2.f By means of the last n — moi these equations the

functions y,-(ac) belonging to £12 define a set of functions zr(ac) (r = m+\,

--.,»).

We have a corresponding system of equations of variation,

(8) yi = 0, ■ ■ ■ , ym = 0,    ym+i = fm+i, • • • , yn = f„,

along .Eiü.   The last n — moi these define a set $"r(ac) corresponding to every

set of admissible variations í?¿(ac).

Since \d(pi/dyk |?¿0 along £12, the existence theorems for differential

equations tell us that the systemj

(9) ya = 0,      <br = Zr(x) + bÇr(x)

determines uniquely a one-parameter family of solutions,

(10) yi = Ui(x, b) (xi(b) ^xè w(6)),

with initial conditions

yi(xi) + bT¡i(xi) = Ui(xi, b),

* Bliss, Lectures, pp. 4-6.

t For a proof of the possibility of this adjunction see Bliss, The problem of Mayer with variable

end points, these Transactions, vol. 19 (1918), p. 312.

X Bolza, Vorlesungen über Variationsrechnung, pp. 168 ff.

Bliss, Annals of Mathematics, (2), vol. 6 (1904), p. 49.

Bliss, Bulletin of the American Mathematical Society, vol. 25 (1918), p. 15.
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where x = u(b) is the value of x along a curve of corners x = u(b), «, = n<

= y,(o>(ô), b) with co(b) >xi(b) and co(¿>0) = w0 but o)(b) otherwise arbitrary.

For the interval (w(b) ̂ x^x2(b)) there is a unique one-parameter family

of solutions y¿= Vi(x, b) having initial conditions at x = w,

(11) VMb),b) = Ui(u(b),b).

This family consisting of Ui(x, b) on (xi^x^w) and Vi(x, b) on (w^i

^x2) contains £12 for & = 0 and has variations which satisfy the equations (8)

with the functions Çr(x). The variations of the family are, therefore, identical

with the functions rji(x) originally prescribed, since when the fr are given,

there is only one set of solutions of equations (8) with given initial values

T)i(Xi) SLtX = Xt.

Corollary. For a matrix

£i(1)

&(1)

■ni(i)

"?.'tu

íi +1)

„IH-U

• 1?1
(P+D

Vn
(j>+l)

whose columns are sets of admissible variations, there exists a (p+1)-parameter

family, y,=y<(a:, bu ■■ ■ , bp+i), Xi(bh ■ ■ ■ , bp+i)^x^x2(bi, ■ ■ ■ , bp+i),

containing Ei2 for (Jh, ■ • • , bp+i) = (0, - - • , 0) and having the sets £i(,),

£s(,) and riJ'^x) as its variations along Ex2 with respect to the parameter b,.

The continuity properties are similar to those described in the above theorem.

This corollary is proved with the equations <pa = 0, ■ ■ ■ , fa = zT+biÇTil)

+ • ■ ■ +bp+i fr(f,+1) replacing equations (9).

4. First variation of the integral /. If the one-parameter family of ad-

missible arcs (4) be substitued in (3), we obtain for the first variation

of the resulting expression for b = b0 = 0

[(dg/du,)Sli+ (dg/dul)Q'i)dx + [(dh/dVi)Ti
j, Juo

+ (dh/dvlWi ]dx + Su(g,h)Qi(xi) + S2i(g,h)7Ti(x2) + Li(g,*)&

dyM0),0)
+ L2(g ,h)H2 + M(g, A)co'(O) + Niig, h)

where as notation

db
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S.i(g,h) =   f °(dg/dyi(x,))dx +   f \dh/dyi(x,))dx (<r= 1,2);
J », "«I

L.(g,h) = (<r - 2)g(xi) + (ff- \)h(x2) + [dg/dx, + (dg/dyi(x.))y'i (x.)]dx
Jx,

+   f W/aa^+^VM*,))?/(*„)]<**;

(ag/aa>)¿a:+        (dh/du)dx;

^(g,Â) =   f ° [dg/dUi(a>)]dx +   f  '[dVô»i(«)]a*;

g(xi) and g(o>o) are the values of g at the points (1) and (w0) on -Ei2;A(co0)

and A(ac2) are the values of h at the points (w0) and (2) on £i2; i is an umbral

index with range 1, • • • , n when it occurs twice as a subscript, and a is

not umbral in L,.

Let us multiply each of the equations (8) by a function X(ac); form the

sum Xa'/'a+Ar^,.—Xrfr where a and r are umbral indices with ranges \, • • • ,m

and wi+1, ••-,«, respectively, and then integrate this sum from aci to ac2.

We obtain

[(dR/dut)Qi+ (dR/du'i )«/ ]¿a;

(13) /•** f"
+ I   [(a7yat>«-)xi+(ar/a»/)W]¿*-     x,r¿a: = o,

•'«I J X,

where, by definition, i?=Xi<p<, * —1, • • • , «, on aci^ac^w, and r=X<0<

on w^ac^aci. It seems desirable to split the integral into two parts in this

manner because this was done with the original integral /.

By (6) the equations of variation on £i2 for the functions 0„ are

tfntt.i») = [(dßjdxi)+ (ddp/dyi(x1))y!(xi)]iii+ [ddß/dyi(xi)]üi(xi)

(14) + [Ô8p/dx2+ (d8p/dyi(x2))y!(x2)]Z2 + [a0„/ay4(*i)]iri(*t) = 0.

If a (/>+l)-parameter family of admissible arcs y,=y,(ac, bu • ■ ■ , bP+i),

Xi(bh ■ • • , bp+i), x2(bh • • • , bp+i), u(bh ■ ■ ■ , bp+i), containing EK for

(bi, • ■ ■ , bp+i) = (0, • • • , 0), be substituted in / and the functions 0„, these

become functions of bi, ■ ■ ■ , bp+i. If I0 is the desired minimum yielded by

£i2, then the first members of the equations

I(bi, ■ ■ ■ , bp+i) = h T q,

8p(bi, ■ ■ ■ , bp+i) = 0,



64 C. F. ROOS [January

where g is a positive number, must have their functional determinant equal

to zero for (bi, ■ • • , ¿>p+i) = (0, • • • , 0), since, otherwise, these equations

would have solutions near this set of values for both positive and negative

values of q. This functional determinant of rank r <p+l is

(15)

Ii&»,1w)

Ki(^,vw)

Ii(tip+1), vlp+1))

K1(^p+1\ vip+l))

K~ÁZW,r,W) ^p(i(p+1),1(p+1))

and from its vanishing we argue that there exists a set of constants du

dp, X0, not all zero, such that the equation

(16) Ao/i(£, v) + dßK^, v)=0 (p. umbral with range 1, P)

holds for every set of admissible variations £i, ¿2, w'(0), rj(x), since, otherwise,

one of the columns of this determinant could be replaced by another making

it of rank r+1*

As notation let v be an umbral index with range 1,2.  Let us define two

new functions G and H by the respective equations

G(x,y,y',xi,

H(x,y,y',xi, ■

,y(x2),\) = Xog + \i4>i,

, y(x2),X) = X0A -f-Aitf>,-.

Since the variations (£, r¡) satisfy (13), the value of (16) is not altered if

we add (13) to it. By the help of (12) we can, therefore, write

J   '[(dG/dUi)Qi + (8G/du<)Q¡ - \¿r]dx
•'«i

+  f \(dH/dvi)7Ti + (dH/dvlWi - \¿T]dx + [Sri(g,h)

+ dß(d0r/dyi(x,))]r,i(x,) + [L,(g,h) + d^Jdx,)]*,

+ [(d0»/dyi(xi))yUxi)]ti + [(d0jdyi(x2))yl(x2)}ii2 + M(g,h)o>'(0)

+ Ni(g,h)dyM0),0)/db = 0.

(17)

So far the functions X,(z) have been entirely arbitrary.

5. First necessary conditions. We now proceed to determine the A,(#)

so that the equations

* Bliss, Lectures, p. 20.
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(18) dG/dui =  j    (dG/dUi)dx +Cu (*iá*áw),

(dH/dVi)dx + Ci2 (« g * û x2)

are satisfied for an arbitrarily selected set of constants Cn, Cn. This is pos-

sible because of the assumption that \d<pi/dyk | is different from zero along

Elu. For the details of the proof of the possibility of this choice of the

X< we refer the reader to the mimeographed lecture notes of G. A. Bliss,*

since the proof which Bliss gives there requires only slight alteration. For

this choice of the functions Xi(ac) equation (17) becomes

Wax -   I    Xrfrda; + [Pt(xr) + dp(dBjdyi(x,))]rH(x,) + [£(*,)
I, •'«o

+ d^dSjdx,) ]f, + [dp.(d8p/dyi(xi))yl (xi) ]fx + [d^ddp/dy^x^yi (x2) ]fc

+ M(g,h)u'(o) + [aG/aM'(wo)]n,(w0) - [dH/dv'M]*^)

+ [Ni(g,h)]dyi(wa,0)/db = 0,

where

Pi(x,) - f> - 2)(dG/dul(xi) + (v- í)(dH/dví(x2)) + S,i(g,h)       (v - 1,2),

and L(x,)=L,(g, h); dG/dui (xi) and dG/dui («0) denote derivatives with

respect to »/ at the point (1) and (w0), respectively, on En, and dH/dvi (w0)

and dH/dví (ac2) denote derivatives of # with respect to v¡ at the points (w0)

and (2), respectively, on £12, and where we have chosen the constants

Cn and Co so that equations (18) and (19) are satisfied, i.e., Cn = dG/dui (aci)

and Cn=dH/dvi(x2).

Since the extremal Ei2 is continuous at ac = w0 the equations y¿(w(J),i)

=Ui(oo(b), b) =Vi(w(b), b) must hold, and, hence, by a differentiation

(21) dyi(u0,0)/db = m/(»0)u>'(0) + Í2¿(ü>0) = »,-'(«o)«'(0) + rtfao).

If we substitute the values of ß,(cd0) and ^(coo) defined by (21) in (20),

we obtain as a necessary condition for a minimum of the integral I

Xrfrda: -   I    Mrdx + [Pi(x,) + dp(d8p/dyi(x,))]rH(x,) + [£(*»)

+ ¿„(aa^/a*,)]«*, + K(aa,yayi(*i))y/ (*i)]fc + [dj&jdyi(xt))yi (x2)%

+ [- u'(a9)aG/dui(uo) + »<'(«o)a£r/a»i'(»o) + Jf(g,*)]«'(o)

+ [BG/dul(u0) - dH/dv'i(uo) T Ni(g,k)]dyi(o0,0)/db = 0.

* Bliss, Lectures, p. 7.
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Since co'(0) and 0¿(w0) are arbitrary, equations (21) show us that ¿y,(co0,

0)/db is arbitrary. We can, therefore, say that the expression (22) must van-

ish for every choice of Vi(x,), £„, w'(0), ¿y,(w0, 0)/db and fr, r = m+l, ■•-,«.

It follows then that all of the coefficients of these quantities must vanish and,

hence, in particular, that Xm+i= • • • =\n = 0. It follows further with the

help of (12) that

- ul(wB)(dG/duUuo)   + Vi'(w0)(dH/dvi(a>0)) +G(«o) - H(œ0)

(dG/du)dx +  I    (dH/du)dx = 0,
I; »'WO

(dG/dUi(o>0))dx
x

+  f \dH/dVi(m))dx = 0 (t = 1, ■ - ■■ , n),
Ja,,

where as already stated u{ refers to the extremal arc y¿ for the interval Xi^x

gwo, and i>< refers to the same arc y¿ but for the interval o)o^x^x2; further

that in the matrix

(23;

(24)
L(xi) Pi{xi)      L(x2) Pi(x2)

0p,x,  +  0pyxJn 0MH 0p.x% + 0pyi2y¡2 0pvi,        I

Where %x, + Qm,yU stands íord0jdxi+(d0ll/dyi(x,))yí (x,), every determinant

Of order p+1 vanishes, and finally that the equations (18) and (19) are satis-

fied. The condition (24) must hold since the multipliers 1, du ■ • • , dp

satisfy all the linear equations whose coefficients are columns of the matrix.

The rank of this matrix is unchanged when one column is multiplied by a

factor and added to another, so that we can state the following theorem.

Theorem 2.    For every minimizing arc for this general problem there

exist sets of constants C n and C a, i = l, ■ ■ ■ , », and functions

G(x,y,y',xi,y(xi), ■ ■ ■ ,y(x2),\) = \0g + K<t>« (xo =~ x á wo),

B(x,y,y',xi,y(xi), ■ ■ • ,y(x2),\) = x0ä + K4>a        (w0 g x g x2),

such that the equations

oG/du'i  =   I    (3G/dUi)dx + Cu (xi £» iiu),
J x

/> X,

(dH/dVi)dx + C« (w ¿ x ú x2)
x

are satisfied at every point of Ex2, Xi^x^x2.  The constant X0 and the functions
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X0(a;), a = l, • • • , m, are not all identically zero on E¡2, and are continuous

except possibly at values of x defining corners of Ei2. At the point co, y<(w),

at which there exists a corner, the equations (23), which are the analogues of

the Weierstrass-Erdmann corner conditions, must be satisfied. Furthermore,

the end values of Ei2 must be such that all determinants of order p+1 of the matrix

L(xi) - y'iiPi(xi)    Pi(xi)    L(x2) - y'i2Pi(x2)     Pt(x2)

"Hi "».vu 8pZ, "pVi,

vanish.

These last conditions are the transversality conditions. It is easily seen

that if the functions g and h are independent of the end and corner variables

they reduce to the corresponding conditions obtained by Bliss.*

The corner conditions as obtained in this paper differ from the corner

conditions usually obtained because of the occurrence of the integrals involv-

ing derivatives with respect to corner variables, so that if g and h are inde-

pendent of these variables, the integral terms drop out. For such problems

as Miss Sinclair's and E. H. Clarke's these derivatives reduce to terms simple

enough to be integrated by inspection.f

It will be interesting to examine a few special cases of the very general

problem of this paper. In as much as the paper was suggested by the problem

of depreciation it will be well to begin with a short examination of this im-

portant special case.

6. Some special cases. In order to determine the best time at which to

replace a machine, which is in operation, by another machine whose operating

expense is different we must maximize an expression which can be thrown in

the general form (3). This problem of replacement in dynamical economics

is that of finding among the arcs y< = y,(a;) satisfying a differential equation

of demand, D(x, ylf y{, y2, y2')=0, where x is the time, y, is the rate of pro-

duction at the time x, and y2 is the price at the time ac, and end conditions

8p(xi,yi(xi) ,y2(xi) ,x2,yx(x2) ,y2(x2)) =0 (p - 1, •• • , p S 6),

a set which maximizes an expression of the form

[yiyt - Qi(x,y,,yt,yl ,yi)]e»i*r*dx

+  I    [yiyt - Qi(x, yi, y2, y i , y{ ) }ea<-x>-z)dx
J\i

+ Cie«1'-^ + C2^(*'-I«),

* Bliss, The problem of Mayer with variable end points, loc. cit.

t See fourth and fifth footnotes on page 58.
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where x is the time; V is the value at x=Xi of the composite machine, con-

sisting of a machine operating for the period xi^x^u, and a replacement

machine operating for the period o}^x^x2; yx is the number of units of out-

put per unit time; y2 is the price of one unit of output at the time x; Qi is

the cost of producing yi units of output for the machine called the operating

machine; Q2 is the cost of producing yi units of output for the replacement

machine, and exp. (ß(xi—x)) etc. are discount factors to allow for interest.

Since a and Xi are constant so far as integration with respect to x is con-

cerned, we may write this expression in the form

(yiv2 - &)««*.-> +-\dx
x,L « — xi J

+ f \yiyt - Q2)e»^-'Hx.
Ja

When V is in this form, the replacement problem is easily seen to be a special

case of the general problem of this paper. In as much as I have presented a

mathematical theory of depreciation and replacement in another paper,

there is no need to carry the problem further here.*

As already mentioned, problems which require that the sum of a point

function and a definite integral be minimized are special cases of a general

problem discussed by Clarke, f His problem is that of finding among the

arcsy,-=y<(a;) satisfying end conditions #1=0:1, x2 = a2, yi(xi)=ßn, yt(x2) =ß&

(i=l, •••,«), a set which minimizes the sum of a definite integral and a

function of a point,

f(x,y,y')dx.

Although Clarke does not discuss the Lagrange problem analogous to the

case above which he studied, the analysis of my paper is sufficiently general

to apply to his problem.   We may write J in the form

J=        \f(x,y,y')+-\dx +  I   f(x,y,y')dx,
J*,L w — xi   J Ja

and again obtain a special case. For Clarke's problem the corner conditions

(23) become

* Roos, A mathematical theory of depreciation and replacement, loc. cit.

t Clarke, On the minimum of the sum etc., loc. cit.
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<t>^+ f(o),y(u),u'(u)) - f(w,y(u) ,v'(u))-u'(u>)f¿ (u,y(<a), u'(u>))

+ »'(«)/.' <»,y(«),«'(»)) = 0,

4>víM Tfui.(«>,y(io),   u'(o>)) - fvAo>,y(o),»'(«)) =0       (*- 1» ' * ' , ♦*)»

and these are identical with the conditions obtained by Clarke, except for

notation.

Let us next consider special cases for which the functions g and h are inde-

pendent of the corner variables and, furthermore, for which g=h, i.e., for

which there is no corner at ac = co.

An important example of this type of problem is the following proposed

by Bolza.

Minimize the expression

U =   I   H(yi, ■ ■ ■ , y„,y{ , ■ • ■ , yi)dx-\-G(yw, ■ • ■ , y„o,yn, • • • , y»i) ,
Jxg

when the admissible curves are defined by functions y¿=y»(ac) (ac0^ac^aci)

which satisfy differential equations <p«(y.-, yl) —0 (a = l, • • -, m), while the

end points, y,-0, ya, satisfy conditions 0M(yjO, y«) = 0 (¡x = \, • ■ • , p). Bolza

admits so-called finite equations \¡/k(yi, • • ■ , y>0=0 (k = l, • ■ ■ , r<n—m),

in addition to the equations <pa = 0, but, as Bliss has shown, this gives no

additional generalization.* Bolza's problem is the special case for which <¡>a

and 8p of the general problem do not depend upon ac explicitly and for which

.     G(yio, ■ ■ ■ , y»o,yn, • • • , y»i)  .  _. , ,,
g = h =-h H(yi, • • • , y„,yi , • ■ • ,y¿).

Xi —  Xo

The integrand is continuous at ac = w and the corner conditions vanish iden-

tically unless yi(x) has a corner there, in which case they reduce to the Weier-

strass-Erdmann corner conditions, f

In as much as Bolza has shown that his problem is sufficiently general to

include as special cases the most general Lagrange problem with general

boundary conditions for G=0, and the most general Mayer problem with

general boundary conditions for the case H=0, G=yu, it appears that the

problem treated in this memoir is sufficiently general to include a very large

class of the problems of the calculus of variations.

7. Further generalizations. In the replacement problem discussed in

the last paragraph we supposed that there was only one machine producing

* Bliss, The problem of Mayer with variable end points, loc. cit.

t J. Hadamard, Leçons sur le Calcul des Variations, vol. 1, p. 188.
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the commodity or service under consideration at any time x. If we suppose

several machines to be simultaneously in operation producing the same

article, there are two problems of interest. If all owners agree to cooperate

in making the sum of their profits a maximum the problem is a special case

of the one considered in this paper. On the other hand if the machines are

competing, the problem is one for which it is required to obtain partial max-

ima of as many integrals as there are competing machines. I have already

considered the competition case for the special case in which g and h are inde-

pendent of variable corner and end values.*

In any actual case we do not have all machines in operation for the

same period of time, for new competitors are constantly entering and others

are dropping out. Such a problem becomes difficult even for the cooperation

case because we must maximize an expression which is the sum of say n

integrals whose limits may or may not be the same and whose integrands

depend upon different numbers of variables x and y{. Each time a new-

comer produces, the demand equation contains an additional variable, e.g.,

this producer's rate of production.

* Roos, Generalized Lagrange problems in the calculus of variations, these Transactions, April,

1928. See also Roos, A mathematical theory of competition, American Journal of Mathematics, vol.

47 (1925), pp. 163-175, and Roos, A dynamical theory of economics, Journal of Political Economy,

vol. 35 (1927), pp. 632-656.
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