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1. Introduction. With the development of the number theory of linear

algebras, it was natural that attempts should be made to extend to these

domains of integrity the theory of ideal numbers. But it is evident from the

few domains which have been examined that one cannot expect an extension

of this theory in its entirety. For instance, Hurwitzf has investigated the

number theory of quaternions by using right and left ideals, and has found

that they are powerless to introduce unique factorization into this algebra.

Moreover, Speiserf has recently investigated the properties of right, left and

two-sided ideals in semi-simple algebras, remarking in the introduction to

his paper that some of the most remarkable properties of ideals are "but

foreign adjuncts which are essentially restricted to algebraic number fields."

Although it is historically true that ideals were introduced into algebraic

number theory to establish unique factorization, it should be observed that

this is a secondary function of ideals. Primarily they establish the property

that every two numbers have a greatest common divisor expressible linearly

in terms of the numbers. In algebraic fields this property implies unique fac-

torization but in the general linear algebra it does not—hence the success

of the ideal theory in algebraic fields and its partial failure in the more general

domain.

The method which is here used in developing the theory of ideals is dif-

ferent from the usual one. It depends upon a correspondence! between ideals

and matrices whose elements are rational integers, and the only kind of

multiplication which is employed is ordinary matric multiplication. Ideal

multiplication, which plays such an important rôle in the usual treatment of

ideals in algebraic fields, but which causes so much difficulty in non-commu-

tative domains, is not employed in this paper.

* Presented to the Society, September 9, 1926; received by the editors in September,  1927.

t A. Hurwitz, Vorlesungen über die Zahlentheorie der Quaternionen, Berlin, Springer, 1919.

Í A. Speiser, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, vol. 71 (1926),

pp. 8-49.
§ Applied to quadratic ideals in a recent paper by the author, Annals of Mathematics, (2), vol.

29 (1927-28), pp. 199-214.
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The fundamental theorem in the present development (Theorem 4)

serves as a substitute for the commutative law in the multiplication of these

ideal matrices. From this starting point we proceed to establish for general

algebras many of the properties which ideals in algebraic fields are known

to possess, including the important concept of class number. Furthermore,

we obtain some properties of ideals in all semi-simple algebras which have

not previously been found even in the special case of algebraic fields.

The writer is indebted to his colleague Professor Blumberg for helpful

suggestions.

2. Definition of ideal. We suppose that SI is a rational semi-simple

algebra of order « with a principal unit, and that © is a set of integral elements

of order » in 21 according to the definition of Dickson.* We suppose that the

basal numbers ex, e2, • ■ • , en of SI form a basis for ©, ei being the principal

unit.f We shall define a left (right) ideal $ to be a set of numbers of © which

is closed under addition and subtraction and under multiplication on the

left (right) by the numbers of ©4

We shall develop only the theory of left ideals, as the theory of right

ideals is obviously parallel.

In the usual manner§ we can show that every left ideal Í? has a basis

composed of r^n linearly independent numbers «i, w2, • • ■ , «r. That is,

the numbers of £ are represented by the form

¿1Í01 -f"  k2U2 +   •   •   •  +   ¿r«r

where ¿1, ¿2, • • • , ¿r are rational integral variables.   In particular the w¿

may be chosen in the form

COi  =   OnCi,

W2 = a2iei + a22e2,

wr = and + ar2e2 + • • • + aTTeT

where each a«>0.

* L. E. Dickson, Algebras and their Arithmetics, University of Chicago Press, 1923, p. 141.

Algebren und ihre Zahlentheorie, Zürich, 1927, p. 155. These books will be referred to as Dickson I

and Dickson II, respectively.

t Dickson I, p. 163, II, p. 212.
X This is more general than the definition of Speiser, which further specifies that the set Ä be

of order n, thus excluding what we shall call singular ideals. See Dickson II, p. 270.

§ Dickson II, p. 270. Landau, Theorie der algebraischen Zahlen und der Ideale, Leipzig, 1918,

p. 29, Theorem 99.
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This number r, which is evidently the number of linearly independent

numbers in every basis of $, is called the rank of the ideal. The ideal is called

singular or non-singular according as r <n or r = n.

3. Some properties of ideals. Every number a satisfies its rank equa-

tion*

wr + Ciwr-1 + • ■ • + cr_itú + N(a) = 0.

From the definition of ideal it follows that if a is in Ä, then

N(a) = (— ar_1 — Ciar~2 — • • • — cr-i)a

is also in $. Hence $ contains rational integers unless every number of

iï is of norm 0.

Let p be the smallest positive integer in the ideal $. Let c be any rational

integer in 5Ï. Then we may write c = kp+r where 0^r<p. Since c and p

are in $, so is c — kp = r. But p was minimal, so r = 0 and c = kp. Hence if

not every number of $ is of norm 0, Í? contains infinitely many rational integers,

each an integral multiple of a smallest positive integer. If a is a number of fî,

so is N(a).

Let fî be an ideal containing a positive integer p. Since © is of order n,

it contains n linearly independent numbers Si, s2, • ■ • , sn. Then $ contains

the linearly independent numbers SiP, s2p, • • • , snp. It follows that if Í?

contains a positive integer, the numbers coi, w2, • • • , w„ of every basis are

linearly independent and $ is of rank n.

Let «i, «j, • • • , «„' constitute a second basis for an ideal ÎÏ of rank n.

There are rational integers an and bn such that

(3.1) to; =  £ffl,-tw* ,     on' =  £¿>u<<>jfe      (¿ = 1,2, • • • ,w).

Then
t»i = £ai,ô,tw*,

/.*

and since the basal numbers are linearly independent,

£a¿,-&3-4 = 8ik (i,k - 1,2, •• • , *)
j

so that (ars) is an integral matrix of determinant ± 1.

Conversely, if (ar,) is an integral matrix of determinant ±1, its inverse is

likewise an integral matrix of determinant +1 and will serve as the matrix

(brt) in (3.1). If the w/ constitute a basis for Í?, so do the Wj as determined by

* Dickson I, p. 113.
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(3.1). Thus if Si is an ideal having a basis «i, <a%, • ■ • , w„ composed of linearly

independent numbers, every basis of Si is given by

co/ =   ^UijUj (i = 1,2, • • • , »)

wAere (ar>) ¿j a» integral matrix of determinant ± 1.

If Si has a basis wi, w2, • • • , wn, we may write

(3.2) coi=   £g</Ci (*- 1,2,    •-,»),

where the g<,- are rational integers, in terms of the basal numbers  ex, e2,

■ ■ ■ , en of ©.  We define the norm N(Si) of the ideal Si to be the absolute

value of the determinant | grs |.   If N(Si) =0, the coj are linearly dependent

and the rank r of Si is less than «; i.e., Si is singular.

Suppose that coi, u2, • • • , co„ constitute a linearly independent basis for

S. If co{, U32, ■ ■ ■ , «„' is any basis for Í?, we have

wi =  z^öi,«; =  ¿2aagikek = 2^gi*c* (t = 1,2, • • • , »)
i j,* *

where |ar, | = +1.  Hence

(0(gr.) = (g'.),
which implies that

absolute value | gí, | = absolute value   |gr, \^0,

so that the value of N(Si) is independent of the basis chosen. In other

words, N(Si) is an invariant under change of basis and is therefore a posi-

tive integer intrinsically connected with the ideal Si.

Let us now suppose that Si is an ideal for which N($i)5¿0.   From (3.2)

we have
N(St)e¡ = J^diftoj (i= 1,2, • • • , »)

where the ¿<, are rational integers.   Since ex is a principal unit, we see that

N(Si) is a positive integer in Si.  The norm of this positive integer is a non-

zero integer in St, so that Si contains elements of norm not zero.

We may summarize the results of this paragraph in

Theorem 3.   The following five statements are equivalent:

(a) Not every element of the ideal St is of norm 0.

(b) Si contains rational integers.

(c) The numbers wi, a2, ■ • • , un of every basis of Si are linearly independent.

(d) The ideal Si is non-singular, i.e., of rank ».

(e) The norm N(Si) of Si is not zero.
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We have shown that each statement implies the next following and that

the last implies the first.  Thus each of the five statements implies them all.

To see that ideals of norm zero actually exist, we need only to consider

the principal ideal (&]* where N(b)=0, i.e., where b is a divisor of zero

or zero itself.  Then A(6) =0, and for every number X in ©,

A(Xft) = A(\)-A(b) = 0

so that N(\b) =0 for every number \b in the ideal. Such ideals have none

of the properties described in Theorem 3.

4. A condition that n numbers constitute a basis for an ideal. While it is

true that every left ideal has a basis coi, w2, • • • , a, composed of integral

numbers, it does not follow that every n numbers of © constitute a basis

for a left ideal. We shall find necessary and sufficient conditions that n

numbers wi, co2, •■ -, w„ of © shall form a basis for a left ideal.

Let us assume that wi, w2, • • • , «„ constitute a basis for a left ideal Ä,

and that

(4.1) "< = £g</e, (»-1,2, •• • , »).
i

Every number k of $ is of the form

k =   £^jto< =   £¿tg<,-e,-.
» >.í

Every number í of © is of the form

5 =   £sje¡.

i

Since sk is in Í?, there exist rational integers dr such that

sk =   £ Sikigxjeiej = £   sikigijCijheh = £drgrfe*.
l.i.i l.i.i.h r,t

Since the basal numbers are linearly independent, this implies

^sikigijCin =   £¿rgrí (t = 1,2, • • • , «).
l.i.i r

In particular there must exist rational integers dT, which we shall call dpqT,

when Si = 8tp and ki = 8iq. For these values we have

(4.2) £g«,Cpi< = HdMrgrt        (P,q,t = 1,2, •••,«).
í r

* The notation is due to Speiser.  See Dickson II, p. 271.
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The existence of integers dpqT satisfying (4.2) is in fact sufficient that

the integral numbers «i, co2, • • • , w„ defined by (4.1) constitute a basis for

a left ideal. For, let dpqr and gt¡ be any rational integers satisfying (4.2).

Define the <o¿ by (4.1). The set of numbers

k = £¿,w¿
%

where the ki vary independently over © is evidently closed under addition

and subtraction. We can show that it is closed under multiplication on the

left by any number s of ©. In fact

sk =   £ sikigijCiJreT =   £ siki £g<,c/,-rer.
l.i.i.r I,i ,r j

Hence by (4.2) we have

sk =  £ siki l £¿/i.g.r) eT = £ sikidugùi,,
l.i.r \    ê / l.i.g

which is obviously of the form £,- ki «<.

Let us define the matrices

Cp = (cpr,)= transpose Rp, Dp = (dpr,), G = (g„) (p = l, 2, ■ • ■ , n).

We may now state

Theorem 4.*   A necessary and sufficient condition in order that wi, co2,

• • • , co„ constitute a basis for a left ideal is that there exist integral matrices

Di, D2, • • • , Dn such that

GCP = Dfi (p = 1,2, • • • , n)

where G is the matrix (g„) of (4.1)

5. An explicit basis for a principal ideal. In particular every principal

ideal (d] has a basis «i, co2, • • • , w„. We have

d =   £áie,-,       o>i =   £g<,-c,- (i = 1,2, •• • , n).

Let 5 =£j<e< be any number of ©. Then

sd =  £ SidjCiJkek
i.i.k

is in (d], and hence must be representable in the form

sd =   £r¿wi =  J2rigiiei-

_ » <. ;'
* Poincaré, using the same correspondence between ideals and matrices, obtained a quite differ-

ent condition that a matrix in canonical form correspond to an ideal. Bulletin de la Société Mathé-

matique de France, vol. 13 (1885), p. 167.
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It follows that for all rational integers s< there must exist rational integers

r¿ such that

(5.1) YLsidfijk = £r¡g¿* (¿ = 1,2, • • • , «).
»., «

Conversely, since every linear combination of the co, is in (d\, it follows that

for all integers r, there must exist integers s< such that (5.1) holds. These

conditions together are necessary and sufficient in order that «i, «2, • • • , w»

form a basis for the principal left ideal (d].

In particular, let us take r< = Shi, and denote the corresponding values of

Si by shi. Then (5.1) gives

(5.2) J^SkidjCuk =   52dhigik = ghk    (h,k = 1,2, • • • , n).

Again, let us choose Si = ôhi in (5.1) and denote the corresponding values of

fi by r«<. Then we have

(5.3) Yl^idjCijh =   J^djChjk =   ^fhigik (h,k = 1,2, ••-,»).
i.i i •

From (5.2) we have, taking matrices,

G =  (g„)   =   (Sr.)( YtdjCrj.)   =   (Sr.)S(d)

where S(d) is the transposed second matrix* of d.   In the same way we

obtain from (5.3)
S(d) = (rT.)G.

Every number of the ideal (d] is of the form

2a<w«  =    Sa<gi,e: =   2 niSik(Tkjej,
»' i,i i.k.j

where 5(d) = (o-r>), and conversely every number of the form ^&ja,-,-Cy

can be written
Zj>i<iije¡ =   2_j birikgkjej = ¿2 birikú¡k
i.i i.k.j i.k

and is therefore in (d]. Hence the numbers X0"« e, constitute a basis for (d].

It follows from the definition of norm that N((d])= absolute value

S(d) = absolute value A'(d).  We have now proved

Theorem 5.1.   The principal left ideal (d] has a basis wi, a», - - -, an

where
<»i = Y*aifiit   ("■") = ■S'W) ;

;'
the norm of (d\ is the absolute value of A'(a).

* Dickson I, p. 86, II, p. 35. It is easy to show that d is an integral number if and only if S{d)

has integral elements.
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The conditions for associativity may be written

^jCqkjCpj, 2m^tCpqjCjk, .

Let us multiply by dk and sum for k :

which may be written

¿^akCqkjCPj,        / . cPqjakCjki,

i.k i.k

S(d)Cp = CrS(d) (¿-1,2, •••,»)

where d=£ d<e,-.     This is exactly (4.2) with g„ replaced by o-„ and dpq,

replaced by cpqr.

Theorem 5.2. For every number d in ©, S(d) is commutative with every

matrix Cp; and if G =S(d) in Theorem 4, then Dp = Cpfor every p.

We shall prove later (Theorem 11) that every integral matrix commuta-

tive with every Cp is the transposed second matrix S(d) of some number d

of ©.

6. Equivalent ideals. Let $ be a non-singular left ideal with basis

«i, 022, ■ ■ ■ , «„, and let s be a number of ©.  If we set

ui =    £gíí«íi * =   £í«e«.
i <t

we have t
oiiS =   £gi/C; =   £gtj.ep £i„e4

j p «

=   • . giPsqcpqreT.

P.i.T

Henee
gij  =     2-1 g'PStCPQÍ  =   2-igip    2-jSQCP9Í   =''     2L)g*PaPÍ-

P.l P 9 P

Taking matrices, we have

G' = GS(s).
But

GCP = DPG, S(s)Cp = CpS(.s),

so that

G'CP = GS(s)Cp = GCpSk) = DfiS^) = Dfi'.

Therefore o>iS, u2s, ■ ■ ■ , uns form a basis for an ideal which we may call $'.

Furthermore, we obtain the same ideal $' irrespective of the basis of Ê

with which we start.  Using any other basis for $, we should have obtained,

instead of G',
G" = AGS(s)
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where A is an integral matrix of determinant ±1 (§3). But G" = AG' cor-

responds to the same ideal Si' as does G'. For a non-singular ideal St we may

call the uniquely existing ideal having the basis (uis, œ2s, • • • , wns) where

(wi, «s, • ■ • , <o„) is any basis for Si, the ideal Sis.

Two non-singular ideals Sii and Si2 are, according to analogy with the

usual definition in algebraic number theory, called equivalent if there exist

integral numbers Si and s2 of ©, neither of norm 0, such that

Stisi = Si2s2.

Let Gi and G2 be the matrices corresponding to particular bases of Sii and Si2

respectively.  The condition for equivalence becomes

GiS(si) = AG2S(s2)

where A is an integral matrix of determinant +1.

The following theorem is important in showing that the concept of ideal

class applies to all semi-simple domains and in pointing to a more com-

prehensive definition which is applicable to singular ideals as well.

Theorem 6. A necessary and sufficient condition that two non-singular

ideal matrices Gi and G2 be equivalent is that the corresponding sets of matrices

Dip, D2p satisfying the equations

GiCp = Difii,    G2CP = D2fi2 (p = 1,2, ■ • -, n)

respectively, be similar—i.e., that DiP = AD2p A~l for p — 1, 2, ■ ■ • , », where A

is an integral matrix of determinant ± 1.

First, let us suppose that d and G2 are equivalent. We have

GiCp = DipGi, GiCp = D2pG2,

GiS(si) = AGtS(s2), | A | = + 1

where S(si) and S(s2) are each, by Theorem 5.2, commutative with every

Cp. Then
Gi5(si)Cp = GiCpS(si) = DipGiS(si),

i4G»S*(si)Cp = AG2CpS(s2) = AD2pGiS(s2)

= ADtfA-^AGtSis,).
Therefore

DipGiS(si) = AD2pA-*GiS(si).

Since both Gi and S(si) are non-singular, we have

Dip = AD2pA~l (p - 1,2, • •• , »).
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Secondly, suppose that the sets of matrices Dip and D2p are similar:

GiCp = Difii,     GiC, = D2PG2,     Dip = AD2pA~\    \A | «± 1.

Then
GiCfir1 = Z?ip = AD2pA~l = AGiCfi^A-K

We multiply on the left by G2_1^4_1 and on the right by G\, obtaining

G^A^GiCj, = CfirlA-Hii.

Let T be the scalar matrix each of whose diagonal elements is \G2 \. Then

TG^A'Kji is an integral matrix and, since it is commutative with each Cp,

it is the second matrix S (s) of some element 5 of ©.* Then

TG^A-'Gi = S(s),

and since T is commutative with every matrix,

GiT = AG*S(s).

Moreover, T=S( \G2 \), so that the ideals ®i and fí2 are in fact equivalent.

7. Ideal matrices. An essential point in our proof of Theorem 6 was that

\Gi I 5¿0. We were therefore unable to consider equivalence of singular ideals.

Moreover, the transitive character of equivalence was not apparent from its

definition. We now proceed along a line suggested by this theorem but some-

what broader.

We assume a semi-simple rational algebra SI, and a set of integral numbers

© of order n, the basal numbers being chosen so that the constants cijk of

multiplication are rational integers. As before, we define the matrices

Cp = (cpr,) for p = 1, 2, • • • , n, where Cpr, is the element in row r and column

s. Let Dp = (dp„) be any set of n integral matrices. All the integral matrices

G which satisfy the equations

(7.1) GCP = DPG (¿ = 1,2, ••• ,»)

will be said to constitute a minor class of ideal matrices, and the set of matrices

D\, D2, ■ ■ ■ , Dn will be called a set of corresponding class matrices. The

zero matrix at least will satisfy (7.1) no matter how the class matrices may be

chosen.

All the matrices of a minor class constitute a modul. In fact, if Git

Gt, • • • , Gp are ideal matrices of the same minor class and if ki, k2, ■ • • , kp

are rational integers, then

G = £iGi + k?G2 + • • • + kpGp

•Theorem 11, to follow.
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is an ideal matrix of the same minor class. We shall show that if SI is semi-

simple there exist rg» linearly independent matrices Bi, B2, ■ • ■ , Br which

constitute a basis for the ideal matrices of the minor class.

Lemma 7. If81 is a semi-simple algebra, new basal numbers for © and new

constants of multiplication ci;i can be so chosen that \ crsl \ ̂  0.

Let us suppose that our basal numbers are chosen as in §2, and that the

cuk are defined by

(7.2) eiCj =   Ytdikek (i,j = 1,2, • • • , n).
k

Since ei is a principal unit, Ci,-*=c}i* = 5,-*. If we apply to the basal numbers

the transformation

(7.3) e{ =   YjHfi'i > « = | «r.| ^ 0,
i

we get from (7.2) :

/ • OipOjqCp eq, =   ¿^Cijrarte9

J>.« r,t

=    ¿—i   aipaiqcpqtet
P.tit

so that

(7.4) £ arpa,tc'pqj = 2Zcr.inii (r,s,j = 1,2, • ■ • , »),
P.I i

where the cpq, are defined as in (7.2) with each letter primed. For a fixed j,

let us form the determinant whose element in row r and column 5 is (7.4) :

(7.5) a2\c'r.j\ = s * dijCrti U= 1,2, •-,«).

In (7.3) let us now choose

a,j =  Tij *=    ¿mu^iir^rkk-

r,k

If SI is semi-simple, c= |rr. | =oV0,* and

flrl  =    2_jCrlhChkk =     ¿¿àhrChkk —    ¿_iCTkk
h,h h.k k

so that

2_,arlCijr =    ¿_lCi¡rCtkk = Tij.
T r.k

* Dickson I, p. 108.
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From (7.5) with /—l we obtain

d21 c'r.i | = d

so that |e„i | 5*0.

In making this transformation we may have lost the property that the

basal numbers of 21 form a basis for the set © of integral numbers. We must

now restore this property.

Bring* the fractions cak to a common denominator 8, write Sc,-,* = A,-,*

where the hi,k are all integers. Set u = 8ei. Then

em = o2eie¡ = <52 £c/,*e*   =   £Aj,-*e*.
* k

We use the new basal numbers e, whose constants hijk of multiplication are

rational integers.  We note that

|   hr.l\   =   \ôCr,l\   =  ôn I  c'r,i\   9*  0.

Proceeding according to the method of Dickson,f we see that every

element a: of © can be put into the form

aci ac2 xn

(7.6) —S« + ô« +'~+-5 +

where

D 2-,hr,ihik
i.k

^0,

and where the ac, are rational integers. Of all numbers ac in © having

aci = ac2= • • • =acr_! = 0 but acr5¿0, choose one having acr>0 and minimal for

*>'. If there is no ac of this type having acr ¿¿ 0, choose ef =0. We have

(7.7)

De{   = bnti + &i2€2 + ■ ■ ■ + bintn,

Dt2  = ô22«2 + • • ■ + b2ntn,

Den = b„nen.

Now («/,«/,-••, e„' ) form a basis for ©. For, let

1
x = —(*i«i + a;2f2 + • • • + xne„)

* Dickson I, pp. 161-162.

t Dickson I, p. 162.
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be any number of ©.  Set

xi = qibu + rx (0 Í fi < bu).

Then
1

x - qie{ = — (r*i + *»«»+••• + *„'en)

has its coefficient of ei less than on which was minimal, so ri = 0.  Similarly,

set
X2    =  q2b22 + r2 (0  g   7"2   <  622) •

Then a;—qiei — q2e2 lacks the basal numbers ei and e2.   Proceeding in this way,

we have after « steps:

* = fliei  + q2e2  + • • • + ?„€„'

where the g,- are rational integers. Since © is of order n, we now know that

ba^Oior every i.

Since the numbers e{, e2, ■ ■ ■ , e„' form a basis for ©, we know that the

new constants A,-,* of multiplication are rational integers.   Transformation

(7.7) can be written
D ,-,

e¿ = —2>)ie; (i= 1,2, • • • , n)
*    i

where b = \br, \ and Br„ the cofactor of br„ is zero for r<s. From (7.5) we have

a21 h'„i I =   XXiAr.i
i

with a,-, = (l/b)DBji = 0 for / >>.  Hence

a21 Ar.i| = a« I hr,i\ ^0,

and therefore |Är»i | =^0.

Since the basal numbers eu e2, ■ ■ ■ , c„ with which we started and the

numbers e/, e2', • • • , en' each form a basis for the set ©, we know that there

are transformations with rational integral coefficients and of determinants

+1 carrying each set of basal numbers into the other set.

8. Effect of change of basis on the fundamental matrices. Let us make

a change of basis (7.3) where the ars are rational integers of determinant ± 1.

By (7.4) we have

/  .C-nirart ¿^upgfligC«! *qt *

Multiply by the cofactor A jt of ajt and sum for t.   Then
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acpij =   £a,-„    £aP,<c,ai \A¡t.
3,1       L    « J

Passing to matrices, we have

Cp = /t[£a1,.C.'l^-1 (¿= 1,2, ••• , »)

where A m (ar.) as our induced transformation on the matrices Cp.

We shall more generally define the matrices Dp', which will be said to

correspond to the matrices Dp under transformation (7.3) of determinant

+1, as the solutions of the equations

(8.1) öJ, = ^r£apÄ'l^-1 (p= 1,2, ■■■ ,n).

The matrices Dp' are evidently integral if the matrices Dp are integral.  Our

definition is justified by the following result:

Lemma 8.1. If Gis an ideal matrix satisfying the equations

GCp = DpG (p= 1,2, • •• ,»),

then G'=A~1GA satisfies the equations

g'c; =d;g' (p -1,2,•••,»)

where Cp and D¿ are given by (8.1).

From (8.1) and the equations GCP = DPG, we have

Gä\ £ap.C.'"U-1 = a\ £aJ,.ö.'~L-,G,

and therefore

A-'GAÏ £ap.C.'l = I" £ap.Z?.'~Lt-1&4.

If we multiply by the cofactor Apr of a„r and sum for p, we obtain

A-KJACi =DIA-H}A,

which proves the lemma.

Lemma 8.2. If the basis of © is so chosen that \cr,i 15^0, then an ideal matrix

G whose first column consists exclusively of zeros is a zero matrix.

From our definition of ideal matrix we have
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¿J/grkCpki =   2-idprkgk,
k k

If g*i=0 for every ¿, then

2j,grkCpkl =  0
k

Taking matrices, we have

G(c„i) = 0.

Since the second matrix is non-singular, G must be of rank 0.

9. A fundamental theorem. Let SI be a semi-simple algebra, and let

ei, e2, • ■ ■ , en be a basis for a set © of integral numbers of 21, where ei is a

principal unit. We transform by a matrix A of determinant ± 1 to another

basis el, e{, ■ ■ ■ , el for which \c'T,i \ ¿¿0. Every ideal matrix G is thereby

transformed into an ideal matrix G'=A~1GA, and inversely G=AG'A~1, so

that there is a one-to-one correspondence between the ideal matrices G and

G'.
If G' is an ideal matrix of a certain minor class, so is — G'. If in the minor

class denned by the class matrices Dl, D2, ■ ■ ■ , Dl (§7), there are ideal

matrices G' = (gT.) in which gn^O, define as BU one such matrix in which

gu>0 and is minimal. If no such matrix exists, set Bl =0, which surely is

in the minor class. If there are in the minor class matrices for which

gn=g2i= • • • =gt-i. i = 0 but gifei^O, define as B¿ = (6*r.) one such matrix

in which g¡fci = Z>*ii>0 and is minimal, otherwise set Bl =0. Then Bl,

B2,- ■ -, Bl form a basis for the matrices of the minor class.

For, let G' = (gr.) be any matrix of the minor class. Set

gn = hibm + ri (0 ^ rx <6m).

Then G' — hiBl = (gr/ ) is an ideal matrix of the minor class having as its

first element n. But 6m was minimal, so rx = 0.    Now set

gíi = h2b22í + r2 (0 ^ r» < 6221).

Similarly
G' - hiBl - h2Bl

has two zeros in its first column.   Proceeding in this way, we find after »

steps that
G' — A1.B1 — Â2-B2 — ■ ■ ■ — hnBn

is an ideal matrix of the minor class whose first column consists exclusively

of zeros, and which by Lemma 8.2 is therefore the zero matrix.  Thus

G' = hiBl + h2Bl + ■■■ + hnBl

(p,r,s= 1,2, ••-,»).

(r,p = 1,2, •••,»).

where hi, ht, ■ ■ ■ , hn are rational integers.
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Let us now transform back to our original basis. WehaveG=^4G'^4_1,

and we define Bi=ABi'A~l, so that every ideal matrix G is expressible in

the form
G = hiBi + h2B2 H-h hnBn

where the hi, h2, ■ ■ ■ ,hn are rational integers. Conversely, every such matrix

is in the minor class.  We now have

Theorem 9. Relative to every basis ex, e2, ■ ■ ■ , en for a set © of integral

elements of a semi-simple rational algebra 21, every minor class of ideal matrices

has a basis composed of n matrices Bx, B2, ■ ■ ■ ,Bn such that the totality of ideal

matrices of the minor class is given by

hiBi + h2B2 + •'•• + hnBn

where hi, h2, ■ ■ ■ , hn are independent rational integral variables.

10. Rank of a minor class. Suppose that as in the preceding paragraph

we have a set © of integral numbers with basis so chosen that |cr',i |^0.

Then we have seen that every minor class has a basis B{, B2i, ■ ■ ■ , Bn'

such that in each matrix Bk' = (bkrt) we have ¿>*ri = 0 for r<k, and either

bkkx >0 and minimal, or BI =0. Suppose that the B£ are linearly dependent:

diBl + d2B{ + • • • + dnB¿ = 0,

where we may assume that the di are rational integers not all zero. Con-

sidering only elements in the first columns, we have

dibiri + d2b2ri + ■ • • + dnbnri = 0     (r = 1,2, • • • , »).

Suppose that ¿i = á2= • • • =¿p_i = 0 while dpy^0. Then we have dpbppi = 0

so that bppi = 0 and hence Bp = 0.

If there is a dependence relation among the remaining n — 1 basal matrices

Bi, we may repeat the argument and show that another one is zero. We

finally reach a point where all the basal matrices which are not zero are

linearly independent. The number r of linearly independent matrices in a

basis is called the rank of the minor class, and if r <n the class is called

singular. When we transform to another basis for ©, we see from the relation

Bi = ABiA~l that the rank is preserved.

Just as in the case of change of basis of an ideal, it can be shown that,

relative to the same basis for @, the most general transformation from one

linearly independent basis to another is given by

r

Bi =  2Z<>ißi (*-l,2, ••• , r)
i-i
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where (a„) is an integral matrix of determinant ± 1. The rank is preserved

under such transformations also.

11. The principal minor class. All matrices commutative with the funda-

mental matrices Cp evidently constitute a minor class, called the principal

minor class. The members of this class we shall call principal ideal matrices.

We shall now prove the result required to complete the proof of Theorem 6 :

Theorem 11. Every principal ideal matrix is the transposed second matrix

S(k) of some integral number k of ©, and conversely.

The conditions for associativity may be written*

CrihCph» ¿^jC prhChia

h h

or
\Crú)^p == ^p\Cri»)-

That is, the matrices (cri,) =5, = 5'(e,-) belong to the principal minor class.

Let ¿ = ¿id+¿262+ • • ■ +k„en be any integral number.  Then

S(k) = kiSi + ktS» + • • • + knSn

where the ¿< are rational integers, and therefore S(k) is in the principal minor

class.  This proves the converse.

We consider now the set of all matrices G which are commutative with

every Cp. We have seen that every such minor class has a basis Bu B2, • • ■ ,

Bn.  Since the matrices Sf are in this set, we have

Si=   22<>iiBi (*- 1,2, ••-,«)
i

where the a» are rational integers. Now |<2r< | =^0, since the S{ are linearly

independent.   Therefore we can solve these equations for the J3„ obtaining

Bi =   2><#S*, = S(n) (i = 1,2, •••,«)
i

where each r¿, is rational, and ri = rnei+ri2e2+ ■ ■ ■ +rinen is a number of the

algebra SI. But S(r{) =B( is an integral matrix, and hence by the footnote

to §5 each r, is an integral number and therefore the r„ are rational integers.

Then every matrix

G = hiBi + h2B2 +-h KBn

can be written

G = S(k), k = 2Z,hiru«i,

z

* Dickson I, p. 92.
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where the hi and r,-,- are rational integers, so that k is a number of ©.   This

completes the proof of the theorem.

12. The class number. We shall now establish a few properties of minor

classes.

Theorem 12.1. If G is an ideal matrix of the minor class Î, and if P is a

principal ideal matrix, then GP is an ideal matrix of the minor class t.

Let D\, D2,--,Dn be the class matrices defining the minor class f.

Then

GCp = DpG,       PCp = CpP       (p = 1,2, • • • , «).

Therefore

GPCP = GCPP = DfiP,

which proves the theorem.

Theorem 12.2. // the minor class f contains one non-singular ideal matrix

G, then the n basal matrices of f are linearly independent, and t is of rank n.

Let G be a non-singular matrix of f. Let Pu P2, ■ ■ ■ , Pn be linearly

independent matrices of the principal class. Then GPi, GP2, ■ • • , GPn are

linearly independent matrices of class f, for if there were a dependence rela-

tion

(12.1) £¿,GA- = G YAíPí = 0 >
i i

where G is a non-singular matrix, we should have £¿¿P< = 0, contrary to

assumption.  Let Bi, B2, ■ ■ ■ , Bn be a basis for f.   Then

GPi=  ^bifBj (i- 1,2, • •• , »),

and since the GPi are linearly independent, so are the basal matrices B¡.

Thus the rank of f is n.

Theorem 12.3. If 21 is a division algebra, every minor class except the zero

class is non-singular.

Since £d*Pi is the transposed second matrix of a number of 21, it is either

of rank n or of rank 0. Thus in (12.1) either G = 0, or else ¿i = d2= ■ • •

= ¿„ = 0 and the matrices GPi are linearly independent.

Theorem 12.4. // two minor classes contain the same non-singular ideal

matrix, the classes coincide.
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Suppose that

GCp = DipG,  GCP = D2pG,    |G|^0     (p = 1,2, • • • , n).

Then DipG = D2pG, and since G is non-singular, Dip = D2p for every p. Thus

the minor classes coincide.

The theorem is not true with the omission of the word "non-singular."

Thus the zero matrix is common to every minor class.

In general we shall not expect the number of minor classes to be finite.

Thus Di, D2, ••-,£>„ may be taken as perfectly arbitrary integral matrices,

and the equations GCP=DPG will be satisfied by the zero matrix at least.

Moreover, if there be matrices satisfying a relation GCP = DPG, then

AGCp = ADpA-^AG,

so that the matrices ADpA~l define a minor class in general distinct from

the given class.

Two minor classes whose class matrices are connected by a relation

Dl = ADpA~\  \A\ = ±1 (p = 1,2, ••-,«)

will be called similar minor classes. We now define the (left) class number h

of the set © of integral numbers of 21 as the (cardinal) number of dissimilar

non-singular minor classes of (left) ideal matrices.

It is evident from Theorem 6 that when 21 is an algebraic field, h becomes

the ordinary class number of the field. All ideal matrices corresponding to

principal ideals belong to minor classes which are similar to the principal

minor class. We have therefore, without using the concept of ideal multi-

plication, succeeded in generalizing to sets © of semi-simple algebras the

concept of ideal class in a satisfactory manner. For instance, we may prove

in the usual manner

Theorem 12.5. A necessary and sufficient condition in order that every

pair of numbers of © may possess a greatest common right divisor expressible

linearly in terms of the numbers is that the left class number h of © be 1.

13. The density of ideal matrices. It is recognized that the addition of

Dedekind ideals cannot be defined in any useful way, because of the fact

that associated numbers correspond to the same principal ideal. This is not

true of ideal matrices, however, and we have a satisfactory additive theory

within each minor class.

Let Bi, B2, ■ ■ ■ , Bn be a set of basal matrices for a non-singular minor

class f.  Every ideal matrix of f has the form

G = fli-Bi + a2B2 + ■ ■ ■ + anBn
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where the a's are rational integers, and conversely every such G is in f.

Since the Bi are linearly independent, this representation is unique. Addition

and scalar multiplication within the minor class f are defined as in the theory

of linear algebras, and follow the usual laws.

We have seen that Su S2, ■ ■ • , Sn constitute a basis for the principal

minor class (§11).  The numbers

a = aiei + a2e2 + • ■ • + anen

are in one-to-one correspondence with the principal ideal matrices

S(a) = aiSi + a2S2 + • • ■ + a„S„,

which in turn are in one-to-one correspondence with the ideal matrices G

of each class f, and this correspondence is preserved under addition and

scalar multiplication.  Thus we have

Theorem 13. The ideal matrices of every non-singular minor class f are

in one-to-one correspondence with the numbers of the set ©. This correspondence

is preserved under addition and scalar multiplication.
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