AN INTRODUCTION TO THE THEORY OF IDEALS IN
LINEAR ASSOCIATIVE ALGEBRAS*

BY
C. C. MACDUFFEE

1. Introduction. With the development of the number theory of linear
algebras, it was natural that attempts should be made to extend to these
domains of integrity the theory of ideal numbers. But it is evident from the
few domains which have been examined that one cannot expect an extension
of this theory in its entirety. For instance, Hurwitz} has investigated the
number theory of quaternions by wusing right and left ideals, and has found
that they are powerless to introduce unique factorization into this algebra.
Moreover, Speiser} has recently investigated the properties of right, left and
two-sided ideals in semi-simple algebras, remarking in the introduction to
his paper that some of the most remarkable properties of ideals are “but
foreign adjuncts which are essentially restricted to algebraic number fields.”

Although it is historically true that ideals were introduced into algebraic
number theory to establish unique factorization, it should be observed that
this is a secondary function of ideals. Primarily they establish the property
that every two numbers have a greatest common divisor expressible linearly
in terms of the numbers. In algebraic fields this property implies unique fac-
torization but in the general linear algebra it does not—hence the success
of the ideal theory in algebraic fields and its partial failure in the more general
domain.

The method which is here used in developing the theory of ideals is dif-
ferent from the usual one. It depends upon a correspondence§ between ideals
and matrices whose elements are rational integers, and the only kind of
multiplication which is employed is ordinary matric multiplication. Ideal
multiplication, which plays such an important réle in the usual treatment of
ideals in algebraic fields, but which causes so much difficulty in non-commu-
tative domains, is not employed in this paper.

* Presented to the Society, September 9, 1926; received by the editors in September, 1927.

t A. Hurwitz, Vorlesungen diber die Zahlentheorie der Quaternionen, Berlin, Springer, 1919.

t A. Speiser, Vierteljahrsschrift der Naturforschenden Gesellschaft in Ziirich, vol. 71 (1926),
pp. 8-49.

§ Applied to quadratic ideals in a recent paper by the author, Annals of Mathematics, (2), vol.
29 (1927-28), pp. 199-214.
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The fundamental theorem in the present development (Theorem 4)
serves as a substitute for the commutative law in the multiplication of these
ideal matrices. From this starting point we proceed to establish for general
algebras many of the properties which ideals in algebraic fields are known
to possess, including the important concept of class number. Furthermore,
we obtain some properties of ideals in all semi-simple algebras which have
" not previously been found even in the special case of algebraic fields.

The writer is indebted to his colleague Professor Blumberg for helpful
suggestions.

2. Definition of ideal. We suppose that ¥ is a rational semi-simple
algebra of order #» with a principal unit, and that & is a set of integral elements
of order # in A according to the definition of Dickson.* We suppose that the
basal numbers ¢, e, - - -, e, of A form a basis for &, ¢, being the principal
unit.{ We shall define a left (right) ideal & to be a set of numbers of & which
is closed under addition and subtraction and under multiplication on the
left (right) by the numbers of &.}

We shall develop only the theory of left ideals, as the theory of right
ideals is obviously parallel.

In the usual manner§ we can show that every left ideal ® has a basis
composed of <7 linearly independent numbers w;, ws, - - -, w,. That is,
the numbers of & are represented by the form

ki 4+ kows + - - - + koo,

where %y, ko, - - -, k, are rational integral variables. In particular the w;
may be chosen in the form

w1 = ane€i,

wz = age; + Qa262,

Wy = 0y1€] + Qr2€2 + c + Qrrly
where each a;;>0.

* L. E. Dickson, Algebras and their Arithmetics, University of Chicago Press, 1923, p. 141.
Algebren und ihre Zahlentheorie, Ziirich, 1927, p. 155. These books will be referred to as Dickson I’
and Dickson II, respectively.

t Dickson I, p. 163, II, p. 212.

1 This is more general than the definition of Speiser, which further specifies that the set £ be
of order #, thus excluding what we shall call singular ideals. See Dickson II, p. 270.

§ Dickson II, p. 270. Landau, Theorie der algebraischen Zahlen und der Ideale, Leipzig, 1918,
p. 29, Theorem 99.
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This number 7, which is evidently the number of linearly independent
numbers in every basis of &, is called the rank of the ideal. The ideal is called
singular or non-singular according asr <n orr=mn.

3. Some properties of ideals. Every number ¢ satisfies its rank equa-
tion*

w4+ w14 -+ ¢w+ N(a) =0.
From the definition of ideal it follows that if ¢ isin &, then

N@)=(—a1'—ce™2— - —c_1)a

is also in ®. Hence & contains rational integers unless every number of
R is of norm 0.

Let p be the smallest positive integer in the ideal . Let ¢ be any rational
integer in ®. Then we may write c=kp+r where 0<r<p. Since c and p
are in R, so is c—kp=r. But p was minimal, so r=0 and c=kp. Hence if
not every number of  is of norm 0, & contains infinitely many rational integers,
each an integral multiple of a smallest positive integer. If a is a number of R,

so is N(a).

Let ® be an ideal containing a positive integer p. Since & is of order #,
it contains # linearly independent numbers s, s, - - -, s,. Then ® contains
the linearly independent numbers s,p, s:p, - - -, sap. It follows that if &
contains a positive integer, the numbers w,, ws, - - -, wa of every basis are
linearly independent and R is of rank n.

Let w/, wf, - - -, w. constitute a second basis for an ideal { of rank #.
There are rational integers a;; and b;; such that
(3.1) w; = Eaik(*’k,y wi’ = Zbikwk (i = 1)21 t ’n)'

k k
Then

wi = D aiibixwk,
ik

and since the basal numbers are linearly independent,

2aibi = bux (,k=1,2, -, n)
i

so that (a,,) is an integral matrix of determinant +1.

Conversely, if (a,,) is an integral matrix of determinant 41, its inverse is
likewise an integral matrix of determinant +1 and will serve as the matrix
(b,,) in (3.1). If the w/ constitute a basis for &, so do the w; as determined by

* Dickson I, p. 113,
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(3.1). Thusif R is an ideal having a basis wy, we, - - - , wa composed of linearly
independent numbers, every basis of R is given by
ol = Xaiw; (i=12,---,mn
i
where (a,,) is an integral matrix of determinant +1.
If ® hasa basis wy, wy, - - -, ws, We may write
(3.2) Wi = Egiiei Gi=12,---,m),
i

where the g;; are rational integers, in terms of the basal numbers e, e,

-+, e, of ©. We define the norm N(8) of the ideal ® to be the absolute
value of the determinant |g,|. If N(R)=0, the w; are linearly dependent
and the rank 7 of & isless than#;i.e., & issingular.

Suppose that w,, ws, - - -, wa constitute a linearly independent basis for
f Ifw,w,---,w isany basis for &, we have
of = Doiwi= Doigner= D gires i=12,---,m
i ik k

where |a,,|=+1. Hence

(ar)(gr) = (g’n):
which implies that

absolute value | g7, | = absolute value |g,, |0,

so that the value of N(R) is independent of the basis chosen. In other
words, N{&) is an invariant under change of basis and is therefore a posi-
tive integer intrinsically connected with the ideal f.
Let us now suppose that R is an ideal for which N(8)=0. From (3.2)
we have
N(R)es = Ddijo,; (i=1,2,--,m)
1

where the d;; are rational integers. Since ¢, is a principal unit, we see that
N(R) is a positive integer in ®. The norm of this positive integer is a non-
zero integer in &, so that & contains elements of norm not zero.

We may summarize the results of this paragraph in

THEOREM 3. The following five statements are equivalent:
(a) Not every element of the ideal 8 is of norm 0.
(b) R contains rational integers.
(c) The numbers w, wa, - - - , wa of every basis of & are linearly independent.
(d) The ideal R is non-singular, i.c., of rank n.
(e) The norm N(R) of & is not zero.
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We have shown that each statement implies the next following and that
the last implies the first. Thus each of the five statements implies them all.

To see that ideals of norm zero actually exist, we need only to consider
the principal ideal (5]* where N(b) =0, i.e., where b is a divisor of zero
or zero itself. Then A(d) =0, and for every number A in &,

A(ND) = AN)-A() =0

so that N(Ab) =0 for every number b in the ideal. Such ideals have none
of the properties described in Theorem 3.

4. A condition that # numbers constitute a basis for an ideal. While it is
true that every left ideal has a basis wy, ws, - - -, w, composed of integral
numbers, it does not follow that every #» numbers of & constitute a basis
for a left ideal. We shall find necessary and sufficient conditions that »

numbers w;, wy, - + - , w, of & shall form a basis for a left ideal.
Let us assume that w;, wz, + + -, w, constitute a basis for a left ideal R,
and that
(4'1) wi = Zg‘iei (i= 1)27 cc ’")°
i

Every number % of R is of the form
k= D ki = D kigije;.
f i,

Every number s of & is of the form

s = Zs;ez.
]
Since sk isin &, there exist rational integers d, such that

sk = D sikigijeie; = 2. Sikigiiciper = D degrite.
r,t

1., L.3,7.h

Since the basal numbers are linearly independent, this implies

D sikigiiciis = > degre (t=1,2,---,mn).

14,7 r

In particular there must exist rational integers d., which we shall call d,,,,
when s;=90,, and k;=48;,. For these values we have

(42) quicpil = zdm'gf‘ (?"I’t =1,2,---, n).
7 r

* The notation is due to Speiser. See Dickson II, p. 271.
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The existence of integers d,,.r satisfying (4.2) is in fact sufficient that
the integral numbers w;, ws, - - - , wa, defined by (4.1) constitute a basis for
a left ideal. For, let d,, and g,; be any rational integers satisfying (4.2).
Define the w; by (4.1). The set of numbers

k = Ek.w.-

where the k; vary independently over & is evidently closed under addition
and subtraction. We can show that it is closed under multiplication on the
left by any number s of ©. In fact

sk = 2 sikigijciver = D siki D giiCineyr.
7

1,8,7.r li,r
Hence by (4.2) we have

Sk = E szk;‘ ( Zdb’cg") € = Z Slkt'dlicwn

l,3,r l,i,8
which is obviously of the form >_; k! w;.
Let us define the matrices
Cp=(Cprs) =transpose R,, Dp=(dprs), G=1(grs) (p=1,2,---,n).
We may now state

THEOREM 4.* A mnecessary and sufficient condition in order that w,, w.,
-, Wy constitute a basis for a left ideal is that there exist integral matrices

Dy, D,, - - -, D, such that
GCp = DG (p=12,---,m)
where G is the malrix (g,,) of (4.1)

5. An explicit basis for a principal ideal. In particular every principal
ideal (d] has a basis w;, ws, - - -, w.. We have

d= Zdees, wy = Egiiei (1= 1,2, .-, ”)-
i i

Let s=)_s:¢; be any number of &. Then
sd = D, sidiciikex
s, 5.k
is in (d], and hence must be representable in the form
sd = D riw;= Zr.-g;,-e,-.
[y [3¥)

* Poincaré, using the same correspondence between ideals and matrices, obtained a quite differ-
ent condition that a matrix in canonical form correspond to an ideal. Bulletin de la Société Mathé-

matique de France, vol. 13 (1885), p. 167.
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It follows that for all rational integers s; there must exist rational integers
r; such that

(5.1) Zsid;‘ciik = E'igik (k=1,2,---,m).
.7 [y

Conversely, since every linear combination of the w; is in (4], it follows that
for all integers 7; there must exist integers s; such that (5.1) holds. These
conditions together are necessary and sufficient in order that w;, ws, - - -, wa
form a basis for the principal left ideal (d].

In particular, let us take r; =08, and denote the corresponding values of

s; by sas. Then (5.1) gives
(5.2) .Zsh:‘diciik = Zahigik =gn (B k=1,2,---,n).
L% i

Again, let us choose s;=38; in (5.1) and denote the corresponding values of
r; by r5;. Then we have

(53) Z&;..-d,-c.-i;, = Zdjchik = nga (h;k = 1:2: Y ”)c
$,7 7 [y

From (5.2) we have, taking matrices,
G= (gﬂ) = (src)( Zdicril) = (S")S(d)

where S(d) is the transposed second matrix* of d. In the same way we
obtain from (5.3)
S(@) = (r.)G.

Every number of the ideal (d] is of the form
20w = 2aigiiei = 2, 0iSaokies,
[y $,7 .k, 7
where S(d) =(c,,), and conversely every number of the form ) bose;

can be written
Dbicije; = D birugee; = 2 biraws
1,7 .k

$.k.7

and is therefore in (d¢]. Hence the numbers >_o;; ¢; constitute a basis for (d].
It follows from the definition of norm that N((d])=absolute value
S(d) = absolute value A'(d). We have now proved

THEOREM 5.1. The principal left ideal (d] kas a basis wy, ws, - - -, wa
where
w; = Zviiei, (0rs) = S(d) ;

7
the norm of (@] is the absolute value of A'(d).

* Dickson I, p. 86, II, p. 35. It is easy to show that d is an integral number if and only if S(d)
has integral elements.
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The conditions for associativity may be written
Echjcpia = D CogiCike-
i i
Let us multiply by d, and sum for k:
2dicoriCpin = 23 Cpaiicite,
ik ik

which may be written
S(d)cp = C,S(d) (P =1,2,---,n)

where d=)_ die;. This is exactly (4.2) with g;; replaced by ¢;; and d,,,
replaced by cpqr.

THEOREM 5.2. For every number d in &, S(d) is commutative with every
matrix C,; and if G=S(d) in Theorem 4, then D,=C, for every p.

We shall prove later (Theorem 11) that every integral matrix commuta-
tive with every C, is the transposed second matrix S(d) of some number d
of &.

6. Equivalent ideals. Let ® be a non-singular left ideal with basis
W, Wg, - - - , W, and let s be a number of &. If we set

wi = Egiieix § = queqa
7 q

we have ,
wis = Zgiiei = Zg.-,,e, queq
i b 4 q
= E 8ipSqCpgrr.
P.q,T
Hence ,
gii = Zgipsacmi = Zgip Zs'wcmi = th’po'vi'
.9 b4 q b 4
Taking matrices, we have
G =GS(s).
But _
GC, = D,G, S(s)Cp = CpS(s),
so that

G'C, = GS(s)Cp = GC,S(s) = D,GS(s) = D,G".

Therefore w:s, s, - - - , w,s form a basis for an ideal which we may call &’.
Furthermore, we obtain the same ideal &’ irrespective of the basis of &
with which we start. Using any other basis for &, we should have obtained,

instead of G’,
G = AGS(s)
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where A4 is an integral matrix of determinant +1 (§3). But G’'=A4G’ cor-
responds to the same ideal & as does G’. For a non-singular ideal  we may
call the uniquely existing ideal having the basis (w:s, wss, - - - , w,.s) where
(w1, wg, - - -, wn) is any basis for R, the ideal Rs.

Two non-singular ideals ®; and R are, according to analogy with the
usual definition in algebraic number theory, called equivalent if there exist
integral numbers s, and s, of &, neither of norm 0, such that

K151 = Kas2.

Let G, and G; be the matrices corresponding to particular bases of &, and
respectively. The condition for equivalence becomes

G1S(s1) = AG:S(s2)

where A4 is an integral matrix of determinant +1.

The following theorem is important in showing that the concept of ideal
class applies to all semi-simple domains and in pointing to a more com-
prehensive definition which is applicable to singular ideals as well.

THEOREM 6. A mecessary and sufficient condition that two non-simgular
ideal matrices G, and G, be equivalent is that the corresponding sets of matrices
Dy, D», satisfying the equations

Gle=D1pG1, GzC,,=Dz,,Gz (P= 1’2’ sy ”)

respectively, be similar—i.e., that D1, =ADyp, A~ for p=1,2,- - - , n, where A
is an integral matrix of determinant +1.

First, let us suppose that G; and G; are equivalent. We have
G.Cp = Dy,G1, G:Cp = D2,Go,
G:S(s1) = AG5S(s), [4] =+1

where S(s;) and S(s;) are each, by Theorem 5.2, commutative with every
C,. Then
GiS(51)Cp = GiCpS(s1) = D1,GiS(s1),

AG'::S(32)Cp = AG2Cp5(52) = AszGzS(S2)

= AD;,A-14G,S(s) .
Therefore
Dl,,GlS(sl) = AszA—]G],S(Sl)-

Since both G, and S(s,) are non-singular, we have

Dip = ADypA—! (p=1,2,---,n).
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Secondly, suppose that the sets of matrices D;, and D,, are similar:
GiCp = DyG1,  GCp = Dy, D,y = AD3p47, IA | =41,

Then
G.C,Gi! = D1, = ADy, A~ = AGLC,GrlA-.

We multiply on the left by Gi'4—! and on the right by G,, obtaining
GiA7IGCp = C G 1A7Gh.

Let T be the scalar matrix each of whose diagonal elements is |G;|. Then
TGi'A~'G, is an integral matrix and, since it is commutative with each C,,
it is the second matrix S(s) of some element s of ©.* Then

TG'A~Gy = S(s),
and since T is commutative with every matrix,
G\T = AG»S(s).

Moreover, T'=S(|G,|), so that the ideals ®, and R, are in fact equivalent.

7. Ideal matrices. An essential point in our proof of Theorem 6 was that
|G1|#0. We were therefore unable to consider equivalence of singular ideals.
Moreover, the transitive character of equivalence was not apparent from its
definition. We now proceed along a line suggested by this theorem but some-
what broader.

We assume a semi-simple rational algebra ¥, and a set of integral numbers
& of order #, the basal numbers being chosen so that the constants c;;; of
multiplication are rational integers. As before, we define the matrices
Cy=(cprs) for p=1,2,- - - | n, where ¢, is the element in row 7 and column
s. Let D,=(d,..) be any set of » integral matrices. All the integral matrices
G which satisfy the equations

(7°1) GCP=DPG (P=1,2,;”)

will be said to constitute a minor class of ideal matrices, and the set of matrices
Dy, D,,- - -, D, will be called a set of corresponding class matrices. The
zero matrix at least will satisfy (7.1) no matter how the class matrices may be
chosen.

All the matrices of a minor class constitute a modul. In fact, if Gy,
Gy, - - , G, are ideal matrices of the same minor class and if &y, kg, - - - , &,
are rational integers, then

G=FkGi+ kGt - - -+ kG,

* Theorem 11, to follow.
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is an ideal matrix of the same minor class. We shall show that if % is semi-
simple there exist  <# linearly independent matrices B,, By, - - - , B, which
constitute a basis for the ideal matrices of the minor class.

LemuMA 7. If A is a semi-simple algebra, new basal numbers for S and new
constants of multiplication c§,-, can be so chosen that |c:,, | #=0.

Let us suppose that our basal numbers are chosen as in §2, and that the
¢ijx are defined by

(72) €ie; = Zciikek (i,j = 1’2’ Tty ”)-
k

Since e, is a principal unit, ¢j: =cu:=0;. If we apply to the basal numbers

the transformation

(7.3) e = Xaief, a=|a.|#0,
i

we get from (7.2):

r,r ’
Z Qipliglp €q. = Ect‘ira‘nea
P.q r,s

'y
= Z QipQjqCpqi€s
P.a.t

so that
(7.9 Z a"patcc;qi = chiaii (f,S,j =1,2,.---,m),

P.q

where the c,q, are defined as in (7.2) with each letter primed. For a fixed 7
let us form the determinant whose element in row r and column s is (7.4):

(j=1’2,...’?‘).

(7.5) a?| cri| = l Zasicm'

In (7.3) let us now choose

Qij; = Ti; = Ecijrcrkk-
r, k

If U is semi-simple, a= |r,, | =d>0,* and
@ = Zc‘fmchkk = Zahrchkk = Zcrkk
h,k ok k
so that

Zanc.‘jr = Zcijrcrkk = Tije
r r.k

* Dickson I, p. 108.
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From (7.5) with j=1 we obtain

d2[ C,,-,ll =d
so that |c,., | 0.

In making this transformation we may have lost the property that the
basal numbers of % form a basis for the set & of integral numbers. We must
now restore this property.

Bring* the fractions c,,k to a common denominator 8, write 56,,],—]1,,;
where the 4;;,, are all integers. Set e;=de/. Then

— 1,0 — oo
€c; = d%je] = §* Zcijkek = Zhﬁkék-
k k

We use the new basal numbers e; whose constants %;;, of multiplication are
rational integers. We note that

| hnll = laC:aII = 6”' C:all #= 0.
Proceeding according to the method of Dickson,{ we see that every
element x of & can be put into the form
X1 X2 Xn
(7.6) x=—5€1+352+~~-+35,.

where

Zhnihikk # 0,
ik

and where the x; are rational integers. Of all numbers x# in & having
X=%=--- =x,,=0 but 2,50, choose one having x,>0 and minimal for
¢/ . If there is no x of this type having x,0, choose ¢/ =0. We have

Dél' = buer + breea + - - - + blném

D’= b P bnn,
a.m € 2062 + + bane

De,] = bnn€n-

Now (ef, &/, - - , &) form a basis for &. For, let

x = B(xm + 262+ - - -+ Xnen)

* Dickson I, pp. 161-162.
t Dickson I, p. 162.
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be any number of &. Set

2= qibu +n 0 =17 <bn).
Then

1
x— qiel = —E(rm + xie+ -+ xden)
has its coefficient of ¢, less than by; which was minimal, so 7;=0. Similarly,

set
%7 = gabas + 12 (0 =72 < bay).

Then x — q1&1' —¢2es lacks the basal numbers ¢; and e;.  Proceeding in this way,
we have after n steps:

* = qiel + qeed + - - - + gnen

where the ¢; are rational integers. Since & is of order #, we now know that
b0 for every 7.

Since the nur,nbers ¢/ ,e, -+, € form a basis for &, we know that the
new constants 4;;; of multiplication are rational integers. Transformation
(7.7) can be written

D
€¢='—'—ZB,'.'€," (i=l,2,"',ﬂ)
b
where b= |b,,| and B,,, the cofactor of b,,, is zero for r <s. From (7.5) we have
Zauhm'

with a;;=(1/b)DB;;=0 for :>j. Hence

azl h:d' =

(1.2I h:.ll = a'l‘ll hnll #0,

and therefore |/, | 0.

Since the basal numbers ¢, €, - - - , €, with which we started and the
numbers ¢/, ¢/, - - - , € each form a basis for the set &, we know that there
are transformations with rational integral coefficients and of determinants
+1 carrying each set of basal numbers into the other set.

8. Effect of change of basis on the fundamental matrices. Let us make
a change of basis (7.3) where the a,, are rational integers of determinant +1.
By (7.4) we have

’
chirart = Zaplaiqccqb
r 8,9

Multiply by the cofactor 4;; of a;; and sum for £. Then
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Alpi; = Zaiq[ Zap.qu:]An.
q.t L]
Passing to matrices, we have
A o R

where 4 =(a,,) as our induced transformation on the matrices C,.

We shall more generally define the matrices D, , which will be said to
correspond to the matrices D, under transformation (7.3) of determinant
+1, as the solutions of the equations

(8.1) D,=A[;a,.D.’]A-1 (p=1,2,---,m).

The matrices D, are evidently integral if the matrices D, are integral. QOur
definition is justified by the following result:

LemuMA 8.1, If G is an ideal malrix satisfying the equations

GC?=DPG (P=l,2)""”),
then G' = A—'GA satisfies the equations
G'C; = D;G’ =12 ---,m

where CJ and D, are given by (8.1).
From (8.1) and the equations GC,=D,G, we have

GA[ }:a,,.c.']}:—l = A[ Das. .’]A-'G,
and therefore
A-'GA[ }:a,,.c.'] = [ 0 .']A"GA.
If we multiply by the cofactor 4,, of a,, and sum for p, we obtain
A-IGAC! = D/A"GA,

which proves the lemma.

LEmMA 8.2. If the basis of © is so chosen that |c.n | #0, then an ideal matrix
G whose first column consists exclusively of zeros is a zero matrix.

From our definition of ideal matrix we have
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Zg'kcp’“ = Zdﬂkgkl (p,r,s =12,---, ")-
k k
If gi1 =0 for every k, then
ngkcpkl__-o (”P= 1’2, R 1”)-
k

Taking matrices, we have
G(C.rl) =0.

Since the second matrix is non-singular, G must be of rank 0.

9. A fundamental theorem. Let % be a semi-simple algebra, and let
ey, €, -+ , £ be a basis for a set & of integral numbers of ¥, where ¢, is a
principal unit. We transform by a matrix 4 of determinant +1 to another
basis ef, ef,- - - , ed for which |c/|#0. Every ideal matrix G is thereby
transformed into an ideal matrix G’ =A4-'GA, and inversely G=AG’'A1, so
that there is a one-to-one correspondence between the ideal matrices G and
G’

If G’ is an ideal matrix of a certain minor class, so is —G’. If in the minor
class defined by the class matrices D/, D{,- - - , D4 (§7), there are ideal
matrices G’ =(g,,) in which g,;0, define as B,’ one such matrix in which
gn>0 and is minimal. If no such matrix exists, set B{ =0, which surely is
in the minor class. If there are in the minor class matrices for which
gu=gun= -+ =g1,1=0 but gn=0, define as B{ =(bs,) one such matrix
in which g =0:1>0 and is minimal, otherwise set B{ =0. Then B{,
B{,- - -, B/ form a basis for the matrices of the minor class.

For, let G’ = (g,,) be any matrix of the minor class. Set

gu = kb +n 0 =r <bu).

Then G’'—mB! =(g.!) is an ideal matrix of the minor class having as its
first element ;. But b;n was minimal, so r;=0. Now set

841 = hoboor + 12 0 = 73 < baay).

Similarly G' — mB! — hyB{

has two zeros in its first column. Proceeding in this way, we find after n

steps that
G — hB{ — h:Bf — - - — h.B,

is an ideal matrix of the minor class whose first column consists exclusively
of zeros, and which by Lemma 8.2 is therefore the zero matrix. Thus

G' = mB{ + h:B] + - - -+ haBy

where A4y, ks, - - - , ko are rational integers.



86 C. C. MACDUFFEE [January

Let us now transform back to our original basis. We have G=AG’'4-},
and we define B;=AB,’A~}, so that every ideal matrix G is expressible in

the form
G = h131+h2Bz+"'+han

where the &y, ks, - - - , k. are rational integers. Conversely, every such matrix
is in the minor class. We now have

THEOREM 9. Relative to every basis e, e, - - , ea for a set & of integral
elements of a semi-simple rational algebra A, every minor class of ideal maltrices
has a basis composed of n matrices By, B, - - - | B, such that the totality of ideal
matrices of the minor class is given by

kBy+ heBs + - - - + haBn

where hy, hy, - - - , ha are independent rational integral variables.

10. Rank of a minor class. Suppose that as in the preceding paragraph
we have a set © of integral numbers with basis so chosen that Ic,’.1 | #=0,
Then we have seen that every minor class has a basis Bf, B{,---, B,’
such that in each matrix B;’=(bi.,) we have by, =0 for r <k, and either
bxx1>0 and minimal, or B{ =0. Suppose that the B{ are linearly dependent:

d\B{ + d:B; + - - -+ d.B] =0,

where we may assume that the d; are rational integers not all zero. Con-
sidering only elements in the first columns, we have

dibir + doborr + - - -+ dibasr =0 (r = 1’2, s, ").

Suppose that di=ds= - - - =d, 1 =0 while d,70. Then we have d,b,,; =0
so that b,, =0 and hence B,'=0.

If thereis a dependence relation among the remaining # — 1 basal matrices
B!, we may repeat the argument and show that another one is zero. We
finally reach a point where all the basal matrices which are not zero are
linearly independent. The number 7 of linearly independent matrices in a
basis is called the rank of the minor class, and if » <# the class is called
singular. When we transform to another basis for &, we see from the relation
B;=AB/! A" that the rank is preserved.

Just as in the case of change of basis of an ideal, it can be shown that,
relative to the same basis for &, the most general transformation from one
linearly independent basis to another is given by

Bt’ = ZaiiBi (1' = 1,2’ ] ’)
=1
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where (a,,) is an integral matrix of determinant +1. The rank is preserved
under such transformations also.

11. The principal minor class. All matrices commutative with the funda-
mental matrices C, evidently constitute a minor class, called the principal
minor class. The members of this class we shall call principal ideal matrices.
We shall now prove the result required to complete the proof of Theorem 6:

THaEOREM 11. Every principal ideal matrix is the transposed second matrix
S(k) of some integral number k of S, and conversely.

The conditions for associativity may be written*
Ecrihcpha = Zcprhchis
h h
or
(¢ria)Cp = Cp(Cria) .
That is, the matrices (c,:) =S;=S(e;) belong to the principal minor class.
Let k=kiei+kaes+ - - - +kne, be any integral number. Then

S(k) = k1S1+ RS2+ - - - + kaSa

where the k; are rational integers, and therefore S() is in the principal minor
class. This proves the converse.

We consider now the set of all matrices G which are commutative with
every C,. We have seen that every such minor class has a basis By, By, - - - ,
B,. Since the matrices S; are in this set, we have

Si = X ai;B; (i=1,2,---,n)
i

where the a;; are rational integers. Now |a,, |0, since the S; are linearly
independent. Therefore we can solve these equations for the B;, obtaining

Bi= XruSi=S(r) (i=1,2,--, )

where each 7,; is rational, and r;=7,6,4+7ne:+ - - - 4746, is @ number of the
algebra . But S(r;) =B; is an integral matrix, and hence by the footnote
to §5 each r; is an integral number and therefore the 7;; are rational integers.
Then every matrix

G=mB+ hB:+ - -+ + h:B,
can be written
G = S(k), k = Zh;f{,‘e,‘,

i,

* Dickson I, p. 92.
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where the %; and r;; are rational integers, so that % isa number of &. This
completes the proof of the theorem.

12. The class number. We shall now establish a few properties of minor
classes.

THEOREM 12.1. If G is an ideal matrix of the minor class ¥, and if P is a
principal ideal matrix, then GP is an ideal matrix of the minor class .

Let Dy, D,,- - -, D, be the class matrices defining the minor class f.
Then

GCP=D17G) PCP':CPP (p=1’2)"'y")°
Therefore
GPC, = GC,P = D,GP,

which proves the theorem.

THEOREM 12.2. If the minor class ¥ contains one non-singular ideal matrix
G, then the n basal matrices of ¥ are linearly independent, and ¥ is of rank n.

Let G be a non-singular matrix of £. Let Py, P,,- - - , P, be linearly
independent matrices of the principal class. Then GPy, GP,- - - , GP, are
linearly independent matrices of class f, for if there were a dependence rela-
tion
(12.1) > dGP; =G Y d:P; =0,

where G is a non-singular matrix, we should have > d;P;=0, contrary to
assumption. Let By, B,,- - - , B, be a basis for f. Then

GP; = ZbiiBi (i=12,---,mn),
H

and since the GP; are linearly independent, so are the basal matrices B;.
Thus the rank of ! is ».

THEOREM 12.3. If U is a division algebra, every minor class except the zero
class is non-singular.

Since Y d;P; is the transposed second matrix of a number of ¥, it is either
of rank # or of rank 0. Thus in (12.1) either G=0, or else di=d;= - - -
=d,=0 and the matrices GP; are linearly independent.

THEOREM 12.4. If two minor classes contain the same non-singular ideal
matrix, the classes coincide.
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Suppose that
GC, = Di,G, GC, = Dy,G, |G| =0 (p=1,2, -, n).

Then D,,G = D,,G, and since G is non-singular, D,,=D,, for every p. Thus
the minor classes coincide.

The theorem is not true with the omission of the word “non-singular.”
Thus the zero matrix is common to every minor class.

In general we shall not expect the number of minor classes to be finite.
Thus Dy, D,, - - - , D, may be taken as perfectly arbitrary integral matrices,
and the equations GC,=D,G will be satisfied by the zero matrix at least.
Moreover, if there be matrices satisfying a relation GC,=D,G, then

AGC, = AD,A-14G,

so that the matrices AD,4A~! define a minor class in general distinct from
the given class.

Two minor classes whose class matrices are connected by a relation
D; = AD,AY, |4 = £ 1 (=12 ,m

will be called similar minor classes. We now define the (left) class number h
of the set & of integral numbers of U as the (cardinal) number of dissimilar
non-singular minor classes of (left) ideal matrices.

It is evident from Theorem 6 that when ¥ is an algebraic field, ~ becomes
the ordinary class number of the field. All ideal matrices corresponding to
principal ideals belong to minor classes which are similar to the principal
minor class. We have therefore, without using the concept of ideal multi-
plication, succeeded in generalizing to sets & of semi-simple algebras the
concept of ideal class in a satisfactory manner. For instance, we may prove
in the usual manner

THEOREM 12.5. A necessary and sufficient condition in order that every
pair of numbers of © may possess a greatest common right divisor expressible
linearly in terms of the numbers is that the left class number h of & be 1.

13. The density of ideal matrices. It is recognized that the addition of
Dedekind ideals cannot be defined in any useful way, because of the fact
that associated numbers correspond to the same principal ideal. This is not
true of ideal matrices, however, and we have a satisfactory additive theory
within each minor class.

Let By, B,,- - - , B, be a set of basal matrices for a non-singular minor
class I. Every ideal matrix of I-has the form

G =aB,+ aBy+ -+ -+ a.Bn
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where the ¢’s are rational integers, and conversely every such G is in I.
Since the B; are linearly independent, this representation is unique. Addition
and scalar multiplication within the minor class ! are defined as in the theory
of linear algebras, and follow the usual laws.

We have seen that Sy, Ss,- -+, S. constitute a basis for the principal
minor class (§11). The numbers

@ = a1e1 + ases + - - - + anea
are in one-to-one correspondence with the principal ideal matrices
S(a) = a1S1+ asSe + - - - + anSa,

which in turn are in one-to-one correspondence with the ideal matrices G
of each class !, and this correspondence is preserved under addition and
scalar multiplication. Thus we have

THEOREM 13. The ideal matrices of every non-singular minor class t are
in one-to-one correspondence with the numbers of the set &. This correspondence
is preserved under addition and scalar multiplication.
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