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Introduction

The well known series of Stielt jes is a power series with real coefficients:

(1)
Co C\ ¿2

z       z2       z3

such that the persymmetric determinants

An =

Co      ,     C\,   • •  ■   ,  C„_i

C\       >      Í-2,   •       •   ,   Cn

Cn— 1 »      Cnj ,   C2n-2

B.m

C\,        Ci

Ci,       Ci

,   Cn

,  Cn+1

Cn+1 y   ' '  '   >   c2n—I

(« = 1, 2, 3, ■ • • , A0 = l, B0 = l) are all positive.   Stieltjesf connected the

series (1) with a continued fraction

(2)
1 1 1

a\Z +   02  + 03Z +

in which all the a,- are real and positive, and are uniquely determined by the

d in accordance with the relations

(3) 02n = A^/(B„Bn^i),     a2„+i = B¿/(AnAn+i)

Conversely, the positive real numbers a< (¿ = 1, 2, 3, • • • ) uniquely deter-

mine coefficients d of a Stieltjes power series. Thus to every Stieltjes con-

tinued fraction (2) with positive ö< there corresponds a Stieltjes series (1)

and vice versa.

In the work of Stieltjes the convergents of (2) separate into two sets,

the odd and the even convergents.  When the seriesj ^at is divergent, these

* Presented to the Society. April 16, 1927; received by the editors June 11, 1928. This paper

is essentially a thesis prepared at the suggestion of Professor E. B. Van Vleck at the University of

Wisconsin.

f Recherches sur les fractions continues, Annales de Toulouse, vol. 8, J, pp. 1-122, and vol. 9,

A, pp. 1-47, 1894-95. Published also in vol. 32 of the Mémoires présentés à l'Académie des Sciences

de l'Institut National de France,

% Here and henceforth we writej] in place of£»°Li-
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two sets of alternate convergents have one and the same limit which is a

function analytic throughout the complex plane, excepting the whole or a

part of the negative real axis. When, on the other hand, the series 2^a,-

converges, these two sets have distinct limits Pi/qi and p/q respectively,

which are meromorphic functions having only simple poles all of which are

real and non-positive. The numerators and denominators p, Pi, q, qi are ana-

lytic functions between which there is the relation

(4) piq-pqi=- + l.

In the case of a convergent Stieltjes series (1) the former alternative is

always realized, but for a divergent series either alternative may be realized.

Thus for some divergent series the continued fraction of Stieltjes picks out

two functional equivalents, while for others only a single equivalent is yielded.

In this article it will be convenient to replace 1/z by z in (1) and (2) and

then drop the unessential factor z. We then have the Stieltjes series

(5) Co — cxz + CiZ2 — Csz3 + • • •

with the same inequalities :

(6) An > 0,    Bn> 0,

while the continued fraction becomes

1 Z Z Z-

öi-r-a2-|- a3 + a* + • • •

When ^a< is convergent, -the two sets of alternate convergents have

limits which are distinct and meromorphic over the entire plane except at

the origin, while if X/t,- is divergent both sets have the same limit which

is a function analytic over the entire plane except the whole or a part of the

negative real axis.

With any power series

(8) ko + kiz + kiz* + • • • (¿0 3*0),

Padé connects a table of approximants*

(7)

m = 0

m - 1

» = 0

•Do
= ko,

A.o'

n= 1

No,!

Do.i
= ko + hz,

■Vi.1

A..'

* Padé, Thesis, published in the Annales de l'Ecole Normale Supérieure, (3). vol  0, supple-

ment, pp. 1-93, 1892.
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where iVm,„(z)/.Dm,B(z) is the rational fraction, taken in its lowest terms,

in which the degrees of numerator and denominator do not exceed « and m

respectively, and whose expansion into a power series, P{z), agrees with (8)

for a greater number of terms than any other such rational fraction.

If a particular approximant does not appear more than once in the table,

that approximant is said to be normal, and when every approximant is

normal, the table is called normal. The power series P(z) for a normal

approximant, in which necessarily the degrees of numerator and denominator

are exactly n and m respectively, agrees with the given series term by term

up to and including the term of degree m+n and no further.

Professor Van Vleck* showed that the series of Stieltjes (5) has a normal

Padé table. The odd convergents of the continued fraction (7) fill the

principal diagonal of the table, while the even convergents fill the parallel

diagonal file immediately below it. Consequently these two diagonal files

of approximants will either converge to a common limit analytic throughout

the entire plane except over the whole or a part of the negative real axis,

or to two distinct functions, meromorphic everywhere except at the origin,

according asXX' diverges or converges.

The first main question which I have considered in this article is the

following:

1. What holds regarding the convergence of the other diagonal files parallel

to the principal diagonal in the Padé table for the series of Stieltjes}

I find that the sequence of convergents in any file parallel to the principal

diagonal converges to a limit.  Three cases arise.

Case I. If the series £X- is convergent, no two files to the right of and

parallel to the principal diagonal have the same limit, and no two parallel

files below the principal diagonal have the same limit. In this case all the

limit functions are meromorphic over the entire plane except at the origin.

The poles of the limits of the files to the right of the principal diagonal are

all simple and lie upon the negative half of the real axis.

When 2a< diverges there are two possibilities which exist, namely :

Case II. The file of approximants in the principal diagonal and the

successive parallel files to the right of it up to the »th file inclusive converge

to one and the same limit, while subsequent to the «th they converge to

distinct limits. Likewise the successive parallel files below the principal

diagonal, down to an mth. file inclusive, may converge to the same limit,

while subsequent to the wth file they converge to distinct limits.

* On an extension of the 1894 memoir of Stieltjes, these Transactions, vol. 4 (1903), pp. 297-332.
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All the limit functions in this case are meromorphic over the entire plane

except at the origin.

Case III. Every diagonal file parallel to the principal diagonal converges

to one and the same function, which is analytic over the entire plane excepting

the whole or a part of the negative half of the real axis.

In Case I, the series (5) diverges, while in Cases II and III it may either

diverge or converge. Whereas Stieltjes obtained two distinct functional

equivalents of the divergent series (5) in Case I, we now have an infinite set;

and whereas Stieltjes obtained a single functional equivalent when 5^a,-

diverges, I obtain an infinite number in Case II, and but one in Case III.

Generalizing (1), I shall call any series

(9) ± (coz" - CÍZ-+1 + c2z»+* -•■•),

in which « is a positive or negative integer or zero, a Stieltjes series if the

coefficients c< satisfy the Stieltjes inequalities (6).

If the first n terms of (5) be removed, the remainder is still a Stieltjes

series. Instead of removing terms I have concerned myself with the following

question:

2. Can the series (5) be so continued to the left by successive addition of new

terms that the extended series shall be Stieltjes series!

I find that the necessary and sufficient condition for a first extension

is that the series ^2a2i, with even subscripts, shall converge.

Two cases arise:

Case A. If the series J^a,- converges, the Stieltjes series (5) may be

extended to the left by the addition of an arbitrary number of new terms,

forming thereby a series whose coefficients satisfy the Stieltjes inequalities

(6). The coefficients of the prefixed terms are not unique.

Case B. If the series ^a< diverges and ^a2i converges, the series (5)

may be extended by the addition of a term, — c_iz_1, in which c_i may be

taken equal to or greater than Ylaa- If c-i >£a2<> further extension is never

possible; but if c_i=2a2»> the like series ^2aU in the new Stieltjes continued

fraction belonging to the extended series may or may not converge. If it does

converge, a second extension is possible. The coefficient of the new term,

C-iZ~2, prefixed may be taken equal to or greater than ^a-a. Only if c_j

—¿2ou, can a third term be prefixed, and so on.

When n terms can be prefixed, all the coefficients in the added terms are

unique with the exception of c_„. For an infinite extension all the coefficients

are unique. There exist series which can be extended to just n terms and

others which can be infinitely extended.
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Chapter I.  The Padé table of approximants

To each pair of non-negative integers (m, n) there corresponds one

rational function of the complex variable z = x+iy: Nm,n(z)/Dm,n(z) taken

in its lowest terms, in which the degrees of numerator and denominator do

not exceed n and m respectively, and whose expansion into a series in ascend-

ing powers of z agrees term by term with a given series

(8) k0 + kiz + k2z* + ■ ■ • (*o?*'0)

to a higher degree than all other such rational functions. In fact, if we let

Nmin(z)=Sa+sxz+ ■ • • +snz" and Dm,n(z)=t0+tiZ+ ■ ■ ■ +tmzm, the con-

ditions that the series

(10) (k0 + **+••• )(*o + hz H-+ <«zm) - (jo + slZ + ■ ■ ■ + snz")

shall begin with the (m+n)th power of z are the following:

(11) kito + *<_i*i + ■ • • + ki-mtm = Si

(» = 0,1, • • • , »;    ki = 0   if   j < 0),

(12) kn+it0 + kn+i^ih + • • • + ¿„+I_m/m = 0

(i = 1,2, •■•,»;    k,■ = 0   if   j < 0).

If we take to equal to the determinant

Am-l,n  =

Rn— m+1  '   '   '   ^n

Rn '   '   '   Rn+m—I

and assume Am_irB?í0, then all the other /, and also the s¿ are determined

uniquely, and Nm,n and Z>m,„ may be written in the form of determinants:

«n— m+1  '   '   '   «n f^n—mZ     "T"   Kn—m~\Z ~\~   '   *  *  "r*   «OZ

(13)   Nm,n(z) =

kn+l ■   ■   ■   kn+m knZn +   ¿n-lZ""1  +     ■   ■   ■   +   ko

b .h <7r
«•n—m+1 ^n "

(14)   Dm,n{z) =

*n+l '   '   '   Rn+m      *

The table of approximants is normal when and only when all the de-

terminants
k       ■■ ■ k

(m,n = 0,1,2,

• kn+m

/m, n = 0, 1,2, • • • \

\     ki = 0, for i < 0/
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are different from zero.*   We will henceforth assume the normality of the

table.

In a normal table Padé distinguished three types of regular continued

fractions. We shall need to use here the stairlike type. This is obtained by

starting from a border element of the table of approximants, and passing

hence alternately one step to the right and one downward or vice versa.

If, for example, we start from the «th element of the upper border of the table

and proceed hence one step to the right and one down alternately, we get

the sequence of approximants

tfo.n-l(z) No.n(z) #!.„(«) tfl.n+l«
(IS)-!        - )        -I        - !    •   •   •

Z>o,n-l(z) Po.n(z) £>1,„(Z) £>l,n+l(z)

whose terms are the successive convergents of the continued fraction

(16) k0 + kiz + kiz2 H-h ¿„-iz-1 + zÀ-     -^—     -^- 1,
L Ai<"> + A2<"> + Â,<"> + • • • J

in which

(17) fa, =->      A2i+i =
¿ii-l ,t+nAi-2 ,i+n— 1 Aj_l ,,-+n_lA< ,<+n

If we start with the corner element of the table and proceed hence one

step downward and one to the right alternately, we get the sequence of

approximants

tfo.o(z)      iVi.o(z)      tfi.xW      JV2il(Z)
(18) ->    ->    ->    -> • ■ ■ >

ZVo(z)      A.o(z)      Z>i.i(z)      Dt,¿z)

whose terms are the successive convergents of a continued fraction

1        z        z        z
(19) —     —     —     —

ai + a2 + a3 + «4 + • • •

in which

fl2< =-■—'-;        Ö2i+i-•

A,_i,iAi_2>,_i Ai_i,i_iAj,,-

It is to be understood that A_i,0 is to be taken here and hereafter equal to

unity.

If now the continued fraction (16) converges, the two adjacent diagonal

files of the table from which (15) is obtained by selecting approximants

from each alternately, converge to one and the same limit, namely the limit

of (16).  On the other hand, if these two diagonal files converge to separate

* For details, see Padé, Thesis, loc. cit; or O. Perron, Die Lehre von den Kettenbrücken, 1913,

Chap. X, pp. 418-465.
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limits, the sequences of alternate convergents of (16) must have separate limits.

It is easily seen that not only does the series (8) uniquely determine the

continued fraction (19) in the case of a normal table but conversely (19)

determines the series. The study of the convergence of the files of approxi-

mants parallel to the principal diagonal of the table can therefore be made to

depend upon the sequence of numbers a¿ in (19). In the next chapter such a

study is made for the diagonal files to the right of the principal diagonal of

the table in the case of the continued fraction of Stieltjes.

To investigate the convergence of the diagonal files below the principal

diagonal which start on the left border of the table, I find it desirable to turn

to the Padé table of the reciprocal series

(20) 5o + «iz + 52z2 + S3z3 +

which is determined by the identity

(21) (k0+ klZ+ ■ ■ ■)(5o + ô1z+ ■ ■ ■) = I.

The approximant corresponding to (m, n) for this series is the reciprocal of

the approximant corresponding to (», m) for the original series (8) ; and when,

as supposed, the Padé table of (8) is normal, the table of the reciprocal series

is also normal, inasmuch as the first m+n+\ terms of the latter series are

determined by the first m+n+i terms of the former and conversely. Thus

the question of the convergence of the diagonal files to the left of the principal

diagonal in a normal Padé table may be replaced by the consideration of the

convergence of the diagonal files to the right of the principal diagonal in the

table of the reciprocal series.

Let now Nn,m(z)/Dn,m(z), m>n, be an approximant of the series (20).

Then

(22) Dn.m = w(m,n — m) Nm,n,

(23) iV»,m = w(m,n — m)Dm,n,

where w{tn, n — ni) is a numerical factor independent of z. By (13), (14) the

relation (22) may be written

(24)

5n- ro+1

»n+1 9n+m 1

Z"

z°= 1

= w(m,n — m)

Km—n+l  '   '   '   «m j Km—n%      ~t"   ^m—n—lZ "T"

Km+1        '   '   '   ^m-t-n,       £mZ      ~t"   ^m-l2 r

with a similar equation resulting from (23).
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On setting z = 0, and replacing n by n+m in (24) the latter becomes

(25) Am'_i,„+m = k0w(m,n)-Amk:¡.   m,

where Am,„ denotes the determinant Am,n expressed in   terms of  the  ô<

instead of the k{.

We will now determine the constant w(m, n).

From the identity (21) we have
5o#o = 1,

Siko + Soki = 0,
(26)

Snko + ôB-i^i + • • • + Sokn = 0,

which gives

(27) on  =   (-   1)»<»+»/2-An-1.1.
kon+1

Also, setting m = 1 and replacing n by n — 1 in (25) we have

(28) 5n = k0w(l,n - l)AB-i,i,

which with (27) gives
1

(29) W{\,n)   =   (-   l)(»+D(n+2)/2
hz-+3«0

I shall now prove by mathematical induction that*

1
(30) w(m,n) = (- i)(»+ix»+2)/2+m-i.

We see from (29) that the value of w(m, n) given by (30) is correct for

all values of n if m = 1.

I shall assume the correctness of formula (30) for all values of n when

»» = 1, 2, 3, ■ • • , p — l, and prove, on that hypothesis, that it is correct for

m=p, and hence for all m.

By a well known rule for multiplying a determinant by one of its minors,

Aj,_2,n+p-lA3,_2,n+p+l (Ap_2,n+p)
(31) Ap-l,n+p   —

A'_ip—3,n+j>

Then by (25) and what we have assumed, (31) may be written

(_   iyn+lHn+2),2+p-l[_Aw+"-^_Alt^±?Zl_1

L   A„+P_iip A„+p_i,pAn+p_2,p_iJ(32)   Ap'_1,„+p=- -—-"""-        -"r-+P"

— ¿o i>+"+2(AB+p_i,p_2/An+p_iipAn+p_2,p_i)

* Cf. Hadamard, Liouville's Journal, (4), vol. 8 (1892), §24, p.  138.   Hadamard obtains (25)

with w(m, n) as in (30) but by a different method.
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But by the above mentioned rule for multiplying a determinant by one of its

minors, the quantity within the bracket is equal to — A„+J,_i,p_2/A„+P_2,p_i.

Consequently, (32) may be written

C_   1\(n+l)(n+2)/2+p-lA    ,        ,

\Oä) Ap_l,„+p   —   -
¿02p+n+2

Comparison of (25) and (33) shows that the value of w(m, n) as given by

(30) is correct for m=p, as was to be proved.

As particular instances of (25) we have

(34) Am'_lim = ( - l)mAm-i.Jko*°>,

(35) A^,^.! = ( - l)"-1Am_2.m/¿o2"'-1 •

Due to symmetry of the identity (21), the 5, and the ¿, may be inter-

changed in (35), giving the relation

(36) Am'_2,m = (- l)"-1Am_l,m_1/¿o2m-1.

We will now consider the continued fraction of the form (19) belonging

to the normal* series

(37) 5i + 52z + 53z2 + • • ■ .

If we denote by a[ the a¿ obtained from (37), then by (34), (35), and (36) we

obtain

a'a = - (A¡'_i,¿)2/[A/_i,<+iA/_2,¿] = AíLiVfA.-.iAi-i.i-i] = a2í+1,

a'2i+i = (Ai-i.i+OVfAi'-i.iAi'.i+i] = — A<,,/[Ai_i,,Aj,i+i] = a2i+2.

We have thus proved the following theorem:

Theorem 1.  // k0+kiz+k2z2+ ■ ■ ■ is any normal power series giving rise

to the continued fraction

1       z       z
(38) —     —     —

«i + a2 + a3 + • • •

and 50+5iZ+52za+ ■ • • its reciprocal, then the continued fraction of the form

(19) associated with the series Si+52z+S3z3+    -is

\       z       z
(39) —     —     —

a2 + a3 + a4 + • • •

* A normal series is one giving rise to a normal Padé table.
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Chapter II.   The convergence of the diagonal files foe the series

of Stieltjes

I pass now to the series of Stieltjes

(5) Co — Ciz + c2z2 — • • • .

The work of the preceding chapter is applicable here if we replace through-

out ka by Cu and £2,_i by — c2<_i. In particular the continued fraction (16)

becomes*

(40)
r 1      z      z -1

G„(«)+ (-*)»- , -   , - ,
Lai"+ a2" + <h"+ ■ ■ ■ J

where Gn{z) =c0—CiZ+ • ■ ■ +( — l)n~1en_i2B~1 and the a? are obtained by

replacing every ki+n by ( —l)v,+B in (17). It is easily seen that now, in place

of (17), we have

#2» = A?_i,i+n_i/|Ai_il¡+BA¿_2,¿+B_iJ,

(41)
02¿+i — A,-2_i,t+n/[A¿_i,i+B_iAi>,+BJ,

in which it is to be understood that the Am,„ are the same as in Chapter I

with every ki replaced by c<.

In particular,

ff« - Ai/iBiB^) = A^-i.i-iAAi-i.iAi-s.i-i),
(42)

ö2i+i = Bí2/(A¡Aí+1) = A2_i,,/(A¿_i,i_1Ai,i).

Thus each a? is obtained from the corresponding at by means of the

substitution of c<+„ for c< throughout.

Since, by hypothesis, An and Bn, for n = \, 2, 3, ■ • • , are positive, all

the determinants AOT,B formed from them by removing the first r rows

and r columns are positive, f Therefore, in (40), the bracketed part,

1        z        z
(43) -     -     -

of + 02" + af + • • ■

is a continued fraction of Stieltjes with positive a<". We may therefore apply

his convergence results for the continued fraction (2), bearing in mind that,

as noted in the introduction, z has been replaced by 1/z in (2) and then the

factor z has been dropped. It is readily seen that if P,-(z), Qi(z) denote the

numerator and denominator of the convergents of (2) (after a< has been re-

* Henceforth for convenience I write a" in place of a¡ .

f Sylvester, Philosophical Magazine, (4), vol. 4 (1852), pp. 140-141.
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placed by a,*), and if P/(z), Q<'(z) denote the corresponding numerators

and denominators of (43), then*

pUz) = zi~lp2i(—)'     <?2<(z) = **Qu(—\

P2i+1(z) = ziPti+ii—Y     qL+i(z) = i*«(k*fi(--)-

The sequence of convergents accordingly separates into two sets, the even

and the odd convergents. Stieltjes showed that when 2a" is convergent,

the numerators and denominators of the even convergents converge to

limits p(z), q(z) respectively; likewise those of the odd convergents to limits

Pi(z), <7i(z), and these limits are entire functions whose zeros all lie upon the

negative half of the real axis.  These functions are connected by the relation

(44) pi(z)q(z) - p(z)qi(z) = 1.

On the other hand, when 2a? is divergent, the even and the odd convergents,

converge to a common function F(z) which is analytic over the entire plane

excepting the whole or a part of the negative half of the real axis.

If now we denote the ith convergent of (40) by Z7i(z)/F,(z), we have

Ui(z) Pi (z)
Í45) -|f = G.W + (- zY—^- = Gn(z) - (- z)-1

Vi{z) Ql (z) Kt)'
The odd and even convergents of (40) fill respectively the »th and (« + l)st

diagonal files of the Padé table. When^a¡" is convergent, they have separate

limits in consequence of the foregoing results of Stieltjes, and these limits

are meromorphic over the entire plane except at z = 0, with poles lying only

upon the negative half of the real axis. If now we put

u{z) = Gn(z)q{^j - (- s)«-1*(~j,

v{z) -,(--),

the limit of the even convergents Z72i(z)/F2i(z), for i = », is u(z)/v(z).  Simi-

larly the limit of the odd convergents will be «i(z)/z)1(z) where Mi and Vi

* Cf. the formulas for P,(z), Q,(z) given by Stieltjes, loc. cit., §2.
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are the same as u and v except that p, q are replaced by pu qx. In consequence

of (44) we have the relation

(46) m(z)di(z) — «i(z)d(z) = (— z)n_1.

When^oj" is divergent, the application of the results of Stieltjes to (45)

shows immediately that the two sets of convergents have a common limit

which is analytic over the entire plane except the whole or a part of the

negative real axis. We conclude therefore that whether 2a«B converges or

diverges every diagonal file of approximants to the right of the principal

diagonal converges.

For a complete discussion of the relationship between the limits of these

files we shall need to connect our successive series ^<z,n with the primary

series J^a,. For that purpose I shall now obtain expressions for the a? in

terms of the a"-1.

Let the numerator and denominator of the ¿th convergent of (40) be

denoted by Z7,n (z) and V" (z). Except for a common numerical factor, these

may be obtained from (13) and (14). Thus, in particular, on setting m = k

and replacing n by n+k in (14) and introducing this factor, we have*

(47) 2t+l (-•)-   (-   1)'

Cn+1 Ch+k,

Cn+k+l,   '   '   '   i   Cn+2t,

»i,n+fc.

From (47) we see that the coefficient of z* in Vilt+i{z) is At_i,B+/fc+i/At,B+t.

Now F2*+i(z) is the denominator of the (2k + l)st convergent of the Stieltjes

continued fraction (43), and it is easily proved by mathematical induction

that the coefficient of z* is also ar-fa3" + • • • +a"*+i. Therefore

(48) aiB + a? + • ■ ■ + «2A-+1 = At_i,B+jt+l/AijB +k-

If now we form by (41) the ratios a"i/aB<+i and öBi+i/a"i+2 an<^ then

employ (48), we obtain the very fundamental relationsf

(49) Ö2i   =

n-1
Ï21+1

En— 1     -T-,     n—1
ö»i+l    2^i  02¿ + l

t=0 i=0

(«- 1,2,3, ),

* Cf. Perron, loo cit., p. 428. Note that Perron's &„, differs by a factor (- 1)"C+d« from that

used by me.

t After this article was finished I found these relations (unused) in Stieltjes, loc. cit., §78.
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and

(50) a2(+i = a2¿+2( 2^a2.+iJ .

For n = 0 we are to understand that a°=aj (* = 1, 2, 3, • • • ).

Equation (49) may evidently be written in the form

1 1
(49a) a2i =

1 „_i ¿, „_i

¡2Í+1

¿-0

1    n—l TT-V

It now follows from (49) that when 2^ali -i is convergent and has the limit

L, then from and after some index i,

a2i < a2i+1/(L — e)2,

where e is an arbitrary fixed positive number. Therefore 2~la2i is convergent

when 2~la"i-i is convergent. Furthermore, 2~la2i is convergent even when

2~la1-\ is divergent.  For by summing (49a) for z = l, 2, 3, • • • , k, we get

1 1
2Ja2i =

ßl"-1 *      _1

2-,a2i+l
t-0

and this has the limit l/ai"-1 when k becomes infinite. We thus have proved

the theorem:

Theorem 2. The successive series y)a"-, n = 1, 2,3, ■ • ■ , are all convergent.

We now turn to the series with odd subscripts, Xa"»-i- We see at once by

(50) that, when^a"-1 is convergent,

<i2i+i < a2i+2(L')2 (i = 0,1,2, • • • ),

where L'=X]a2i-1i) and therefore2~2&in is convergent.  Taking n = \, 2, 3, • ■ •

in succession, we obtain at once the following theorem:

Theorem 3. If in the Stieltjes continued fraction (7) the series 2^Lai *s

convergent, then all the associated series 2~lain, n = i, 2, 3, • • • , are convergent.

Consider next the case in which JX diverges. Then, while 2~laa wiU

necessarily converge, 2a2>-i may either converge or diverge. On the former

hypothesis all subsequent series 2~2ain> « = 2, 3, 4, • • • , must converge, by

application of Theorem 3. If J^aà-i diverges, then as before ^a2¡ must con-

verge but 2~La*i--i may either converge or diverge, etc. Proceeding in this

manner we perceive that in addition to the possibility of the convergence of
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all ^2a?, n = 0, 1, 2, • ■ • , Case I, there are just two other possibilities:

either, Case II, all of the series JZai", » = 0, 1, 2, • • • , will diverge; or else,

Case III, the first r will diverge while all subsequent to the rth will converge.

It remains to see that both the last possibilities can be realized. For this

purpose the following lemma will be established.

Lemma 1.   Let
0i + h + bs + • • •

be any divergent series in which there is a limit to the ratio ¿,/6,_i: lim ¿>»/6»-_i = s.

Then if s 2; 1 we have

bx + b2 + • ' • + bi+k
lim

bi + b2 + ■ ■ ■ + bi

According to the hypothesis, we may take a fixed j sufficiently large to

insure that bj+k+i/bj+i (¿è0) shall lie between the limits sk — e'/2 and

sk+e'/2 where e' is an arbitrarily small prescribed positive quantity.  Then

b,+k + bj+k+i + • • ■ + 0y+*+j

bj + bj+1 + • • • + bj+i
6i + o2 + • • • + ôj+i-i

¿i + bi + • • • + bj+k+i   0i + 02 + • • • + bj+k+i

0i + 62 + • • • + 6j-i       61 + 02 + • • • + bj+i
'   01 + 02 + • • • + 0

J+«

will lie between the same limits inasmuch as the ratio of each term of the

numerator of the left member to the corresponding term of the denominator

lies between these limits. But since XX = + °°, the first factor on the right

by taking i sufficiently large, say for i >N, becomes 1/(1 +e"), where\e" \ <e'.

Thus

01 + 02 +   •   ■   • + bj+k+i
-sk

01 + 02 + • • ■ + 0 j+"

^e'(s" + 2)<e   if   e'<-,i>N.
sk + 2

The lemma accordingly results.

Construct now a Stieltjes continued fraction for which lim (a2<+i/a2<-i) =s,

lim.(an/a2i-i) =r. Let 0<r<l, s>l. Then by the lemma and (49), (50)

for n = 1 we obtain

lim (fl2i+i/<i2i-i) = «2, lim (a2i/a2i-2) = l/s.

If we so choose j that rs2<l, l/s<l, then 2Za> wiU diverge while 2?*1

will converge.   But if rs2>l, l/s<l, 5Za' as weU as ]Ca< Wl^ diverge.   In
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the latter event, we may again apply the lemma and (49), (50) for « = 2 and

obtain
2 2 2        2

lim (a2i+i/a2,-i) = r2s*,   lim (a2i/a2<_2) = l/{rs2).
I» » Í=BO

If we so choose s that rsi>l, r2i3<l, the series 2^1a<> 2~2a<1 wiH diverge,

while2~2ai2wiUconverge. Butif r2í3>l, l/(rs2)<l,2a<>£a¿> and2a«2 wiU

all diverge, and we may again apply the lemma, etc.

Continuing in this manner we find that if 0<r<l, l/r(t-1)/*<s<

l/rt/(*+1), all of the series Xa<> 2a«1) • • • > Xa¿_1 wiH diverge, while the

series2~lau Xai+\ ■ • ' i will converge. When s^l/r, all of the series Xa"»

« = 0, 1, 2, 3, • • • , are divergent. Thus the two possibilities indicated above

when 2~2<ii is divergent can be realized.

Whenever the Stieltjes series (5) is convergent, the series cn —cn+1z

+C+2Z2— • • • , » = 1, 2, 3, • • • , are convergent, and therefore the numbers

\/{a? a, +i), i = l, 2, 3, •• • , must be bounded for each w = l, 2, 3, • • • .*

Hence none of the associated series J^a?, n = 1, 2, 3, • • • , can be convergent.

These associated series may also diverge even when the Stieltjes series (5)

is divergent. For consider the Stieltjes continued fraction for which a2j_i

= l/(iri), a2i=ri, 0<r<l. In this the numbers l/(aiai+i) increase without

limit, and lim(a2<+i/a2<_i) = 1/r, lim(a2i+2/a2i) =r. Accordingly the series

(5) and the associated series diverge.

We have seen that there are three cases which arise. Of these we will now

consider the first.

Case I.   The series 2^,a< is convergent.

Then by Theorem 3 all the series 2~2ain> w = 1, 2, 3, - • • , converge. Hence

by the discussion at the beginning of the chapter all the diagonal files of

approximants which lie to the right of the principal diagonal have limits

which are meromorphic over the entire plane excepting z = 0; with poles

lying only on the negative half of the real axis; and the limits for no two

successive files are identical.

To show that no two of these diagonal files have the same limit, I will

show that for two of the denominators vn of these limits the roots of vn(l/z)

(different from 0) nearest the origin are distinct.

Stieltjes found that the roots of Q2k(z) and Ç2*+i(z) for (2) are all real,

non-positive, distinct, and separate each other. The former is of degree k

and has no root equal to zero, while the latter is of degree k +1 and has a

zero root. The same is true of Q"*(z), and Q*k+\{z), obtained from these by

* Cf. Stieltjes, loc. cit., §10.
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replacing o4 by of. If then we denote by r*(n) and rk(n+1) the non-zero root

nearest the origin of Qlk{z) and (2"*+i(z), we have

r*<"> > r¿n+1)- (n = 1,2,3, • • •   ; k - 1,2,3, • • • ).

But r*(B+1) is also the non-zero root nearest the origin of (^'(z). If then we

let £—►<», r*(n) will approach a limit Rn^0, and this limit is the non-zero

root nearest the origin of the limit function v„(l/z).* We have

(51) i?i è i?2 è i?3 è i?4 è • ■ • •

The equality sign can nowhere hold in (51), since, by (46), »„(1/z) and

î;„+i(1/z) cannot vanish for the same value of z not zero, and therefore

Rn^Rn+i for all values of n. The distinctness of the functions »B(l/z)

therefore follows, and hence no two diagonal files can converge to the same

limit.

Case II.   All the series 2a<B> n = \, 2, 3, • • -, diverge.

Any two consecutive diagonal files to the right of and parallel to the

principal diagonal converge to the same limit, and hence all these files have

a common limit. The limit is analytic throughout the complex plane except-

ing the whole or a part of the negative half of the real axis.

Case III. The series "^a?, n = \, 2, 3, • • • , r, diverge while ^,ar,+i,

j = \, 2, 3, 4, ■ • • , converge.

By the first part of the hypothesis the principal diagonal and all parallel

files on its right up to the (r+l)th diagonal file inclusive converge to one and

the same limit, while by virtue of the second part of the hypothesis all the

files beginning with the (r+l)th converge to limits which are meromorphic

over the entire plane except at z = 0. Thus the limits of all these files are of

the same meromorphic character, but the distinctness of the limits begins

only on passing the (r+l)th file.

We will now turn our attention to the diagonal files below the principal

diagonal which start with an approximant on the vertical border of the

Padé table. Instead of considering directly the convergence of these diagonal

files of approximants, we may consider instead the convergence of their

reciprocals which are files of approximants to the right of the principal

diagonal of the Padé table for the reciprocal series of (5). Let this be

(52) do + dlZ + d2z* + • • • .

By (34) and (35) the determinants An and Bn with every c¿ replaced by

( — l)'di are not all positive, but to the series

(53) ¿1 + ¿2z + ¿3Z2 +  • • •

* Stieltjes., loc. cit., §19.
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belongs (Theorem 1, Chapter I) a Stieltjes continued fraction

1       z       z
(54) —     —     —

a2 + as + «4 + • • •

Consequently (53) is a Stieltjes series and we may apply the results previously

obtained for (7) and (43) using (53) as our primary series.

Three cases may be distinguished.

Case I. If the series 2~2ai converges, the diagonal files of approximants

for (53) to the right of the principal diagonal converge each to a different

function, which is meromorphic except at z = 0 with poles only on the

negative half of the real axis. Consequently the diagonal files of approximants

for (5) below the principal diagonal converge, each to a different function,

which is meromorphic except at z = 0 with zeros only on the negative half of

the real axis.

If 2~2<ii is divergent, two cases may be distinguished corresponding to II

and III above.

Case II. If all the diagonal files of approximants for (53) to the right

of the principal diagonal have a common limit Fi(z), then those below the

principal diagonal for (5) have the limit F{z) = l/(d0+zFi), which is the limit

of the continued fraction (7), and is analytic except over all or a part of the

negative real axis.

Case III. If the first r files of approximants of (53) to the right of the

principal diagonal have the same limit, while after passing the rth file the

limits are distinct, then in the table of approximants of (5) the files below

the principal diagonal will have the same limit until after passing the (r+l)th

file, whereupon they become distinct from one another. The limit functions

are all meromorphic except at z = 0 with zeros only on the negative half of

the real axis.

One may ask the question whether, if the rth and (r+l)th diagonal files

to the right of the principal diagonal have a common [different] limit

[limits], a corresponding pair of adjacent files below the principal diagonal

must have a common [different] limit [limits]. In Case I the answer is

obviously in the affirmative, for then all the files to the right of and also

those below the principal diagonal have distinct limits. In Case II when (5)

converges, since its reciprocal also converges, both the series 2~la?> n=0,

1, 2, 3, • • • , and the series similarly associated with (54) (which we shall

denote for future reference by ^Cau", ra = 0, 1, 2, • • • , a°=ai+i) must all

diverge. Hence all the files have the same limit. Also for the divergent

Stieltjes series for which a2i=ri, a2,_i = l/(¿r*), 0<r<l (Chapter II) it is

easily verified that2~2a?>2~la*> n = 0, 1, 2, 3, • • • , all diverge. Finally, when
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lim(a2i/a2i_2)=r, lim(a2t+i/02i-i)=5, 0<r<l, j>1, it may be easily seen

that a¡¡ i+i/aííi-i and a2i+Í/a2"-¡ both have the limit rnsn+1 for i = °o. Conse-

quently (except possibly when rnsn+1 = l) ^a," and X/*,*+1 converge or diverge

together. In all these examples pairs of adjacent files equally distant from

the first diagonal file below the principal diagonal behave alike (i.e. the two

files in each pair have a common limit or else they have distinct limits).

In the following example pairs of adjacent files equidistant from the prin-

cipal diagonal behave alike. Choose a2i+3 = bi/(02+04+ ■ ■ • +a2¿+2)*,

where ^bi is any convergent positive-term series. Then JZaL+i *= £i<

converges and hence by Theorem 3 all J^a,* converge. But if 23a2< is diver-

gent, 2Za»> 2a«1 are divergent, but ^af and all subsequent series are con-

vergent.

Now we shall examine the zeros and poles of the approximants

Nm,n(z)/Dm,n(z) of the Stieltjes series (5). If n^m, these by (45) are equal

to G2p+i(z)—z2p/>,(l/z)/Çj(l/z), where j = 2m or 2m+l according as

n—m = 2p or 2p+1 ; and if n < m their reciprocals, by the discussion centering

about (52), are equal to do+dxz+ ■ ■ ■ +d2p+lz2'+l+z*p+lPj"(l/z)/Qj"(\/z),

where Pj"/Qj" is of the same form as Pj/Q¡ and j = 2n or 2»+l according

as m—n = 2p+i or 2p+2. If we replace z by 1/z and set Gnl(z)=d0+diz

+ • • • +¿B_iZB_1, these become

/1\        1    Pj(z) /1\ 1      P'j'{z)
Gip+i I — 1-—-     and    G2p I — ) -\-—— >

\zj     z2" Qj{z) P\zJ     z2^1 Qj"{z)

where Pj(z)/Qj(z) and Pj"(z)/Qj"(z) are the yth convergents of Stieltjes

continued fractions of the form (2). Now it follows from the work of

Stieltjes that when n^m — i the roots of the polynomials Dm,n(z) are all

distinct and lie on the negative half of the real axis. If n ^ m the same is

true of the roots of Nm,n(z). If n = m or m — 1, all the roots of Nm,„(z) and

Dm.n(z) are real and alternate along the negative half of the real axis. Con-

sider now the roots of the numerator and denominator of an arbitrary

approximant A^m,B(z)/Z>m,B(z). In the above representation for it, Pj(z)/Qj(z)

and Pj"(z)/Qj"(z) are monotone functions of z which decrease from +00 to

— 00 as z increases between two adjacent roots of the denominators.*

But the polynomials GB(l/z) and G„ (1/z) are continuous and bounded in

any interval not containing the origin. Hence G2p+i(l/z) becomes equal to

Pj(z)/z2pQj(z) at least once between every two adjacent non-zero roots of

Qi(z). Therefore if n>m, Nmin(z) vanishes at least once between every two

adjacent roots of Z)m,B(z); similarly, if n<m — \, Dnin(z) vanishes at least

once between every two adjacent roots of Nm,n{z).

* Cf. Stieltjes, loc. cit., §3.
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Chapter III.  Extended Stieltjes series

I pass now to the question whether, given the Stieltjes series (5), it is

possible to find a number c_i such that the series

(55) — c_iz_1 + Co — c\z + c2z2 — • • •

shall be a Stieltjes series, i.e. such that the determinants An and Bn in terms

of the coefficients of (55) shall all be positive. The Bn for (55), being the An

for the original series (5), are positive. Consequently it is both necessary

and sufficient for the extension that a number /=c_i>0 shall exist such that

hit) =

t       Co

Co    Cl

Ci

Ci+i

Ci • ■ • C2i+i

shall be positive for all values of i=0, 1, 2, 3, • • • .

Now

(56) /¡(()=W+/i(0).

Since the coefficient of / in (56) is positive, c_i must be taken greater than

the root of/<(/), i.e. greater,than

(57) U= -/«(O/Ai.H.!,

for all values of i.   It follows that the extension is possible when and only

when the numbers /<, i = 0, 1, 2, • • • , have an upper bound.

Now*

(58) ti = a2 + a4 + • • • + a2l+2.

In fact, by the rule for multiplying a determinant by one of its minors

(59) /<(*)• Aí-lí = /wWA;,^ - Ai2,-.

If we divide both members of this equation by Aí-i.íAí.j+i and then replace

i by i — \, i—2, • • • , 3, 2, 1, 0, we have with the aid of (42)

<*2i+2  = /i-lW/Ai-l.i  - fi(Í)/Ai,i+l,

a2i = /<_2(/)/Ai_2,i_1 - /i_i(/)/A,_i,j,

a4=/oW/Ao,i-/1(0/Ai.2.

* Stieltjes, loc. cit., §35, eq. 11, obtained this in a different manner.



110 H. S. WALL [January

If to these equations we adjoin the identity

a2 = t — /o(0/Ao.i,

and then add them together and set / = /,-, we obtain (58).

It follows from (58) that the numbers U, i = 0, 1, 2, • • • , will have an

upper bound when and only when the series ^a2< is convergent. When

this condition is satisfied, we may take c_i=^a2i+(r where <r is zero or an

arbitrary positive number.  We state this result in the following theorem.

Theorem 4. Given a Stieltjes series

(5) c0 — ciz + c2z2 — ■ ■ ■ ,

there exists a Stieltjes series

(55) — c_iz_1 + Co — Ciz + c2z2 — ■ ■ ■

when and only when the series ^a2i in the Stieltjes continued fraction belonging

to (5) is convergent.

When the condition is fulfilled the number c_i may be taken equal to y^a2«

or any greater number.

Let us now suppose that XX m (?) is convergent. Denote by*

ffi ' + af1 + af1 + • • •

the Stieltjes continued fraction belonging to (55), in which the aB_l are

necessarily positive. We must now express the a„_1 in terms of the an, which

is obviously the same problem as that of expressing the <z¿n_1 in terms of the

a¡n. To do this we will need to develop some necessary formulas.

If we equate the two values of ti-2 obtained from (57) and (58), and then

advance the subscripts of every c, by n, we get the equation

(61) a2n + a4" + • • • + û2i_2 = -fZn(0)/Ai-.2 ,n+i-i,

where
0 CB ■   •   •   Cn+t-2

CB CB+i     • • ■   CB+i_i

CB+i—2 ■   '   ■  CB+2¿_3

= /i_2(0)   +  CB_iA,_2 .n+i-l,

/i"-2(0) =

Now

(62) A<_i,B+i_2

* The superscripts as before are written for conven ence without parentheses.
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and therefore (61) may be written in the form

(63) bi-i.»+i-t - /f-2(0)/c_x -   ¿*«j-

By (41),
n-l

/       s fl2¡ 1

(64)
At—l,n+i-2 A¡_ i,j+,,_iA¡_2,i i+n— 2

Squaring the members of (63) and multiplying them into the correspond-

ing members of (64), we have

/ *->     \2n-l n        / ^-,    n   \

a   = a2t_i I cn_i —  ¿j a2i I(65) a2i   = a2¿-i( c„_i —  23a2i ) (i = 2,3,4, •••) ;

while for i = 1 we have

(66) a?-1 = afc„*_i.

Also by (41), (63),
n

n—1 &2i

(67) a2i+1 = —-—-■-       (i = 2,3,4, • • • ),

ícn_i—  2jo2¿jícn_i—  2^a2¡J

while for i = 0, 1 we have

(68) a!-"1 = l/c„_, ; a3"-1 = ^"/[cn-Kcn-! - a2n)].

Then we have, setting w = 0, c.1=^a2¡+ff, o->0, in (65), (67),

a2

and

t  =   a2)-li    2^fl2»   +   "■   ~     2~la2i)   <   «2t-l(  Sa2i + ff)2,

flii+i = a2l/i   2^02, + a —   ¿2a2tj(   2Za2» + " —   zZ^i j < a2i/<r2.

Hence since XX is convergent, it follows that J^ar1 is also convergent.

We may now take c_2=]Ca¡J+o-', where <r'>0, and extend (55) to form

the Stielt jes series

(69) c_2z-2 — c_iz~l + Co — C]Z + c2z2 — • • • ,

etc.

Continuing in this manner, we see that the series (5) can be extended

indefinitely to the left. We have proved the following theorem:
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Theorem S. // in the Stieltjes continued fraction belonging to the Stieltjes

series

(5) Co — Ciz + c2z2 — • ■ ■

the series J^i converges, then the series (5) can be extended to the left by prefixing

any finite or infinite number of terms: — c-iz"1,     + c^2z~2,     — c-gr*, ■ ■ ■ ,

in such wise that the extended series shall be Stieltjes series.

The coefficients in the prefixed terms are not unique.

Let us next suppose the series ]£a< to diverge. By Theorem 4, ^Ou

must converge in order that extension shall be possible, and consequently

2ö2»-i is divergent. We then take c_i =^0:21+0", where a is zero or a positive

number. I shall prove that unless a = 0, the series ^a~2] will be divergent,

and therefore further extension will be impossible. In fact, by (65), if

o-^O, atZ1><Tsati-i, i — \, 2, 3, • • • , and therefore each term of J^r1 is

greater than the corresponding term of the divergent series a-^c^i-i so that

extension is impossible.

When 0-5^0, it has been shown that JZc^r1 is necessarily divergent. I

shall give examples presently to show that when <r = 0, ^2a2z1 may either

converge or diverge. On the former hypothesis X^F-i must be divergent,

and therefore also ^ot1. For suppose the contrary. Then by Theorem 3,

since ^ar1 converges, 2Za<, ^a?, ■ ■ ■ converge. But by hypothesis ¿^Oi

is divergent.  We thus have a contradiction.   Hence:

Theorem 6. // in the Stieltjes continued fraction

\       z       z

ai + a2 + a3 + ■ ■ ■

belonging to the Stieltjes series

(5) Co — ciz + c2z2 — • • •

the series 2fl< diverges, and if (5) admits the extension

±  C_BZ_" +   C_„+iZ-n+1  ±   •  •  • + C0 — CjZ + C2Z2 —   •  •  •   ,

then the coefficients c_i, c_2, • • • , c_„ must be chosen successively in accordance

wi'h the relations

(70)
c-n ̂  2>; n+1

2i

For examples illustrating the extension of Stieltjes series to the left the

following lemma will be needed.
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Lemma 2,   Let bi-\-b2+b3+ • ■ ■ be any convergent series in which lim<_

£,/¿,_i = r; then if 0<r<l,

¿i+i + bi+2 + ■ • • 1
lim

bi+k+i + bi+k+2 + • • •      r*

According to the hypothesis we may take a fixed integer m sufficiently

large to insure that for all n^m the quotient bn/bn+k will lie between

(1/r*) — e/4 and (1/r*)+t/4, where e is an arbitrarily small assigned positive

number. Then

bm + bm+i + • • • + bm+p

bm+k + bm+k+l +   •  •  • + bm+k+f

will lie between these same limits inasmuch as the terms are all of the same

sign and the ratio of each term of the numerator to the corresponding term

of the denominator lies between these limits. But since 2~lfii is convergent

there will be a limit to this fraction for p—»°o which lies between these

limits.
As e may be taken as small as desired by taking m sufficiently large, the

lemma accordingly results.

Construct now a Stieltjes continued fraction in which a2i=ri, lim,««,

ö2,+i/ffl2i-i=i, 0<r<l, 5>1. As^öi diverges, c_i must be taken in accor-

dance with (70). Then by (65) and (67), with w = 0,

a2< a2i-i     ^2» + a2i+2 +■••)*       ,
lim     _    =   lim-    -— = r2s,
,=oo   a-1 i=» a2<— s    (ö2i—2 + an + • ■ *)2

2,-2

a2i+i                ö2»       (ö2i_2 + a2i + • • •)

lim   - =   lim-- = 1/r.
,= »   arl >=« a2¿-2    (»2»+2 + 121+4 + • ■ •)

2t—1

If we now choose r so that rh < 1, then 2~^a2rl will be convergent and both a

first and second extension of (5) is possible. This requires that we have

r<l/j1/2<l. Similarly, if r2s<l, we have

"2 _1    1 -1 j_        ^2

a2i a2,_i {a2¡ + • • ■ r
lim   -=  lim- = rv,
,=»   a-2 <=»   a-1    (a-1   + ■ • •)2i-2 2,-3    v    2i-2

a2<+i a2i   (a2i-2 + • • • )
lim   -=  hm- = l/(r2s).
¿=»   a-2 j=»   a *     (a l   + • • •)

2,-1 2«-2    v    2t+2

Then if r352<l, that is, if r<l/s2/3, a third extension is possible and

lim a2T3/o.2~i\.2 =r4j2, etc. Thus, if
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1                            1
-< r <-—,
skl(k+l) s(.k-l)/k

the series 2~La«> 2~la*Tl, ■ • -, ^,a2Tt+1 will converge, while ^,a2Tt is divergent.

Hence extension of (5) to the left for k terms is then possible, but a further

extension is impossible. If r = l/s, an extension of infinite order is possible.

The following theorem follows immediately from (49), (50) of the preced-

ing chapter.*

Theorem 7. Given any series of positive numbers ^a,-, there is uniquely

determined a power series of Stieltjes

Co — CiZ + c2z2 — • • •

belonging to the Stieltjes continued fraction

1        z        z

ai + a2 + a3 + • ■ •

The Ci are given in terms of the a{ by the following formulas:

(i - I/ai' (¿ = 0,1,2, •••),

i í-i      *   »-i     *+1 <-i
(71) o2t = a2k+1/¿2 a2k-i 2^a2*_i,

,t=l i-l

i-i/'i-iV
a2k-i = Oik I   z_j02k-i I .

Chapter IV. A particular example

The continued fraction f

1 Z Z z

T+T+T+T+
I will determine the c< and the a¡n (which are the same as the aB in this

case) for the above continued fraction. I will show that the radius of conver-

gence of the corresponding Stieltjes series is 1/4. The associated series

2~2a?> » = lj 2, 3, • • • , are divergent, but the 22a"¡ converge, and conse-

quently

(72) cB=E<*£x (« = 0,1,2,3, •••)•

* Stieltjes, Annales de Toulouse, vol. 3, H, pp. 1-17,1889, shows the one-to-one correspondence

between his series and continued fractions. He obtains the a in terms of the a,- by a different method.

t Laurent, Note sur les fractions continues, Nouvelles Annales de Mathématiques, (2), vol. 5

(1866), pp. 540-552.
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The cn being known, (72) serve to give the sums of certain positive-term

series.

To determine the c¿, write

z        z z
FiOO = 1 + —     — = 1 +-

1 + 1 + • • • Fi(z)

Hence,

and

B/%      1 + U+4Z)1'2Fi(z)  =-;

1 Z Z
F z   = —     —     —

1 + 1 + 1 + •••

= (Pi - l)/z

- 1 + (1 + 4z)1'2

2z

If we develop the numerator of the last expression in a Taylor's power

series about z = 0, we may then divide by 2z and obtain

(73) F(z) = c0 — Ciz + c2z2 — ■ ■ • ,

where
(2k + 3)(2k + 5) • • • (4k - 1)2*

(74) c2k =

C2k+1

k\

(2k + 3)(2k + 5) ■ ■ ■ (U + 1)2*

k + V.

and therefore satisfy the recurrence relations

C2k+1   =    [(4k +   \)/(k +   \)}c2k,

(75) c2k = 2[(4k ~ \)/(2k + l)]clt_,,

Co = 1.

Since limíc/Ci-O =4 it follows that the radius of convergence of (73)

is equal to 1/4.

We will next get the elements in the associated continued fractions.

Using (49), (50):

<4= 1/[*(Ä + 1)],

a2k+\ = (k + l)2.



116 H. S. WALL

Then since l2+2ä+ • • • + (A+l)« = (A + l)(A+2)(2A+3)/2-3l we have

al* = (2-3)V[*(* + 2)(2* + 1)(2* + 3)],

«¿ft = (* + 1)(* + 2)(2* + 3)2/(2-3)2.

The next step will involve the formula l-2-32+2-3-52+ • • • + (¿ + 1)

(k+2)(2k+3y=(k+l)(k+2)(k+3)(2k+3)(2k+5)/5.    We have

ol = (2-3)2(5)2/[¿(¿ + 1)(* + 2){k + 3)(2* + 1)(2* + 5)],

al+i - (* + D(* + 2)2(* + 3)(2* + 3)(2* + 5)/[(2-3)2(5)2].

In general:

1<+1     (ft + 1) • • • (ft + i)(k + * + 1)»(* + i + 2) • • • (ft + 2* + 1)(2* + 3) ••• (2ft + 4» + 1)
<Jlt+l =

«<+i
024

M

(2-3)»(5)»(2- 7)' • • • [2(4» - l)]«(4» + 1)'

(2-3)'(5)«(2-7)« • • • [2(4» - 1)]'(4» + 1)>

flit+i =

M
Oit =

ft • • • (ft + 2* + l)(2ft + 1) • • • (2ft + 2» - l)(2ft + 2» + 3) • • • (2ft + 4» + 1)

(A + l) • • • (ft + 2*)(2ft + 3) • • • (2ft4-2»- l)(2ft + 2t + l)'(2ft4-2» + 3) • • • (2ft + 4»- 1)

(2-3)»(5)»(2-7)» • • • (4» - 3)«[2(4» - 1)]»

(2-3)»(5)'(2-7)' •■■(/tí- 3)»[2(4» - 1)]'_

(ft + » - i;(« +1 + 1) • • • (ft 4- 2*)(2ft + 1) • • • (2ft -r 4» - 1)

These formulas are seen to hold for all k when i = 1. Assuming them true

for all k and for all i^I — 1, they may, with the aid of the following formulas,

be proved* for i=I.   Set

Yé = (k +1) •

Zi - (* + 1) •

Then,

£W-(* + i)
t-0

¿Z/-(*+l)-

(k+i- 1)(* + i)2(k + i + 1) • ■ ■ (* + 2* - 1)(2* + 3)

(2*+ 4*- 3),

(*+2i)(2*+3) • • • (2¿4-2¿-l)(2¿ + 2¿+l)2(2¿+2t+3)

(4¿ + 4t- 1).

• (k+2i)(2k+3) • • • (2A+2i-l)(2¿+2i+l)2(2¿+2í+3)

• (2* + 4i- l)/(2(4*-D),

■ (* + 2* + 1)(2* + 3) • • • (2k + 4* + l)/(4» + 1).

* The completion of the proof, which offers no difficulty, will be omitted.
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