
ON CURVILINEAR CONGRUENCES*

BY

C. E. WEATHERBURN

In a recent paper On congruences of curves^ the writer has shown how the

theory of such congruences in ordinary space of three dimensions may be

extended along the lines followed for rectilinear congruences, making use of

oblique curvilinear coordinates. The present paper contains a further

extension of the theory, but is mainly independent of the preceding investi-

gation. The subject is approached from a slightly different point of view, with

the aid of the differential invariants grad, div, rot for three dimensions and,

as far as possible, the use of coordinates is avoided. Some of the theorems

proved have hitherto been known only for rectilinear congruences, while

others again lose their significance in the particular case in which the lines

are straight.

1. First qtjadric.    Cone of zero tendency

Given a congruence of curves, the unit vector t tangent to the curve at

any point P is known as a point function in space. It has a definite derivative

for each direction. In the direction of the unit vector a its derivative^ is

a • Vr, and the resolved part of this derivative in the direction of a has the

value a-Vta, the operator V being understood to act only on the vector

immediately following it. The quantity just defined may be called the ten-

dency of the congruence at P in the direction of a. It plays an important part

in the following argument. Denoting it by T we have

(1) T = a-Vta.

If then we introduce the quadric§

(2) rvir = l

with a center at the point P, which is origin for the vector r, it is clear that

the value of T for any direction at P is equal to the inverse square of the radius

of the quadric (2) in that direction. This square may be either positive or nega-

* Presented to the Society, October 29,1927; received by the editors in September, 1927.

t On congruences of curves, Tôhoku Mathematical Journal, vol. 28 (1927), p. 114.

î Cf. the author's Advanced Vector Analysis, Art. 6.

§ Ibid., Art. 66.
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tive. Also from the definition of the "divergence"* of a vector it follows that

the sum of the tendencies for three mutually perpendicular directions at a

point is invariant, and equal to div t. Hence :

The sum of the tendencies of the congruence in three mutually perpendicular

directions at a point is invariant, and equal to the divergence of the congruence

at that point.

The asymptotic cone of the quadric (2) is given by

(3) r-Vtr = 0.

This may be called the cone of zero tendency at P, for in the direction of any

of its generators, the tendency of the congruence is zero. The tangent to

the curve at P is clearly a generator of this cone; for, since r is a unit vector,

its derivative in the direction of the tangent is perpendicular to t.

We shall be concerned largely with the section of the quadric (2) by the

normal plane of the curve at P, that is to say, by the plane perpendicular to

t. This section is the conic

(4) it = 0, r-Vtr = 1

whose asymptotes are the corresponding section of the cone (3), giving the

directions of zero tendency in the normal plane. For a direction inclined

at an angle 6 in the normal plane to that of a principal axis of the conic (4),

the tendency is given by

T = T1 cos3 6 + T2 sin* 0

where 7\ is the tendency in the direction of the above axis, and T2 that for

the perpendicular direction. Obviously ri+r2 = divr, since the tendency

in the direction of r is zero.

We may observe that a direction of zero tendency in the normal plane

corresponds to that of a "common perpendicular" to nearby rays in the

case of a rectilinear congruence, f This should be borne in mind in order

to see the analogy which the following theorems present to those already

known for a congruence of straight lines.

2.  Surface of striction. Limit surface

The two directions of zero tendency in the normal plane will be at right

angles provided div t is zero.    This follows from the above theorem on the

* Advanced Vector Analysis, Art. 7.

t Cf. the author's Differential Geometry, Chap. X.
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invariance of the sum of the tendencies in three perpendicular directions.

The locus of the points at which this relation holds may be called the middle

surface or surface of striction of the congruence, being analogous to the line

of striction of a family of curves on a surface.* The points in which it is cut

by any curve are the points of striction of the curve. Thus :

The locus of points at which the two directions of zero tendency in the normal

plane are at right angles is the surface of striction, or middle surface, and is

given by div r = 0.

For a congruence of straight lines the middle surfacef is the locus of points

midway between the limits. In the case of a normal congruence the two

directions of zero tendency in the normal plane are the asymptotic directions

for the surface orthogonal to the curves. These directions are perpendicular

when the mean curvature is zero. At such points divr = 0 in agreement

with the above.

The limit surface^ may be defined as the locus of points at which the two

directions of zero tendency in the normal plane are coincident. At such

points the normal plane touches the cone of zero tendency. Now the normals

to the quadric cone r Vf r = 0 at its vertex generate another, called its re-

ciprocal cone, whose equation is

r (.Vf)  >-r = 0

where (Vf)-1 is the reciprocal dyadic to Vf. Now the "second"§ of Vf,

which is denoted by (Vf)2, is proportional to the conjugate of (Vf)-1- Con-

sequently the equation of the reciprocal cone may also be expressed as

(5) r-(V#)sr = 0.

Thus, at points on the limit surface, the tangent to the curve must be a

generator of the cone (5).

Let i, j, k be three fixed perpendicular unit vectors forming a right-

handed system. Let i be parallel to f, and the other two therefore parallel

to the normal plane of the curve at the point considered. Also let fi, f2, t¡

denote the derivatives of f in these three directions. Then

Vf = iti+jti + kti,
and

(Vf)2 = i U X fa + j fs X fi + k f! X f2-

* Differential Geometry, Art. 126.

t On congruences of curves, Art 9.

Î Ibid., Art. 4.

§ E. B. Wilson, Vector Analysis, pp. 316-317.
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Hence the tangent to the curve will be a generator of the cone (5) provided

t(Vt)2-t = 0, that is

(6) í(íiX i»)-0.

Again, with the same notation, we have

r div t - t• vr = i X (í X íi) + j X (í X f») + k X (t X í»)

from which it is easily verified that, t being a unit vector,

div (f div r - t-Vt) = 2i-(t2 X t3) = 2 t-(t2 X is).

Thus the condition (6) is equivalent to

div (t div t - t-Vt) = 0.

Hence the theorem:

The locus of points at which the two directions of zero tendency in the normal

plane are coincident is the limit surface, whose equation may be expressed as

(7) div (t div t - t-Vt) = 0,

or

(7') div (i div t + t X rot r) = 0.

In the case of a normal congruence of curves t is the unit normal to the

surface orthogonal to the curves. Then, since the first member of (7) is

twice the Gaussian curvature of the surface,* it follows that

The limit surface of a normal congruence is the locus of points at which the

Gaussian curvature of the orthogonal surfaces is zero.

This agrees with the known property of a surface that the asymptotic

directions are coincident where the Gaussian curvature vanishes.

3. Second quadric.  Cone of zero moment

Again, let r be the unit tangent at P, and t+St that at a nearby point Q,

such that the vector PQ is 5s a, 5s being the length oîPQ and a a unit vector.

The mutual moment of the tangents at P and Q, being the resolved part

in the direction of t of the moment of t+St about P, has the value

8sa X (t + ot)-t = 6s(a X 8t)-t.

The quotient of this mutual moment by (5s)2 has the value aX(5r/5s)r,

* Differential Geometry, Art. 131.
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and the limit of this as the point Q tends to coincidence with P, while the

direction of a remains constant, is the function

(8) M = aX(aVt)t = a(vtXt)a.

We shall call this the moment of the congruence at P for the direction of a.

Let us now introduce the quadric

(9) r(vfXf)r = l

with a center at P, which is origin for the vector r. Then it is clear from (8)

that

The moment of the congruence for any direction at P is equal to the inverse

square of the radius of the quadric (9) in that direction, having the value zero

for directions in the asymptotic cone

(10) r(vf X f)r = 0.

This cone of zero moment was known to Malus, and has been called by

Darboux* the cone of Malus. It was found by investigating the directions

at P which give nearby points, such that the tangent to the curve at one of

these points and the tangent at P have a shortest distance apart of the

second or higher order. It is the counterpart of the cone (3) of zero tendency.

The tangent at P is clearly a generator of the cone of Malus.

Again it follows from (8) and (9) that the sum of the moments of the

congruence in three mutually perpendicular directions at P is invariant.

The value of this sum is the "scalar"f of VtXt, which is easily shown to have

the value f • rot f. Thus:

The sum of the moments of the congruence for any three mutually per-

pendicular directions at a point is invariant and equal to t rot f.

This quantity f-rot f may therefore be called the total moment of the

congruence at P. It vanishes when the congruence is normal. For, in this

case, f is the unit normal to the surface of a singly infinite family, and may

therefore be expressed in the form ^V0, where yj/ and <f> are point functions.

Consequently rot t = V\}/XV<j>, and

f-rot f = 4>V<t>-(V^ X V<*>) = 0.

In this case the cone of Malus has an infinite number of sets of three mutually

perpendicular generators.!

* Leçons sur la Théorie Générale des Surfaces, vol. 2, pp. 262, 280.

t Advanced Vector Analysis, Art. 56.

% Darboux, loe. cit.
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We shall be concerned largely with the sections of the quadric (9) and

the cone of Malus by the normal plane at P. The section of the former is

the conic

(11) rt = 0,      r-(vt X t)-t = 1

whose asymptotes are the directions of zero moment in the normal plane.

For a direction inclined at an angle 6 in this plane to a principal axis of the

conic (11), the moment is given by

(12) M = Micos20 +M2sin26,

where Mi is the moment in the direction of the above axis, and M2 is that

for the perpendicular direction. And clearly Mi+M2 = t-rot t, since the

direction of t is one of zero moment. It should also be observed that the

moment in any direction may be negative. This is the case when the point

of the quadric in that direction is imaginary.

We may here pause to draw attention to an interesting result in connec-

tion with rectilinear congruences. We have shown elsewhere that, on a ruled

surface, the moment M of the family of generators and the Gaussian curva-

ture K at that point are connected by the* relation M= ±(—K)112. Con-

sider then any surface of the rectilinear congruence. Let a be the unit vector

which is normal to the ray and tangential to the surface. Then the moment

in this direction is a (Vr X r) • a, and the Gaussian curvature of the ruled

surface at P is given by

K = - [a(vtX t)a]2.

This vanishes only when a is a direction of zero moment; and if this.is so for

every point P, the surface is a developable surface of the congruence.

4. Surface of normality.  Ultimate surface

If the two directions of zero moment in the normal plane are at right

angles, the total moment at that point is zero; and conversely. The locus

of points at which the congruence possesses this property may be called the

surface of normality, for at such points the condition is satisfied that the

congruence should be normal. It is the surface of zero total moment, and

the points in which it is cut by any curve are the points of zero total moment

on that curve.  Thus:

* See Art. 2 of a paper by the author On ruled surfaces, recently communicated to The Mathe-

matical Gazette.
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The locus of points at which the two directions of zero moment in the normal

plane are at right angles is the surface of normality, or surface of zero total

moment.  It is given by the equation

(13) f-rotf = 0.

Corresponding to the limit surface we next consider the locus of points

at which the two directions of zero moment in the normal plane are coin-

cident. At such a point the normal plane is tangent to the cone of Malus.

The condition for the coincidence of the two directions may be found alge-

braically by the use of oblique curvilinear coordinates. The method is the

same as that adopted in the case of the limit surface in our previous paper*

already referred to. As, however, the details of the analysis are rather long,

we shall here give only the final result, which may be expressed in invariant

form as follows:

The locus of points at which the two directions of zero moment in the normal

plane are coincident is the surface given by

(14) 2 div (f div f - t-Vt) - (div f)2 + (f-rot f)2 = 0.

For convenience we shall refer to this surface as the ultimate surface—a

name suggested by the term limit surface applied in the corresponding case

when the two directions of zero tendency are coincident. We may notice

what the theorem becomes in the case of a normal congruence. If / and K

are the meanf and Gaussian curvatures of the orthogonal surface, the

equation (14) expresses that

AK - J2 = 0,

that is to say, the ultimate surface of a normal congruence is the locus of the

umbilical points of the surfaces orthogonal to the congruence. The interpretation

is that at such points the cone of Malus consists of two planes, one of which

is perpendicular to f. Any direction in this plane is one of zero moment.

5. Axes or normal sections

We shall next prove the important property that the axes of the conic

(4) bisect the angles between those of the conic (11), and vice versa. Take

rectangular axes of Cartesian coordinates x, y, z so that the first is in the

direction of the tangent f at the point P. Then if i, j, k are unit vectors in

the directions of these axes, i is parallel to f, while /' and k are perpendicular

* On congruences of curves, Art. 4.

t Differential Geometry, p. 226 and p. 261.
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to t and to each other.  The derivatives of t in the directions of the coordi-

nate axes may be expressed in the form

aj + a'k,        bj + b'k,        cj + c'k

respectively. Then since t = yj-\-zk, the conic (4) is

* = 0,    by2+ (b'+ c)yz + c'z1 = 1,

and the axes of the conic, being the bisectors of the angles between its asymp-

totes, are given by

y2 — z2       2yz
(A) x = 0,-. —— ■

b- c'     b' + c

Similarly the conic (11) has for its equations

* = 0,    b'y2 + (c' - b)yz - cz2 = 1,

and its axes are given by

■Va — za       2-yz

(B) * = 0,-= —— ■
V + c      c' - b

It is clear that the lines (B) are the bisectors of the angles between those

given by (A), and vice versa.  Hence the theorem:

The axes of the section of either of the quadrics (2) or (9) by the normal

plane bisect the angles between the axes of the section of the other.

This includes as a particular case the theorem for a rectilinear congruence,

that the bisectors of the angles between the focal planes are also the bisectors

of the angles between the principal planes.* For the cone of Malus is the

same at all points of a given ray, consisting of the two focal planes. Thus

the planes bisecting the angles between the focal planes contain the axes

of the conic (11) for all points of the ray. Similarly it follows from Hamilton's

formulât that the principal planes bisect the angles between the asymptotes

of the conic (4), and therefore contain the axes of that conic for all points

of the ray. From the above theorem it therefore follows that the principal

planes are inclined at an angle 7r/4 to the bisectors of the angles between

the focal planes.

* Differential Geometry, p. 191.

t Differential Geometry, p. 189.
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6. Rates of rotation

Consider next the arc-rate at which a direction of zero tendency in the

normal plane turns about the tangent as the point moves along the curve.

If a is the unit vector in this direction of zero tendency we have identically

(15) a-Vta = 0.

Let d/ds denote differentiation along the curve. Then, if b is the unit vector

f Xa, we may write

da
— = ub + it
ds

where w is the arc-rate of turning about the tangent. Hence on differentiating

(15) we have, since f is perpendicular to its derivatives,

d
(ub + ypt)Vt-a + a—(Vt)a + ua-Vt-b = 0,

ds

which may be written

à
(16) w[b(vt X i)b - a-(yt X t)a] = a—(vt)-a + HVt-a.

ds

At the limit surface of the congruence the coefficient of w is zero. For a and

b have then the directions of the axes of the conic (4), and are therefore in-

clined at equal angles 7r/4 to each of the axes of the conic (11). It follows from

(12) that the moments in these directions are equal, showing that the coeffi-

cient of 03 vanishes at the limit surface. To interpret this, we observe that,

just as w is the arc-rate of rotation of the direction of zero tendency in the

normal plane as the point P moves along the curve, so its reciprocal is the

rate at which the point P moves along the curve for rotation of the normal

direction of zero tendency. Thus, since the coefficient of w in (16) vanishes

at a limit point, while in general the second member of (16) does not, we

have the following theorem:

At the limit points of a curve the feet of the normals giving the directions of

zero tendency in the normal plane are stationary for variation of these directions.

This is substantially the theorem found in our earlier paper by a different

method, and stated in terms of common normals to the curve and nearby

curves.*

Similarly we may examine the rate of rotation of a direction of zero

* On congruences of curves, Art. 4.
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moment in the normal plane. If a is now the unit vector in such a direction

we have identically

a(vt X t)a = 0.

Hence, with the same notation as before, we have on differentiation

d
(cob + ^t)-(vt X t)-a + a—(Vf X t)a + wa-(vt X t)-b = 0,

ds

which may be expressed as

d
(17) o¡[a-Vt-a - b-Vt-b] = a—(Vi X t)a + it(vt X t)a.

ds

At the ultimate surface the coefficient of w is zero. For a and b have then

the directions of the axes of the conic (11), and are therefore inclined at equal

angles 7r/4 to those of the conic (4). It follows that the tendencies in these

directions are equal, so that the coefficient of « in (17) vanishes. In general

the second member of (17) is not zero, and we have the following theorem:

At the ultimate points of a curve the feet of the normals giving the directions

of zero moment in the normal plane are stationary for variation of these directions.

7. Normal congruence

It is known that, for a normal congruence of straight lines, the foci coin-

cide with the limits.* In order to extend the theorem to a normal congruence

of curves, we shall make use of the system of oblique curvilinear coordinates

adopted in our earlier paper. Let s be the distance measured along a curve

from a given surface, called the director surface, while u, v are current par-

ameters for a point on that surface. Any curve is determined by the values

of u, v for the point at which it crosses the director surface. Let r be the po-

sition vector of a point in space, and suffixes 1, 2, 3 denote differentiation

with respect to u, v, s respectively. Then the unit tangent t is r3.

Consider a point on the curve (u, v) whose distance from a point on a

nearby curve (u+du, v+dv) is of the second or higher order. Then, if

r(u, v, s) and r(u+du, v+dv, s+ds) are these points on the two curves,

we have to the first order

r(u,v,s) = r(u + du,v + dv,s + ds)

so that

(18) Tidu + r2 dv + r3 ds = 0,

* Differential Geometry, Art. 100.
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showing that r%, r2, r3 are coplanar, and leading to the equation of the focal

surface [ri, r2, r3] = 0.

Since f is perpendicular to its derivatives, it follows on forming the

scalar product of the members of (18) with th f2, f3 in turn that the quotient

du/dv has the value

du t2-t\ i2-t2 IV fa

dv iv fi iv fj iv f s

and consequently, for points on the focal surface,

(r2-fi)(ri-f3) = (rvtdirrh),

(r2-f2)(ivf3) = (rrtJi^-tt).

In terms of the magnitudes

a = Ti2,        b = r22,

/ = r2-r3,    g = r3-ri,    h = Ti-r2

the first of (19) may be expressed by

(20) (Ji - g2 + h3)g3 = 0.3/3.

Now for a normal congruence f • rot f vanishes identically.  This may be ex-

pressed* by

/1 - & = gfa - fga-

Substituting this value in (20) we have

(gf* ~ fgi + hs)g3 = a3f3,
or

(21) f3B3 + g3H3 = 0,

A, B, H being the cofactors of a, b, h respectively in the determinant

a    h   g

h   b   f   .

g   f    1

Similarly from the second of (19) we find

(22) g3A3+f3H3 = 0.

From this equation and (21) it then follows that

(23) A3B3 = H32,

* On congruences of curves, Art. 8.
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which is the equation of the limit surface* of the congruence. Thus at the

focal points of a curve the equation of the limit surface is satisfied, and

we have the following theorem:

For a normal congruence of curves the foci lie on the limit surface.

8. Where the cones are pairs of planes

We have seen that the cone of Malus consists of a pair of planes at all

points of a rectilinear congruence, and also at points on the ultimate surface

of a normal curvilinear congruence. Let us consider at what points either

of the two cones thus becomes a pair of planes. Since the tangent at the

point is a generator of each cone, it is clear that when the cone consists of a

pair of planes, one of these must pass through the tangent.

First consider the cone of zero tendency, and suppose that this is a pair

of planes. Let a be the unit vector parallel to the intersection of the plane

through the tangent with the normal plane at P. Then any direction at P

in the plane of t and a is one of zero tendency; so that, for all values of <f>,

(t cos <¡> + a sin <¡>)-Vt-(t cos <j> + a sin <j>) = 0.

Since t is a unit vector it is perpendicular to its derivatives. Also a is by hy-

pothesis a direction of zero tendency, so that the above condition requires

that

(24) t-vt-a = 0,

which may be expressed as

una = 0,

where k is the curvature of the curve, and n the unit principal normal. This

equation is satisfied if k is zero, or if a is the unit binormal to the curve.

Hence:

At points where the curvature of a curve is zero, or where the binormal is a

direction of zero tendency, the cone of zero tendency consists of a pair of planes.

The former condition is satisfied at all points for a rectilinear congruence;

and in this case the cone of zero tendency at any point of a ray is a pair of

planes equally inclined to each principal plane.

Next consider the cone of Malus. In order that this may consist of a pair

of planes, we must have, for all values of <j>,

(t cos <j> + a sin 0) • (vt X t) ■ (t cos 4> + a sin <j>) = 0,

* On congruences of curves, Art. 4.
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a being the unit vector in the normal plane and in the plane of zero moment

through the tangent.  This requires that

(25) f(Vf X f)a = 0,

which may be expressed as

Kti X ta = 0.

Now f Xn is the unit binormal to the curve. Hence, in order that (25) may

hold, either k must vanish, or a must be parallel to n. Thus :

At points where the curvature of a curve is zero, or where the principal

normal is a direction of zero moment, the cone of Malus consists of a pair of

planes.

The former condition is satisfied at all points for a rectilinear congruence;

and in this case the cone of Malus consists of the two focal planes, which

are the same for all points of a given ray.

9.  ISOTROPIC CONGRUENCE

The conception of an isotropic congruence* of straight lines may be gener-

alised so as to apply to curvilinear congruences. An isotropic rectilinear con-

gruence is one whose limit surface coincides with its surface of striction.

Now at points on the former surface the normal plane is tangent to the cone

of zero tendency, while at points on the latter the sum of the tendencies in

two perpendicular directions in the normal plane is zero. In order that

both properties may be possessed simultaneously, the cone of zero tendency

must consist of two planes, one of which is the normal plane. Conversely,

points at which the cone (3) behaves in this manner must lie on both the limit

surface and the surface of striction. We shall therefore define an isotropic

curvilinear congruence as one for which the normal plane is part of the

cone of zero tendency at all points of the surface of striction. This surface

may then be described as a limit-striction surface. At points on it the equa-

tion (7) holds simultaneously with div f=0.

Let a and b be a pair of perpendicular unit vectors in the normal plane.

Then, at points where the above property holds, the direction of the unit

vector a cos <j>+b sin 0 must be one of zero tendency for all values of </>.

Hence the equation

(a cos <t> + b sin <t>) ■ Vf • (a cos <¡> + b sin <¡>) =0

is equivalent to the three relations

* Differential Geometry, Art. 102.
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a-Vt-a = 0,        b Vt b = 0,
and

a(vt X t)a - b(vt X t)-b = 0.

From the last of these it follows that the moments in the directions of a and

b are equal. Since this must hold for all pairs of perpendicular directions in

the normal plane, the conic (11) must be a circle, real or imaginary, and the

moment must be the same for all directions in that plane, having the value

|i • rot t. Thus at a point P on this limit-striction surface, the moment of

the family of curves on any surface of the congruence has this same value.*

The directions of zero moment in the normal plane are therefore minimal.

Also in the particular case of a rectilinear congruence, the Gaussian curva-

ture K has the same value at P for all the ruled surfaces of the congruence,

being equalf to — \(t-xot t)1, and the parameter of distribution of the

ray is the same for all such surfaces.Î

For an isotropic congruence of curves the intersection of the limit-

striction surface with any surface of the congruence is the line of striction §

of the family of curves on that surface ; for it is the locus of points at which

the tendency is zero for the direction perpendicular to the curve.

Similarly we might imagine a curvilinear congruence with the property

that, at all points of the surface of normality, the cone of Malus consists of a

pair of planes, one of which is the normal plane to the curve. Such points

must lie also on the ultimate surface; and the coalescence of these two sur-

faces gives what may be called the ultimate-normality surface. As before,

let a and b be perpendicular unit vectors in the normal plane. Then if this

plane is part of the cone of zero moment, we must have

(a cos <j) + b sin <t>) • (Vt X t)(a cos <j> + b sin <j>) =0

for all values of <£.   This is equivalent to

a-(Vt X t)a = 0,      b(vt X t)b = 0,

and
b-Vt b - a-vt  a = 0.

From the last of these it follows that the tendencies in the directions of a

and b are equal; and since this is true for all pairs of perpendicular vectors,

the conic (4) must be a circle, real or imaginary. Thus the tendency has the

same value, § div t, for all directions in the normal plane, being also equal

* Differential Geometry, Art. 130.

t On ruled surfaces, Art. 2.

t Differential Geometry, p. 198.
§ Ibid., p. 249.
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to the divergence* at that point of the family of curves on any surface of

the congruence through the point.

For a congruence of this nature the directions of zero tendency in the

normal plane are minimal at points on the ultimate-normality surface. Also

the intersection of this surface with any surface of the congruence is a line

of zero moment for the family of curves on the latter, f for the moment of

this family is zero for the direction in the surface perpendicular to the curve.

10. Three orthogonal congruences

Finally let us consider briefly some properties of three curvilinear con-

gruences cutting one another orthogonally at all points. Let a, b, c be the

unit tangents to the curves at any point, so that

a = b X c,        b = c X a,        c = a X 6.

The total moments A, B, C of the three congruences have the values

A = a-rot a,        B = b-rot b,       C = crotc.

From the last equation we have

C = c ■ rot (a X b) = c ■ (b • Va — a • Vb + a div b — b div a)
or

(26) C = b(VaXa)b + a(vbXb)a.

Also since a is perpendicular to b it follows that

0 = v(a-6) = a-Vb + b Va + a X rot b + b X rot a,

and consequently, on forming the scalar product with bXa, we have

(27) 0 = a(vb X b)a - b(Va X a)b - B + A.

From this equation and (26) it follows that

a-(vbXb)a = \{B + C-A),

b(VaXa)b = h(A- B+C).

Similarly we may show that

a-(VcXc)-a = h(B + C-A),

c-(vaXa)-c = h(A+B-C).

From (28) and (29) it follows that the moments of the second and third con-

gruences in the direction of the first have the same value.  If we write

25 = A + B + C

we may state the above results as follows:

* Differential Geometry, p. 259 and Art. 116.

t Ibid., p. 258.
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The moments of the second and third congruences in the direction of the

first have each the value S—A ; those of the first and third in the direction of the

second have the value S — B, and those of the first and second in the direction of

the third the value S — C.

Thus the moments of the three orthogonal congruences are not independ-

ent, but are connected by the relations expressed in this theorem.

An important particular case is that in which two of the congruences

are normal, say the first and second. Then A and B both vanish; and the

curves of the third congruence are the lines of intersection of two orthogonal

families of surfaces, whose unit normals are a and b respectively. The

moment of the third congruence in either of the directions a or b is equal

to J C; that is to say:

// the curves of a congruence are the lines of intersection of two orthogonal

families of surfaces, the moments of the congruence in the directions of the

normals to these surfaces are equal to each other and to half the total moment of

the congruence.

The theorem just enunciated has several known theorems as immediate

corollaries. The moment of the congruence in the direction of b is the moment

of the family of curves on the surface whose normal is a ; and this vanishes

identically only when these curves are lines of curvature on the surface.*

Similarly the moment of the congruence in the direction of a is that of the

family of curves on the surface whose normal is b. Hence the theorem that

if the curves of intersection are lines of curvature on one of the orthogonal

families of surfaces, they are lines of curvature also on the other, f In that

case C is zero, and the curves of intersection constitute a normal congruence.

Thus we have Darboux's theorem that there is a third family of surfaces

orthogonal to the first two.J Conversely, if C is zero, the moment of the

family of curves on each of the orthogonal surfaces is zero, and the curves

are therefore lines of curvature. Hence we have Dupin's theorem that

the curves of intersection of the surfaces of a triply orthogonal system are

lines of curvature on these surfaces. §

* Differential Geometry, Art. 130.

t Ibid., Art. 112.
î Darboux, loc. cit., p. 276.

§ Differential Geometry, Art. 109.
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